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Background
Information spreading and opinion dynamics

Understanding the dynamics of opinions and information spreading on networks is 
key in our modern society where online social platforms allow everyone to voice their 
opinion and allow for rapid propagation of information. The spread of information on a 
social network can exhibit characteristics of complex contagions (Guilbeault et al. 2017). 
A broad overview of opinion dynamics can be found in Noorazar et  al. (2020). Social 
media platforms use algorithmic personalisation to provide a customised experience to 
each user. In this personalised space, it has been found that algorithmic filtering might 
influence opinions in a social network (Perra and Rocha 2019). A user with malicious 
intent who manages to manipulate the platform or the algorithm so that he appears in 
the personalised space can nudge another user towards the desired opinion without the 
latter realising it.

Abstract 

Recently proposed computational techniques allow the application of various maxi-
mum entropy network models at a larger scale. We focus on disinformation campaigns 
and apply different maximum entropy network models on the collection of datasets 
from the Twitter information operations report. For each dataset, we obtain additional 
Twitter data required to build an interaction network. We consider different interac-
tion networks which we compare to an appropriate null model. The null model is used 
to identify statistically significant interactions. We validate our method and evaluate 
to what extent it is suited to identify communities of members of a disinformation 
campaign in a non-supervised way. We find that this method is suitable for larger 
social networks and allows to identify statistically significant interactions between 
users. Extracting the statistically significant interaction leads to the prevalence of users 
involved in a disinformation campaign being higher. We found that the use of differ-
ent network models can provide different perceptions of the data and can lead to the 
identification of different meaningful patterns. We also test the robustness of the meth-
ods to illustrate the impact of missing data. Here we observe that sampling the correct 
data is of great importance to reconstruct an entire disinformation operation.

Keywords:  Social networks, Maximum entropy networks, Disinformation 
identification, Network analysis

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

De Clerck et al. Applied Network Science            (2022) 7:68  
https://doi.org/10.1007/s41109-022-00506-7

Applied Network Science

*Correspondence:   
bart.declerck@ugent.be

1 Department of Economics, 
Ghent University, Ghent, Belgium
2 Department of Mathematics, 
Royal Military Academy, Brussels, 
Belgium
3 Department of Physics 
and Astronomy, Ghent University, 
Ghent, Belgium

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-022-00506-7&domain=pdf


Page 2 of 22De Clerck et al. Applied Network Science            (2022) 7:68 

Disinformation campaigns

According to the definition of the European Commission, disinformation is ‘verifi-
ably false or misleading information created, presented and disseminated for economic 
gain or to intentionally deceive the public’. Misinformation on the other hand is ‘verifi-
ably false information that is spread without the intention to mislead, and often shared 
because the user believes it to be true’ (https://​digit​al-​strat​egy.​ec.​europa.​eu/​en/​polic​
ies/​online-​disin​forma​tion). When disinformation is shared by a so-called ‘useful idiot’, 
it often turns into misinformation, because the person sharing it does not intend to 
mislead. Democratic elections in several countries have been plagued by both in recent 
years (Mazarr et al. 2019; Bradshaw and Howard 2018; Marchal et al. 2018; Woolley and 
Howard 2018; Linvill and Warren 2018). During the COVID-19 pandemic, there has 
been a flare-up of unreliable or low confidence information (Elhadad et al. 2021, 2020). 
Even though it is difficult to quantify the impact and the efficiency of such campaigns, 
the social media platforms and different national or supranational entities are actively 
encouraging research to detect, identify or attribute disinformation.

In this paper we focus on disinformation within the context of information operations: 
an active operation that is run by an actor with the intent to create desired effects on the 
will, the understanding and capability of its adversaries or potential adversaries in sup-
port of its own objectives. The analysis and identification of coordinated behaviour in 
social networks has previously been realised by using a user similarity network (Nizzoli 
et al. 2020) or by looking at account behaviour and activity patterns (Sharma et al. 2020; 
Pacheco et al. 2020), sometimes in a limited timeframe (Pacheco et al. 2020; Weber and 
Neumann 2021). Various tools and platforms exist and contribute to the fight against 
disinformation, e.g. Hoaxy (Shao et al. 2016) for the tracking of social news sharing, and 
various fact checking websites such as FactCheck (https://​www.​factc​heck.​org), PolitiFact 
(XXXX) or EUvsDisinfo (https://​euvsd​isinfo.​eu). In addition, there are algorithms for 
identifying artificial accounts (Wang et al. 2019; Schuchard et al. 2019; Yang et al. 2020) 
and automatically classifying misinformation or propaganda (Guarino et al. 2020).

Currently only a few large social media platforms such as Reddit or Twitter give 
(sometimes limited) access to their data. On a regular basis, Twitter releases datasets 
that are suspected to be state-backed information operations (i.e. a disinformation cam-
paign) via the Twitter information operations report (Twitter 2021). Twitter works in 
close collaboration with the Stanford Internet Observatory for an independent analysis 
(DiResta et al. 2020; Cryst and García-Camargo 2020; Bush 2020; Grossman et al. 2020) 
of the suspected accounts. In these case-by-case studies, both the content and the net-
work topology are analysed. This always includes a subject matter expert who is able to 
understand the content of the messages and place it within the context of the targeted 
country.

Unlike other datasets e.g. concerning the 2016 elections in the United States, and 
despite their availability, the datasets from the Twitter information operations report 
have not been much studied. Some applications using these datasets include a semi-
supervised ensemble-tree classifier model that was built to detect influential actors 
in a disinformation network (Smith et  al. 2021) and the construction of coordination 
networks based on arbitrary behavioural traces shared among accounts (Pacheco et al. 

https://digital-strategy.ec.europa.eu/en/policies/online-disinformation
https://digital-strategy.ec.europa.eu/en/policies/online-disinformation
https://www.factcheck.org
https://euvsdisinfo.eu
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2020). We use the datasets in the collection as a ground truth (curated by the social 
media platform) to detect disinformation operations.

Specific applications on social networks

Despite the many applications such as link prediction (Parisi et al. 2018; Baltakiene et al. 
2018), inferring network projections (Saracco et al. 2017), pattern detection (Squartini 
and Garlaschelli 2011) and network reconstruction (Mastrandrea et al. 2014) on all kinds 
of networks, the application of maximum entropy networks on social networks has been 
limited. This is mainly due to the scale of social networks and the associated computa-
tional cost. In some cases it is possible to circumvent this obstacle. For instance, when 
using the Directed Bipartite Configuration Model (DBiCM) (Reconstructing mesoscale 
2019) on an interaction network generated from Twitter data, it is possible to determine 
the parameters without having to explicitly solve the system thanks to simplifications 
due to the choice of layers (Becatti et al. 2019).

The Bipartitte Configuration Model (BiCM) and the DBiCM are two models from the 
Exponential Random Graph Models  (ERGM) (Park and Newman 2004; Hunter et  al. 
2012) family that have seen the largest amount of use cases on social media data, in part 
due to the computational aspect, but also because it allows the use of statistical tests 
to reduce the fully connected network to only the statistically significant connections. 
They have been used to identify significant user interactions in several applications such 
as identifying significant content spreaders (Caldarelli et al. 2021); observing that social 
bots play a central role in the exchange of significant content for political propaganda 
(Caldarelli et al. 2020); identifying significant content spreaders and identifying political 
alliances (Becatti et al. 2019); identifying significant interactions in Twitter disinforma-
tion datasets (De Clerck et al. 2022); analysing a semantic network during the COVID-
19 pandemic (Mattei et  al. 2021); characterising the behaviour of bots during the UK 
elections (Bruno et al. 2021).

Contributions

This paper is an extended version of the work presented in (De Clerck et al. 2022), where 
only the DBiCM was used. At present we are able to consider additional network mod-
els thanks to the acceleration methods explained in the methods section. We analyse 
whether these advances make the methods suited for large scale social networks by 
applying them on interaction graphs from disinformation datasets and try to discover 
non-trivial patterns by comparing the observed interaction graphs with different null 
models from the ERGM family. The study is extensively extended by adding new results 
using other network models and by looking at the impact of node removal in the detec-
tion power. The contributions of this paper are the following: (1) we apply maximum 
entropy network models on the collection of datasets from the Twitter information 
operations report to identify statistically significant interactions between users. (2) We 
evaluate whether the recently proposed methods to solve a ERGM converge on large 
scale social networks. (3) We analyse whether the use of different members of the ERGM 
family can lead to the identification of interesting patterns and whether these results can 
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be generalised. (4) We analyse the impact of disturbances in the data on the obtained 
results (sensitivity analysis).

Data
The main data source is the Twitter information operations report which contains mul-
tiple datasets, linked to a specific disinformation campaign. Each dataset contains infor-
mation about the users that were identified as connected to the disinformation campaign 
as well as all their tweets. We call these users ‘flagged users’. The flagged users can inter-
act with other flagged users, but also with non-flagged users. The tweets with which 
flagged users interact that are authored by non-flagged users are not included in the 
dataset, but their tweet id is known. This allows these messages to be downloaded sepa-
rately to identify which non-flagged users the flagged users interacted with. We refer to 
these messages as ‘external tweets’. Table 1 shows the percentage of messages that could 
be downloaded for each dataset in August 2021. It is worth mentioning that in some 
datasets, not all of the ‘flagged’ accounts actively tweeted. When this situation occurs, it 
leads to users who will never be connected, regardless of the network model used. Note 
that we did not include the latest datasets which were released in December 2021.

Methods
We describe the different network representations we used, their associated null model, 
the network analysis methods and the methodology to evaluate the robustness of the 
methods.

Table 1  External tweets for each dataset

NRT , %RT  and NRP , %RP denote the absolute number of messages and the percentages that could be downloaded for 
retweets and replies respectively

Country Period NRT %RT NRP %RP

Armenia 2021–2002 298 68.12 208 41.83

China 2020–2005 45,199 27.61 44,048 14.85

Cuba 2020–2010 1,225,007 76.98 104,601 62.31

Egypt 2020–2004 1,962,519 67.68 353,471 51.41

Honduras 2020–2004 222,281 76.28 101,606 57.19

Indonesia 2020–2002 367,482 44.66 536,776 36.09

Iran 2020–2010 213 66.67 620 50.16

Iran 2021–2002 74,070 79.46 79,106 67.37

Qatar 2020–2010 128,963 65.38 5496 48.65

Russia 2020–2005 306,980 72.59 449,637 59.53

Russia 2020–2010 197 80.20 72 90.28

Russia GRU​ 2021–2002 3237 64.20 2592 61.38

Russia IRA 2021–2002 20,509 90.17 4662 56.07

SA, EG and AE 2020–2004 7,045,922 53.85 774,943 51.22

Serbia 2020–2002 2,589,041 59.01 972,795 40.98

Thailand 2020–2010 5207 91.05 3814 87.05

Turkey 2020–2005 8,513,467 65.15 2,246,872 42.20
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Network models

From the raw Twitter data we generate different networks which in turn can be com-
pared with an appropriate null model.

User–user interaction network

We construct a weighted, directed user–user interaction network Gw = (V ,E) . Each 
node corresponds to a user and each edge with weight wij represents the amount 
of times user j interacts (retweets or replies) with user i. The direction of the edge 
matches the direction of the information flow. We consider each kind of interaction 
(retweet or reply) separately, because a reply does not necessarily entail support for 
the user being replied to. The third Twitter action, the quote, was not considered as 
the datasets contain limited or no relevant quotes.

Bipartite user‑object interaction network

The user–user interaction network (weighted or not) is the most direct way of rep-
resenting the interactions between users. We can also consider a (directed) bipartite 
network with two layers ⊤ and ⊥ . Note that we have not explicitly declared what the 
different layers of the (directed) bipartite network represent. Different layer choices 
are possible in function of the goal one wants to achieve: 

(1)	 Users and messages, where a directed edge from a user to a message indicates 
authorship and a directed edge from a message to a users indicates an interaction 
(e.g. a retweet) (Becatti et al. 2019). When this network is projected onto the user 
layer, we obtain the user–user interaction network Gw that shows how information 
flows on the network.

(2)	 Users and hashtags, where an edge between the two layers indicates that a users 
has interacted with a specific hashtag at least once. When this bipartite network is 
projected onto the hashtag layer, we obtain a semantic network (Mattei et al. 2021; 
Radicioni et al. 2020, 2021).

(3)	 Verified and non-verified users, where an edge between the two layers indicates 
that a user has retweeted the other users at least once. When this bipartite network 
is projected onto the verified users layer, we obtain a network of discursive commu-
nities (Mattei et al. 2021; Bruno et al. 2021).

(4)	 Users and an URL (or a domain), where an edge between the two layers indicates 
that a user has shared a specific URL (or linked to a domain) at least once. When 
this bipartite network is projected onto the user layer, we obtain a semantic net-
work of external domains.

(5)	 Less straight-forward options could be conceived as well e.g. hashtags and media 
content (image or video), political affiliation (if known) and hashtags, and so on.

We used the user-message and user-hashtag interaction networks. The advantage of 
using this bipartite network representation is that one can use a null model to filter 
out the noise, i.e. interactions between nodes that are not statistically significant.
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Community detection

In a network we can observe densely connected clusters of nodes that are poorly con-
nected to each other. Such a cluster is called a network community. A widely used 
metric for community detection is modularity (Newman and Girvan 2004), which 
quantifies the quality of a particular division of a network in clusters. Formally, mod-
ularity is given by

where the sum goes over all communities c in the network, m is the total number of 
edges, Kc is the sum of the degrees of the nodes in community c and γ is a resolution 
parameter. Community structure can be detected by optimising the modularity over the 
possible divisions of a network (Newman 2006) i.e. we try to maximise the difference 
between the actual number of edges and the expected number of edges in a commu-
nity. The Louvain method (Blondel et al. 2008) has been one of the go-to algorithms for 
community detection due to its speed and scalability. The Leiden algorithm (Traag et al. 
2018) has been proposed as an improvement of the Louvain method because it is faster 
and guarantees well-connected communities. Additionally, it is capable of working with 
weighted, directed and multiplex networks. We use the Leiden method for community 
detection on different representations of the data to evaluate to what extent the repre-
sentation is suited for the clustering of the users.

Analytical maximum entropy framework

For the networks, we consider entropy-based null-models (Squartini and Garlaschelli 
2011; Park and Newman 2004; Garlaschelli and Loffredo 2008). Given an observed net-
work G∗ , the maximum-entropy method consists of constructing an ensemble of net-
works G whose topology is random, apart from a controlled set of structural constraints, 
C , measured on G∗ . The ensemble is found by maximising the Shannon entropy S

to obtain the least-biased ensemble. When the constraints are imposed on average on 
the ensemble, i.e. �C� = C , this is called the canonical network ensemble (Bianconi 
2018). This kind of ensemble is also known as an Exponential Random Graph  (ERG) 
(Park and Newman 2004). The framework was extended with a fast and exact method 
for obtaining analytical results on the grand canonical ensemble in Squartini and Gar-
laschelli (2011). These random graph models can be used to find statistically significant 
discrepancies between a null model and a real network.

Scaling up

Estimating the parameters of an ERGM has a high computational cost as finding the param-
eters of a null model with local constraints requires solving at least O(N ) non-linear, cou-
pled equations (where N is the number of nodes in the network). One way of obtaining the 
parameters is using the equilibrium expectation algorithm (Byshkin et al. 2018). Under the 

H =
1

2m
c

ec − γ
K 2
c

2m

S = −
∑

G∈G
P(G) ln P(G)
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hypothesis that the network is sparse, this method enabled estimating the parameters for a 
directed social network with over 1.6 million nodes (Stivala et al. 2020). Another method of 
reducing the complexity of the problem is to consider that identical constraints lead to the 
same value(s) of the hidden variables. This principle was explained in Garlaschelli and Lof-
fredo (2008) and also used in Bie (2010) for the UBCM. In a lot of cases this allows to drasti-
cally reduce the size of the problem to the number of unique (tuples of) local constraints 
for other members of the ERGM family. In addition to this reduction, one might also use 
a gradient free fixed-point iterative scheme instead of a gradient based method (such as 
Newton’s method) to find a solution to the system of equations. This idea was put forward 
in Dianati (2016). The complexity reduction was integrated with the fixed-point approach 
in Vallarano et  al. (2020). An extensive analysis of the performance of several numerical 
algorithms for solving different ERGMs (Vallarano et al. 2021) concluded that a fixed point 
recipe should be the preferred approach for large scale networks. This solves the issues of 
accuracy, speed and scalability and makes it possible to obtain the maximum likelihood 
parameters of large-scale networks for different members of the ERGM family.

Null models

Two different null models were used for the BiCM and DBiCM network representations.

Bipartite configuration model

For a bipartite network GBiP with layers ⊤ and ⊥ and with its biadjacency matrix M with 
entries miα , the set of constraints C is composed of the degree sequences of the two layers ⊤ 
and ⊥ of the network. This leads to a probability per graph that can be factorised as

where piα = e−γi−βα

1+e−γi−βα
 and γ and β are the |⊤| - and |⊥|-dimensional Lagrange multipliers 

of the model (Saracco et al. 2017). The bipartite network can be projected onto one of 
the layers to obtain a mono-partite representation. The projection of the bipartite net-
work onto one of the layers can be realised by using V-motifs, a measure of similarity 
between two nodes on the same layer that considers the number of common neighbours. 
Consider V ∗

ij  , the observed number of V-motifs between two nodes i and j on the ⊤ layer 
which can be written in function of the adjacency matrix as follows:

where m∗
iα denotes the observed value of miα.

If V∗
ij exists, an edge exists between node i and node j in the projection. To reduce the 

amount of noise, one can use the fact that V∗
ij follows a Poisson–Binomial distribution 

(Wang 1993). The statistical significance of V∗
ij can be evaluated by its p-value:

P(M|γ ,β) =
∏

i∈⊤

∏

α∈⊥
p
miα
iα (1− piα)

1−miα

V ∗
ij =

∑

α∈⊥
m∗

iαm
∗
jα

(1)p-value
(

V∗
ij

)

=
∑

Vij≥V∗
ij

fPoissBin
(

Vij

)
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In the above equation, fPoissBin denotes the probability distribution function of the 
Poisson–Binomial distribution with parameters p = (p1, . . . , pα , . . . , p|⊥|) , where 
pα = �miα��mjα� and 〈miα〉 denotes the expected value of miα under the null model.

Bipartite directed configuration model

For a directed bipartite network GBiPD with layers ⊤ and ⊥ and with its biadjacency matri-
ces M and M′ with entries miα and m′

αi , the set of constraints C is composed of the directed 
degree sequences of the two layers ⊤ and ⊥ of the network. This leads to a probability per 
graph that can be factorised as

where piα = e−γi−βα

1+e−γi−βα
 , p′α′i′ =

e
−γ ′i′ −β′

α′

1+e
−γ ′i′ −β′

α′
 , γ and β are the |⊤| - and |⊥|-dimensional 

Lagrange multipliers of the model associated with the out-degrees and γ ′ and β ′ are the 
|⊤| - and |⊥|-dimensional Lagrange multipliers of the model associated with the in-
degrees (Baltakiene et  al. 2018). Similar to the previous section, the directed bipartite 
network can also be projected onto one of the layers to obtain a mono-partite represen-
tation by using V-motifs. Here the observed number of V-motifs from node i to node j 
on the ⊤ layer can be written in function of the adjacency matrix as follows:

where m∗
iα denotes the observed value of miα . If V∗

ij exists, an edge exists from node i to 
node j in the projection. As before, the statistical significance of V∗

ij can be evaluated by 
its p-value:

In the above equation, fPoissBin denotes the probability distribution function of the 
Poisson–Binomial distribution with parameters p = (p1, . . . , pα , . . . , p|⊥|) , where 
pα = �miα��m′

jα� and 〈miα〉 denotes the expected value of miα under the null model.

Extracting the statistically significant network

Using the bipartite models described in the previous section, we can obtain a |⊤| × |⊤| 
matrix of p-values for the V-motifs (cf. Eqs. 1 and 2). In the case of the BiCM this matrix 
will be symmetrical. Given the large amount of statistical tests to be executed, we use the 
Benjami–Hochberg procedure (Benjamini and Hochberg 1995) to control the false discov-
ery rate at a fixed level α (set at 0.05 in our case). The procedure provides a limit value p(k) 
with which each p-value is compared. This limit value is obtained by sorting all p-values in 
ascending order and finding the largest value of k such that

P(M|γ ,β , γ ′
,β ′) =

[

∏

i∈⊤

∏

α∈⊥
p
miα
iα (1− piα)

1−miα

]

·

[

∏

i′∈⊤

∏

α′∈⊥
p′

m′
α′i′

α′i′
(

1− p′α′i′
)1−m′

α′i′

]

V ∗
ij =

∑

α∈⊥
m∗

iαm
′∗
αj

(2)p-value
(

V∗
ij

)

=
∑

Vij≥V∗
ij

fPoissBin
(

Vij

)
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where k denotes the sorted position and m denotes the total number of p-values to ana-
lyse. If the p-value of the observed V-motif V∗

ij is less or equal than p(k) , the link from 
node i to j is considered statistically significant and is maintained in the projection of the 
bipartite network onto the ⊤ layer.

Robustness

It is not possible to collect all the data generated on Twitter (be it in real time or a poste-
riori), so a sample is generated by selecting a timeframe, a number of relevant keywords 
(which can be hashtags) and users. Messages from the selected users and messages con-
taining the selected keywords end up in the dataset that will be used to generate inter-
action networks. From the network point of view, this amounts to sampling nodes and 
interactions. Sampling of (temporal) networks generally leads to biases (Achlioptas et al. 
2006; Lee et al. 2006; Rocha et al. 2017).

Data collection on Twitter can be done using either the stream API or the search 
API. It is not unthinkable that, even when adapting the data collection query dynami-
cally when using the stream API, one does not capture every message or interaction that 
might occur in a disinformation campaign while it is happening, as in general the modus 
operandi is dynamic and reactive. The above reasoning holds to some extent when work-
ing with the search API, as it is possible to use progressive insight to limit the amount 
of data that might have been overlooked. However another problem occurs when going 
back in time: as social media platforms are making more and more efforts to avoid disin-
formation on their platforms, specific posts might have been deleted or accounts might 
have been banned between the moment of their activity and the moment a researcher 
tries to obtain them. This can lead to missing parts of the relevant data as well. In order 
to evaluate the robustness, we consider the following approach: we gradually remove 
the hashtags with the highest degree in the bipartite user-hashtag graph and observe the 
number of nodes that becomes disconnected from the graph. We chose this approach 
over removing random nodes because scale-free networks are typically resilient with 
respect to random node removal. We also look at the impact of this routine when using a 
null model to filter out interactions.

Results
We give an overview of the different results that were obtained. We start by providing 
some toy examples to illustrate the networks that can be obtained for different represen-
tations of the data and the effect the different methods have on community detection on 
and composition of those networks. We discuss one dataset of the Twitter information 
operations report in detail and provide an overview of the results for the other datasets.

Toy examples

User‑message interaction network

Consider the following setup for a small network of 15 users: users 1 through 5 author a 
large number of messages and have a certain visibility or reputation. Users 6 and 7 aim 

p(k) ≤
k

m
α
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to artificially increase the visibility of users 1 and 2 by generating many interactions. The 
remaining users occasionally author a message and also interact among themselves in an 
organic way. We then use three different methods to generate an interaction network. 
First of all, we consider a binary network (i.e. omitting edge directionality and weight): 
if an interaction between users occurs, an edge will exist between them. Secondly, we 
consider a weighted version of the same network: the weight of the edge represents the 
amount of times a specific interaction occurred. Finally, we consider the bipartite users-
message network projected onto the user layer where only the statistically significant 
links are maintained. We apply the Leiden algorithm for community detection on each 
of these networks. When using a binary network, information is lost and the identified 
communities give a distorted picture (Fig. 1a). Adding edge weight gives better results 
(Fig. 1b). Filtering out the statistically significant interactions using the DBiCM (Fig. 1c) 
identifies the ground truth even better. Note that in the case where users 1 and 2 author 
a large proportion of all messages and where users 6 and 7 also interact with a large por-
tion of all other messages, their amplification effort would no longer be statistically sig-
nificant. This can lead to disturbances in the community detection results.

User‑hashtag interaction network

Consider a bipartite user-hashtag network of 10 users with 15 hashtags, were four users 
are an organised group making use of a specific set of hashtags linked to their discourse. 
We generate the bipartite network, the projected network on the user layer and the pro-
jected network on the users layer with only the statistically significant links maintained 
(Fig. 2). After having obtained the filtered projection, we apply the Leiden algorithm for 
community detection. Using the communities discovered in the unfiltered network may 
be misleading because the normal users are confounded with the disinformation cam-
paign. Filtering out the statistically significant interactions using the BiCM can lead to 
more accurate network communities.

Fig. 1  Toy example: community detection results for an interaction network based on users and messages 
sharing the same configuration: users 6 and 7 act as spreaders for users 1 and 2 in a synthetic network. 
Node shape represents behaviour (square: active poster, triangle: amplifier, circle: normal user). Node colour 
represents community membership. a Binary retweet network. b Weighted retweet network. c Filtered 
projected directed bipartite network
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Validation

Because we want to evaluate to what extent the different models are able to reveal the 
underlying disinformation campaign we propose the following approach to evaluate the 
performance of a model: after the filtering has occurred, we consider every node that is 
still connected in resulting network to be a participant in the disinformation campaign. 
This is a rather harsh evaluation criterion, because there can (and most likely will) be 
non-flagged users still present in the projected network if they are the object of the dis-
information campaign. Given that we are doing a binary classification, we use the Mat-
thews correlation coefficient  (MCC) � (Matthews 1975; Chicco and Jurman 2020) to 
quantify the performance. The MCC is defined in terms of the true positives (TP), false 
positives (FP), false negatives (FN) and true negatives (TN) as follows:

Note that we define a flagged user as positive.

Case study of the Honduras dataset

User‑message interaction network

Figure  3 shows a sample for the retweet network of the Honduras dataset. Figure  4 
shows the community detection result and the ground truth for the largest component 
of the projected user-message interaction network. When running community detec-
tion algorithms on both the retweet network and the projected user-message interac-
tion network, we find that the communities and the central nodes found within them are 
in line with Cryst and García-Camargo (2020). Although not all edges from the ‘classi-
cal’ retweet network are maintained, the majority of flagged users are connected in the 
projected bipartite network. Because some edges were removed in the projection, the 
result of the community detection changed slightly, but without changing the overall 
conclusions on community composition. With a few exceptions, the removed edges are 
mainly low weight edges in the weighted network. In the Honduras network, the highest 

� =
TP · TN − FP · FN

√
(TP + FP) · (TP + FN ) · (TN + FP) · (TN + FN )

Fig. 2  Toy example: results for an interaction network based on users and hashtags. a Bipartite network of 
users and hashtags. Gray squares: normal users, red triangles: flagged users, gray circles: hashtags, red circles: 
hashtags used mainly by flagged users b Projected bipartite network on the user layer. Squares: normal 
users, triangles: flagged users. Node colour represents community membership c Filtered projected bipartite 
network on the user layer. Squares: normal users, triangles: flagged users. Node colour represents community 
membership
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Fig. 3  Honduras user-message bipartite interaction network projected on the user layer. Node colour 
indicates community membership. Node size is proportional to node degree. a Classic retweet network. b 
Projected retweet network

Fig. 4  Largest component of the Honduras projected retweet user-message bipartite interaction network a 
Community membership. b Type of user (red: flagged, green: normal)

Fig. 5  Largest component (94.9% of all nodes, 99.99% of all edges) of the non-filtered Honduras bipartite 
user-hashtag network projected on the user layer. a Community membership. b Type of users (red: flagged, 
green: normal)
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weight of a removed edge is 126 for an edge from @JuanOrlandoH to @tgaparicio. 
This particular situation where a V-motif Vij is considered non-significant, even with a 
high edge weight, can occur when a user j (here @tgaparicio) interacted with a large 
proportion of all the messages, while at the same time user i (here @JuanOrlandoH) 
authored a large portion of messages in the dataset. When looking at our performance 
criterion we find a � coefficient of 0.96 for the retweet graph and 0.8 for the replies 
graph.

User‑hashtag interaction network

Figures 5 and 6 show a sample for the filtered and non-filtered projection of the bipar-
tite user-hashtag network on the user layer for the Honduras dataset. For both figures 
the results of community detection are shown on the left and the ground truth (flagged 
and non-flagged users) is shown on the right. Without filtering, there is a separation 
between flagged and non-flagged users, but there is more overlap within the communi-
ties (less pure). The network has 14,806 nodes and 4.2 million edges. The giant com-
ponent accounts for 94.9% of all nodes and 99.99% of all edges. Most flagged users are 
present in the giant component. The flagged users who are not present are mainly users 
who did not author a message or used a hashtag, so they were never connected. After 
filtering, the network still has the same size, but the number of edges has been reduced 
to 256,000. The giant component now accounts for 20.5% of all nodes and 98.09% of the 
statistically significant edges. The percentage of flagged users in the giant component 
slightly decreased, but the ratio of flagged users in the giant component went up from 
19.92 to 77.66%. When looking at our performance criterion we find a � coefficient of 
0.63.

Robustness

The degree distribution of the hashtags in the bipartite users-hashtag network is highly 
skewed (Fig. 7). Figure 8 shows the effect of removing the most connected hashtags on 
the number of nodes that become disconnected. Even for a low percentage of hashtag 

Fig. 6  Largest component (20.5% of all nodes, 98.09% of all edges) of the filtered Honduras bipartite 
user-hashtag network projected on the user layer. a Community membership. b Type of users (red: flagged, 
green: normal)
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removal, a considerable number of nodes becomes disconnected. This is in line with pre-
vious research where it was observed that participants in disinformation campaigns tend 
to use a more narrow or polarising discourse (Pacheco et al. 2020), which translates to a 
limited number of hashtags in this case. The effect of the node removal on the projection 
is shown in Fig. 9. As the percentage of removed hashtags increases, we can still observe 
a tight knitted structure in the largest component, but the amount of (flagged) nodes 
still present is reduced, as they are increasingly disconnected. At the same time the ratio 
between flagged and normal users decreases.

Fig. 7  Degree distribution of the hashtags in the Honduras bipartite user-hashtag network

Fig. 8  Impact of hashtag removal on disconnected users in the Honduras user-hashtag bipartite network
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General observations in Twitter information operations datasets

User‑message interaction networks

The results for the other datasets are in line with the findings on the dataset described 
above: for both interaction types (retweets and replies), a large part of the edges of 
the projected user–user network are found to be statistically significant, with some 
exceptions such as the ‘Russia (2020–2010)’ and the ‘Qatar (2020–2010)’ datasets. 
Table  2 shows an overview of the results. We consider the method to fail when 1) 
both the percentage of matched edges in the retweet network ( %M,RT  ) and the per-
centage of matched edges in the reply network ( %M,RP ) are less than 60% or 2) one 
of %M,RT  or %M,RP is less than 30%. The apparent failure of the method on the dataset 

Fig. 9  Evolution of the largest component in the Honduras user-hashtag bipartite network for successive 
removal of highest degree hashtags (note that the original largest component has a size of 3035 nodes). a 
0.05% hashtag removal: 3486 nodes, 94% of all edges. b 0.1% hashtag removal: 3058 nodes, 91% of all edges. 
c 1% hashtag removal: 1535 nodes, 70% of all edges

Table 2  Overview of matching edges between the weighted, directed and the projected bipartite 
network

%M,RT  denotes the number of matched edges for the retweet network. %M,RP denotes the number of matched edges for the 
reply network. N denotes the number of nodes in the network

Country Period %M,RT %M,RP N

Armenia 2021–2002 89.80 58.33 176

China 2020–2005 99.89 99.11 59,739

Cuba 2020–2010 55.01 80.10 172,073

Egypt 2020–2004 93.21 93.96 405,099

Honduras 2020–2004 83.90 82.83 51,816

Indonesia 2020–2002 65.93 86.47 33,142

Iran 2020–2010 75.19 47.77 197

Iran 2021–2002 89.48 88.11 15,555

Qatar 2020–2010 18.63 27.22 2764

Russia 2020–2005 80.85 93.18 61,938

Russia 2020–2010 6.67 6.15 9

Russia GRU​ 2021–2002 69.17 35.16 756

Russia IRA 2021–2002 34.18 77.41 1357

SA, EG and AE 2020–2004 84.23 97.41 945,842

Serbia 2020–2002 53.58 65.25 1,001,796

Thailand 2020–2010 72.32 61.35 2333

Turkey 2020–2005 81.82 90.86 1,069,045
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‘Russia (2020–2010)’ is possibly due to the limited size of the network. The large drop 
in number of retained edges in the ‘Qatar (2020–2010)’ dataset is due to a single 
flagged user (@ShurafahAlthani) who interacted with more than 80% of all mes-
sages. A large portion of flagged users were connected to the disinformation network 
via this user and are disconnected in the projected network.

We found no correlation between the number of matching edges between the net-
works and (1) the percentage of external tweets that could be downloaded ( p = 0.17 ), 
(2) the number of external tweets ( p = 0.42 ) and (3) the number of nodes in the net-
works ( p = 0.29 ). Table 4 shows an overview of the performance metrics for the dif-
ferent datasets.

User‑hashtag interaction networks

The results for the other datasets are in line with the results from the Honduras data-
set, i.e. applying the BiCM and filtering out the statistically significant V-motifs leads to 
a large component where the ratio of flagged users is significantly higher and in some 
cases is composed almost exclusively of flagged users. Table 3 shows an overview of sev-
eral metrics for both the filtered and the non-filtered network. In general, the conse-
quences of the filtering method are the following: the number of nodes situated in the 
largest component decreases and many nodes become disconnected; the majority of 
statistically significant edges is located in the largest component; the amount of flagged 
users in the largest component decreases (but to a lesser extent than the decrease of non-
flagged users); the ratio of flagged users to non-flagged users in the largest component 
increases considerably. For two datasets (‘Iran (2020–2010)’ and ‘Russia (2020–2010)’) 

Table 3  Overview of the composition of the largest component for the user-hashtag network 
projected onto the user layer

NC denotes the percentage of all nodes that are present in the largest component. EC denotes the percentage of all edges 
that are present in the largest component. NC ,f  denotes the percentage of flagged users in the largest component with 
respect to the total number of flagged users. RC ,f  denotes the percentage of flagged users with respect to the total number 
of users in the largest component. A value “N/A” indicates that no significant interactions were found after filtering

Non-filtered network Filtered network

Country Period NC (%) EC (%) NC ,f  (%) RC ,f  (%) NC (%) EC (%) NC ,f  (%) RC ,f  (%)

Armenia 2021–2002 90.83 99.74 100.00 28.44 14.17 98.72 54.84 100.00

China 2020–2005 98.56 100.00 99.65 92.86 0.21 37.90 0.23 100.00

Cuba 2020–2010 97.28 100.00 99.80 1.33 11.94 99.32 87.60 9.52

Egypt 2020–2004 98.30 100.00 99.62 2.38 15.55 99.52 91.57 13.83

Honduras 2020–2004 94.90 99.99 99.86 19.92 20.50 98.09 84.09 77.66

Indonesia 2020–2002 98.00 100.00 99.69 2.30 0.77 77.49 32.51 95.89

Iran 2020–2010 42.78 87.64 77.67 100.00 N/A N/A N/A N/A

Iran 2021–2002 93.60 99.97 99.50 1.55 6.00 83.24 67.66 16.44

Qatar 2020–2010 99.14 99.99 95.83 0.47 1.60 74.49 75.00 22.50

Russia 2020–2005 90.77 99.95 99.01 9.50 10.89 96.80 65.79 52.64

Russia 2020–2010 40.48 68.10 80.00 23.53 N/A N/A N/A N/A

Russia GRU​ 2021–2002 88.53 99.87 95.56 5.80 1.67 84.00 24.44 78.57

Russia IRA 2021–2002 90.04 99.71 86.36 1.12 1.12 26.09 18.18 19.05

Serbia 2020–2002 97.27 100.00 99.87 18.42 25.61 99.49 94.60 66.25

Thailand 2020–2010 92.53 99.91 93.84 31.60 10.03 95.37 31.16 96.81

Turkey 2020–2005 98.62 100.00 99.47 4.23 31.39 99.91 84.70 11.31
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no statistically significant interactions were found. As was the case for previous model, 
this apparent failure may be due to the limited size of the networks. Table 4 shows an 
overview of the performance metrics for the different datasets. The values of the MCC 
are zero for the two datasets where no significant interactions were found. Another one 
that stands out is the ‘China’ dataset with a value close to zero, where a high value of 
false negatives leads to poor performance.

Discussion
Network models

The parameters for both network models provide a more accurate view on the data and 
reveal traces of the underlying disinformation campaign. In function of the application 
and the social media platform under consideration, a suited network model should be 
selected. The bipartite user-message representation allows for a clearer overview of 
the user interactions whereas the bipartite user-hashtag representation reveals tight-
knit discursive communities of the flagged users, in line with observations in previous 
research.

All methods used in the present work use a null model with a ‘simple’ interpretation 
of a network, i.e. a network formed exclusively by pairwise interactions. These networks 
were considered to be stand-alone and static in time. Possible extensions could include: 
(1) multilayer networks (Bianconi 2018), which allow to combine multiple representa-
tions. (2) temporal networks (Holme and Saramäki 2012), which allow to include the 
dynamics of the interactions. Methods to extract important links from temporal net-
works exist for techniques from visual temporal network analytics (Linhares et al. 2019), 
but testing is experimental (by user judgment), whereas within the maximum entropy 
statistical tests can be used. (3) higher-order networks (Bianconi 2021) and Exponen-
tial Random Simplicial Complexes  (ERSC) (Zuev et  al. 2015) to capture many-body 

Table 4  Overview of the performance of the different models using the MCC coefficient

�rt denotes the MCC coefficient based on the user-message retweet network. �rp denotes the MCC coefficient based on 
user-message reply network. �h denotes the MCC coefficient based on the user-hashtag network

Country Period �rt �rp �h

Armenia 2021–2002 0.81 0.59 0.63

China 2020–2005 0.41 0.26 0.03

Cuba 2020–2010 0.96 0.89 0.26

Egypt 2020–2004 0.88 0.51 0.29

Honduras 2020–2004 0.96 0.80 0.63

Indonesia 2020–2002 0.77 0.70 0.66

Iran 2020–2010 0.42 0.41 0.00

Iran 2021–2002 0.84 0.86 0.28

Qatar 2020–2010 0.85 0.72 0.29

Russia 2020–2005 0.89 0.83 0.49

Russia 2020–2010 0.63 0.77 0.00

Russia (GRU) 2021–2002 0.71 0.65 0.46

Russia (IRA) 2021–2002 0.82 0.74 0.22

Serbia 2020–2002 0.97 0.72 0.62

Thailand 2020–2010 0.47 0.11 0.49

Turkey 2020–2005 0.85 0.72 0.24
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interactions. Maximum entropy ensembles have been defined for these approaches 
(Courtney and Bianconi 2016; Bianconi 2013; Cimini et al. 2019). In principle, the meth-
ods used in this paper could be applied to these extensions. The speed of convergence 
and the usability at scale remains to be studied.

Robustness and data collection

The analysis of the impact of removing some high degree nodes in the bipartite user-
hashtag network showed that observing the disinformation network is highly sensitive to 
capturing the right hashtags. This should be taken into consideration by researchers who 
are monitoring social media streams or who want to compare new methods with earlier 
results. The datasets we used are curated by a social media platform, and show only a 
subset of the real-world interactions. Some hashtags used by a disinformation campaign 
could be used and shared by a broader public of non-flagged users, which would add 
additional nodes in the network. Whereas some specific hashtags might only be used 
by the members of a disinformation campaign. When these hashtags are not captured, 
it can be challenging to reconstruct the network and perform the analysis. For example, 
in a previous study, we showed that it was not possible to reconstruct a disinformation 
network when a large part of a dataset was removed by the social media platform (De 
Clerck et al. 2022).

The advantage of the datasets from the Twitter information operations report is that 
we have all the messages and interactions of the suspected users at our disposal. A possi-
ble downside is that we do not see them within their broader context, i.e. all the interac-
tions of other users with the non-flagged users are missing from these datasets.

Computational aspect

We found that the computational methods to obtain the maximum likelihood param-
eters proposed in Vallarano et al. (2021) scale well and are able to compute the param-
eters of the null model within seconds, even for the largest networks ( ≈ 1M nodes) in 
the data collection. The costly step in the projection process is the computation of the 
p-values of the V-motifs. The implementation in the NEMtropy package (Vallarano et al. 
2021) computes all required p-values (using multithreading when available) and then 
proceeds with the Benjami–Hochberg procedure (Benjamini and Hochberg 1995). For 
large networks, we found that keeping all p-values in memory can be a bottleneck during 
the processing. For the largest networks in the collection some projections took almost 
3 days to compute on an Intel i7-8700 with 64GB of RAM. This problem can be avoided 
by first computing and storing the p-values in chunks of a size determined by the size of 
the available memory and then using the fastSLU algorithm (Madar and Batista 2016), 
which requires linear time and does not require any p-value ordering.

An additional approach that could possibly accelerate the computation of the p-values 
is simulation: instead of computing the p-values of the Poisson–Binomial distribution, 
one could simply sample the network and compare the observed number of V-motifs 
with a random sample fitted on a Poisson distribution as a simplification for the Pois-
son–Binomial distribution to estimate the p-value. Finally, in order to keep the size of 
the network limited when dealing with really large datasets, pruning (e.g. removing low 
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degree nodes) before doing the computation might be another option, at the risk of los-
ing useful information.

Conclusion
We applied different maximum entropy network models on the collection of data-
sets from the Twitter information operations report to identify statistically signifi-
cant interactions between users. The parameters for the models were computed using 
recently proposed methods and converged very fast for the different network sizes we 
considered. Using different members of the ERGM family can provide different views 
on the data. For the models used in this study, there is no evidence that one is better 
than the other because both are able to help reveal a disinformation campaign. Even 
though the overall scores in terms of our performance metric is higher for methods 
based on interactions, each method has its place, because it provides a different view 
on the data. We also found that capturing the right hashtags is of high importance if 
one wants to reconstruct the disinformation operation as a whole.

For all the figures related to the Honduras dataset the node layout was obtained 
using the ForceAtlas2 algorithm (Jacomy et al. 2014).
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