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Introduction
Life is based on biological systems that are essentially composed of biological spe-
cies (molecules such as genes, proteins, metabolites) acted upon by processes. They 
are highly complex because species abundances and interactions change over time in 
response to external stimuli, as well as to dynamical intra-system processes. Through-
out this article, the biological system that serves as a running example is an enzymatic 
process, which consists of three reactions: an enzyme E reversibly binds to a molecule of 
substrate S to form the complex C (reactions Ron and Roff ). Then C is transformed into 
two molecules of a product P , while E returns to its free state (reaction Rcat ). The classi-
cal chemical notation of this system is:
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Modelling complex biological systems is necessary for their study and understanding. 
Biomodels is a repository of peer-reviewed models represented in the Systems Biology 
Markup Language (SBML). Most of these models are quantitative, but in some cases, 
qualitative models—such as Boolean networks (BNs)—are better suited. This paper 
focuses on the automatic transformation of quantitative SBML models to Boolean 
networks. We propose SBML2BN, a pipeline dedicated to this task. Our approach takes 
advantage of several SBML elements (reactions, rules, events) as well as a numeri‑
cal simulation of the concentration of the species over time to constrain both the 
structure and the dynamics of the Boolean networks to synthesise. Finding all the BNs 
complying with the given structure and dynamics was formalised as an optimisation 
problem solved in the answer-set programming framework. We run SBML2BN on more 
than 200 quantitative SBML models, and we provide evidence that one can automati‑
cally construct Boolean networks which are compatible with the structure and the 
dynamics of an SBML model. In case the SBML model includes rules or events, we 
also show how the evaluation criteria are impacted when taking these elements into 
account.
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Each of the three reactions is represented by an arrow from the reactants (i.e., species 
consumed during the reaction) to the products (i.e., species created during the reaction). 
Each arrow is annotated with the speed of the associated reaction. In our example, the 
speed of each reaction R is proportional, with a factor kR , to the product of the concen-
tration of the reactants (denoted with square brackets).

Dynamical models are used to understand the complex behaviour of biological sys-
tems. Such models can use many different computational paradigms and formalisms, 
ranging from detailed ones (such as ordinary differential equation—ODE) to simple 
ones (such as Boolean network—BN). Basically, models come in two flavours: quantita-
tive and qualitative. With quantitative models (such as differential equations), we tradi-
tionally study concentrations of the species (i.e., values in R+ ) over time. For example, 
we can study how the speed of production of P is affected by the presence of an inhibitor 
of the enzyme E . With qualitative models (such as Boolean networks), the exact values 
are abstracted in a finite number of levels (for example present or not, encoded as 1 and 
0 respectively), and it is the sequence of configurations that matters.

The Biomodels repository contains a curated collection of over a thousand pub-
lished models of biological systems (Malik-Sheriff et al. 2020). Models in Biomodels are 
encoded in the Systems Biology Markup Language (SBML), which is the most widely 
used standardised representation language in the field of Systems Biology. The SBML 
representation consists in a set of reactions, rules and events which can be then be inter-
preted quantitatively using several formalisms to retrieve, for example, concentration of 
the species over time (with deterministic or stochastic simulation) (Hoops et al. 2006).

Most of the models in Biomodels are quantitative models, and were initially published 
as ODE models. However, while counter-intuitive, it can be interesting to downgrade the 
model to a qualitative model such as Boolean networks (Davidich and Bornholdt 2008). 
First, a simpler model helps its analysis: interpretation of properties such as attractors, 
for example, is much easier to do qualitatively than quantitatively. Second, ODEs can 
be difficult to work with, especially when the task is related to model checking, control, 
or model aggregation. These tasks are well-studies using BNs (Klarner et al. 2020; Biane 
et al. 2018). Overall, we think that an automatic conversion of a given quantitative SBML 
model to a (set of ) BN(s) on which we can perform qualitative analysis could help to 
grasp useful insights about the system under study.

In a previous paper published in proceedings of the Complex Networks and Appli-
cations (CNA) 2021 conference, we introduced a methodology to synthesise automati-
cally a set of Boolean networks starting from a SBML model (Vaginay et al. 2022). Our 
approach takes advantage of both structural and dynamical constraints extracted from 
the SBML model. The structure is retrieved from the reactions set of the model, and 
the dynamics is obtained with a deterministic simulation of the differential–algebraic 
system of equations reconstructed from the SBML model. Then, a declarative program 
constructs, for each species, all the Boolean functions respecting these constraints. The 
synthesised Boolean networks result from the assembly of these Boolean functions.

(1)
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In this paper, the contributions are twofold: (1) additionally to reactions, we also con-
sider other SBML elements (rules and events) when retrieving the structural constraints 
from the input SBML model; (2) we investigate the well-formedness of the input model 
and show how it affects the synthesis of the Boolean networks. Furthermore, we extend 
the explanation and give the necessary intuitions about the ASP (answer-set program-
ming) encoding used to solve the BN synthesis problem.

The paper is organised as follows. In “Boolean networks and their synthesis” section, 
we introduce the key notions about Boolean networks and the principles of their synthe-
sis, starting from the given structure and dynamics of the biological system under study. 
In “Description of the SBML2BN pipeline” section, we present the SBML2BN pipeline 
and describe each of its steps. Then, we report the evaluation of SBML2BN by running 
it on more than 200 curated SBML models from the Biomodels database (“Evaluation of 
the SBML2BN pipeline” section). We also give details on the pipeline implementation, 
which reuses and extends several published methods and software packages. Finally, we 
close the paper with conclusions and a few perspectives.

Boolean networks and their synthesis
Definitions

Boolean networks (BNs) were introduced by Kauffman (1969) and Thomas (1973) to 
model genetic regulatory networks. Concepts used in BNs are described in a recent 
review (Schwab et al. 2020). An example of BN is given in Fig. 1 and used to illustrate the 
concepts introduced in the following.

The components of a BN are the species of the considered biological system. For exam-
ple, the BN B1 (Fig.  1) has four components: S , P , E and C . A configuration of a BN 
is a vector that associates a Boolean value ( B = {0/inactive; 1/active} ) to each of the n 
components of the BN (in alphabetical order). For example, in the configuration 0000, 
no components is active, while only C is active in the configuration 1000. A BN with n 
components has 2n possible configurations.

Each component X has an associated transition function fX : Bn → B that maps the 
configurations of the BN to the next value of the component. In this paper, the transition 

Fig. 1  Example of a Boolean network to model Eq. (1)
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functions are written as Boolean expressions in Disjunctive Normal Form (DNF), i.e., 
disjunctions of conjunctions. The conjunctions are satisfiable, i.e., they do not con-
tain both a literal and its contrary. Each of the conjunctions composing a DNF is a 
1-implicant of this DNF as it implies that the DNF is True when it evaluates to True. 
The symbols ¬ , ∧ , ∨ represent respectively the negation, conjunction and disjunction. 
For example, the transition function fC := (E ∧ ¬S) ∨ (¬E ∧ S) states that the value 
of C will be 1 if either the value of E or of S was 1 in the previous configuration. Fig-
ure 1a shows examples of transition functions with only one term. An implicant is prime 
whenever removing any literal results in the negation of the original implication. A DNF 
containing only prime implicants is called a subset-minimal DNF. A DNF is cardinal-
minimal if it is the smallest (with respect to the cardinal of the set of literals appearing in 
the DNF) subset-minimal DNFs compatible with a partial truth table.

The structure of a BN is defined in terms of parent–child relationships between the 
components. A component P that appears in the transition function of a component X 
is called a parent of X . If the parent P is negated in the DNF associated with X , we say 
that the polarity of the influence of P on X is negative (noted −). Conversely, if the par-
ent is not negated, its influence is positive (noted + ). In case P has both a positive and 
a negative influence on X , the influence is non-monotonous (noted ±). The Interaction 
Graph (IG) summarises these relationships as a directed graph. The directed edge 
is labelled with σ ∈ {+,−,±} depending on the polarity of the influence P has on X . The 
interaction graph of B1 (Fig.  1b) contains the edges  and  because S appears 
negatively in the transition function of E and positively in the one of C . We will see in 
“Synthesis of BNs compatible with a structure and a dynamics” section how the IG is 
used to define the compatibility of a BN with respect to a given structure.

The BN dynamics is obtained by applying iteratively the transition functions starting 
from all possible configurations. The order of application of the transition functions is 
defined by the update scheme. The most common are the synchronous, asynchronous and 
general asynchronous. In the synchronous update scheme, the transition functions are 
applied all at once, while in the asynchronous update scheme, they are applied one by 
one (non-deterministically). In the general asynchronous update scheme, any number 
of species can be updated at each step. Thus, it includes the updates possibilities of both 
the synchronous and asynchronous update schemes. The state transition graph (STG) is 
a directed graph whose nodes are the 2n possible configurations of the BN. It contains 
a directed edge from c to c′ if c′ is the result of applying on c the transition function(s) 
according to the chosen update scheme. Figure  1c shows the General-Asynchronous 
STG (GA-STG) of B1 (Fig. 1a). We will see in “Synthesis of BNs compatible with a struc-
ture and a dynamics” section how the presence of specific edges in the GA-STG of a BN 
is used to measure the compatibility of this BN with respect to a given dynamics.

Synthesis of BNs compatible with a structure and a dynamics

In general, a Boolean network that models a biological system has to satisfy two cat-
egories of constraints. On one hand, its structure has to comply with what is known 
on the system’s structure. This knowledge concerns the list of species involved (genes, 
proteins...) and how they may influence each others. A Prior Knowledge Network 
(PKN) encodes such knowledge. It is defined similarly to the interaction graph of a 
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Boolean networks: it is a directed graph whose nodes are the species of the studied 
system, and an edge  exists whenever we presume Y might have a role to play 
(with a polarity σ ∈ {+,−,±} in the dynamics of X . The potential parents of a compo-
nent X are the species Y ∈ C such that . Figure 2b shows an example of PKN 
of the enzymatic reaction Eq. (1). In this PKN, S , C and E are potential parents of E 
with polarities −, + and − respectively. The PKN is used to constrain the structure 
of the synthesised BNs: a BN is compatible with a given PKN if its interaction graph 
is a spanning subgraph of the PKN. In other words, the interaction graph of a BN 
compatible with a given PKN is formed of the nodes and a subset of the edges of the 
PKN. This results in constraining which species can appear as variables in each tran-
sition function and the polarity of those variables. Hence, a component P is allowed 
in the transition function of a component X with a polarity σ if the PKN contains an 
edge . For example, B1 (Fig. 1a) is compatible with the PKN given in Fig. 2b. On 
the contrary, a Boolean network having the transition function fE := ¬S ∨ ¬C is not 
compatible. Indeed, despite C being a possible parent of E , the negative polarity is not 
allowed since  is not in the PKN.

On the other hand, the dynamics of the synthesised BN has to comply with what 
is known on the system’s dynamics. Starting from a binarised multivariate Time 
Series (TS) of the concentrations of the species over time, we can extract a sequence 

Fig. 2  For the running example depicted in Eq. (1): a ODE system and its parametrisation; b prior knowledge 
network; c multivariate time series obtained by simulation of the ODE system, midrange-based binarisation 
thresholds, and resulting binarisation (blue if 0 and red if 1)
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of configuration transitions. For example, the sequence extracted a midrange-based 
binarisation of the multivariate TS given in Fig. 2c is 1001 → 0001 → 0101 → 0100 
→ 0110 → 1010. For a given synthesised BN, we define its coverage ratio as the num-
ber of transition present in its General Asynchronous STG (GA-STG), divided by the 
number of distinct transitions in the sequence. Ideally, we would like the sequence to 
be a walk in the GA-STG i.e., that the GA-STG contains all the transitions appearing 
in the sequence. In such a case, the coverage ratio of the GA-STG in regard to the 
configuration’s sequence is of 1, and the Boolean network is said to be fully compat-
ible with the multivariate TS. However, it is not always possible to retrieve the com-
plete walk in the GA-STG (Paulevé et  al. 2020). In this case, the goal is to have the 
best coverage ratio.

All in one, a Boolean network is compatible with a Prior Knowledge Network (PKN) if 
its interaction graph is a spanning subgraph of the PKN, and the compatibility between 
a Boolean network and a multivariate Time-Series (TS) is quantified using the coverage 
ratio. An ideal Boolean network synthesis method would only construct Boolean net-
works compatible with the given PKN and with the maximal coverage ratio (ideally of 1) 
achievable in regard of the given multivariate TS.

Description of the SBML2BN pipeline
We propose SBML2BN, a pipeline for the automatic synthesis of Boolean networks start-
ing from an existing quantitative SBML description of a biological system. All the neces-
sary concepts about SBML are described in “SBML in a nutshell” section. The structure 
(PKN) and the dynamics (TS) of the biological system under study are extracted from 
the SBML model (“Extraction of the PKN from the SBML model” and “Extraction of the 
time-series from the SBML model” sections). In the BN synthesis step (“Boolean net-
works synthesis” section), the former hard constrains the structure of the resulting BNs, 
while the latter acts as soft constraints. The pipeline finishes with the evaluation of the 
set of the BNs it produces (“Evaluation of synthesised Boolean networks” section).

SBML in a nutshell

The Systems Biology Markup Language (SBML) (Keating et al. 2020) is an XML markup 
language. The SBML file representing the biological system from Eq. (1) is given in the 
Additional file 1. The SBML standard1 specifies how the different elements are named 
and structured. This paper focuses on a subset of SBML models: those containing all the 
necessary information for the SBML2BN pipeline to interpret the model as a simulable 
differential–algebraic system of equations with discontinuous events. We refer to these 
SBML models as complete quantitative SBML models. We describe the content of such 
models as follows.

1  http://​sbml.​org/​Docum​ents/​Speci​ficat​ions.

http://sbml.org/Documents/Specifications
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Species

A species corresponds to a pool of entities (such as ions, proteins and other molecules) 
that makes sense in the context of a given model. Its concentration can change over time, 
according to the processes described in the SBML model (reactions, rules and events).

Reactions

A reaction R describes a process that can change the amount of one or more species. It 
is defined as a list of reactants, a list of products, and a kinetic law eR (i.e., a mathemati-
cal expression which gives the speed of R ). For each species X involved in R , the net sto-
ichiometry νX

R
 of X in R is the amount of X as a product minus its amount as a reactant. 

If νX
R

> 0 (resp. < 0 ), X is effectively produced (resp. consumed) by R . If νX
R

= 0 , then 
X is somehow involved in R (i.e., it influences the speed of the reaction), without hav-
ing its amount modified. Such species is called a modifier. A modifier which increases 
(resp. decreases) the speed of the reaction is an activator (resp. inhibitor). In some SBML 
models, specific annotations [using the Systems Biology Ontology (Courtot et al. 2011)] 
indicate the exact role of the modifiers.

A Chemical Reaction Network (CRN) consists of a set of reactions taking place using a 
given set of species. In this sense, an SBML model consisting only of a set of species and 
a set of reactions is a CRN. CRNs are well studied and numerous theoretical and practi-
cal tools are available to analyse them (Calzone et al. 2006; Hoops et al. 2006).

Events

An event corresponds to a discontinuous change in the dynamics, as it performs some 
given assignments as soon as some given condition become true. For example, in the 
model n ◦1112 describing the cell cycle of fission yeast (Novak et al. 2001), two events are 
used to reset the cell mass M (divide it by two) when MPF decreases through 0.1:

Condition Assignment

Event 1 (MPF ≤ 0.1) ∧(flagMPF = 1)  M = M/2
flagMPF = 0

Event 2 MPF > 0.1 flagMPF = 1

Table 1  The three kind SBML rules

Let x be a variable, f a numerical function, V  a vector of variables that does not include x, and W  a vector of variables that 
may include x

Rule type Description General form

Algebraic Left-hand side is zero 0 = f (W)

Assignment Left-hand side is a scalar x = f (V)

Rate Left-hand side is a rate-of-change dx/dt = f (W)

2  https://​www.​ebi.​ac.​uk/​biomo​dels/​BIOMD​00000​00111.

https://www.ebi.ac.uk/biomodels/BIOMD0000000111
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Rules

A rule constrains the model for the entire duration of a simulation, as it defines 
relationships among variables (species concentrations or parameters values) which 
hold at all times. The SBML standard defines three types of rules: algebraic, assign-
ment and rate. They are briefly defined in Table 1. In the model n ◦111, for example, 
an assignment rule is used to set the value of a parameter σ from two species and a 
parameter along all the simulation: σ = cdc13T+ rum1T+ Kdiss.

Completeness and well‑formedness

A quantitative SBML model is complete if it specifies all initial values of concentra-
tions and kinetic parameters used in the model. When a model is not complete, it 
cannot be simulated quantitatively as we do it in “Extraction of the time-series from 
the SBML model” section.

We consider an SBML model to be well-formed when it respects the SBML specifi-
cations, and when each of its reactions R respects the following criteria introduced in 
Fages et al. (2012): 

1.	 Its kinetic expression e is well-defined and partially differentiable. It is positive if R is 
irreversible;

2.	 A species Y belongs to the set of reactants or activators of R if and only if ∂e
∂Y

> 0 for 
some positive values of concentration;

3.	 A species Y belongs to the set of inhibitors of R if and only if ∂e
∂Y

< 0 for some posi-
tive values of concentration.

The well-formedness ensures the consistency of the description of the reactions 
with their kinetic expression, which is an important precondition for our pipeline. A 
model consisting of the reaction “ X disappears at the given constant speed k” (noted 
X

k×[Y]
−−−→ _) is not well-formed. Indeed, despite Y appearing in the kinetic expression 

and thus having an impact on the degradation of X ( ∂e
∂Y

 = 0 ), it is not listed as reactant 
nor modifier of the reaction. The tool Biocham (Calzone et al. 2006) is able to deter-
mine if a given SBML model is well-formed, and to improve its well-formedness when 
possible (Fages et al. 2012).

Altogether, SBML can represent hybrid quantitative models from which we can 
reconstruct a differential–algebraic equations system. Assuming this system has a 
solution, it can be simulated numerically to retrieve the species concentrations over 
time (see “Extraction of the time-series from the SBML model” section).

Extraction of the PKN from the SBML model

This first step consists in the construction of the PKN (noted P ). Figure 2b is the PKN 
constructed by SBML2BN for Eq. (1). The nodes of the PKN are the SBML species 
of the SBML model. As for the edges, they are obtained by applying the following 
routines:
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•	 on each reaction of the SBML model:

•	 if Y is a reactant or an activator and X disappears then 

•	 if Y is an inhibitor and X appears then 

•	 if Y is a reactant or an activator and X appears then 

•	 if Y is an inhibitor and X disappears then 

•	 on each rule:
•	 if Y is a species which appears on the right side of a rule (assignment or rate) defin-

ing X then  and 
•	 on each event:

•	 if Y is a species which appears in a condition triggering a discontinuous change of X 
then  and 

The four routines concerning the reactions correspond to the routines that are used to 
derive the so-called Syntactical Influence Graph (SIG) of a CRN (Fages and Soliman 
2008a). In the conference version of this paper (Vaginay et al. 2022), they were the only 
ones used to construct the PKN from an SBML model. We will later discuss the impact 
of the use of the two others routines.

Extraction of the time‑series from the SBML model

The goal of this step is to retrieve the concentrations of the species over time. The 
changes are determined by a differential–algebraic system of equations which is recon-
structed from the SBML model and then integrated numerically. Figure  2a shows the 
system, parametrisation and initial conditions retrieved from the SBML model (see 
Additional file  1) of the running example—which does not use rules nor events. Fig-
ure 2c shows the multivariate TS obtained by simulating Fig. 2a for tmax = 100 s (chosen 
arbitrarily). The reconstruction of the system and its numerical integration are done as 
follows.

Reconstruction of the differential–algebraic system of equations

An expression representing the overall rate of change of the amount of each spe-
cies is constructed from the set of SBML reactions. This expression corresponds 
to the algebraic sum of the contributions of all the relevant reactions (i.e., reac-
tions in which a given species is involved as a product or a reactant). For example, in 
the running example Eq. (1), the species C is involved as a product in reaction Ron 
and as a reactant in reactions Rcat and Roff . Altogether, the overall rate of change of 
C is: dC

dt
= νC

Ron
· eRon

+ νC
Roff

· eRoff
+ νC

Rcat
· eRcat

  with νC
Ron

= 1 , and both νC
Roff

 and 
νC
Rcat

= −1 . As stated in the SBML representation (see Additional file 1) of Eq. (1), the 
speed of each reaction eR is proportional (with a factor kR ) to the product of the con-
centration of reactants of the reaction, leading to the equations in Fig. 2a.
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As for the rules (“Rules” section) and events (“Events” section), they respectively define 
additional relationships among variables that hold at all time steps and trigger some dis-
continuous changes as soon as the specified conditions are met.

Numerical integration

We assume that the reconstructed differential–algebraic system has a solution. We run a 
deterministic numerical time integration from t = 0 to tmax . During the simulation, the 
solver adjusts automatically the size of the time-step in order to reduce the approxima-
tion error and to trigger the events on appropriate time steps.

Boolean networks synthesis

This step infers a set of Boolean networks from the extracted multivariate TS and PKN. 
In such a context, and despite the PKN constraining the structure of the BNs to synthe-
sise, the synthesis problem is under-specified. The reason is that only one multivariate 
TS is used: for the running example, there are a priori 224 = 65536 possibilities or which 
128 satisfy the PKN. To further constrain the number of solutions, it is thus it is very 
important to use dynamical constraints as well.

In Vaginay et al. (2021), we introduced ASKeD-BN and showed that it is the best syn-
thesis method available in the case of signed PKN and complete multivariate TS (i.e., 
without missing time steps), when compared to the state-of-the-art methods (they will 
be briefly presented in “Related works” section). ASKeD-BN exhaustively synthesises 

SBML model

Structure Extraction

PKN
1 setting among {[r], [rr], [re], [rre]}

Dynamics Extraction

TS

(1) Binarisation
binarised TS

(2) Local Inference
set of functions / component

(3) Global BN(s) Assembly
(set of) BN(s)

BN synthesis
ASKeD-BN

BN evaluation

# of BNs,
PKN compatibility (ok by construction),

TS compatibility (coverage),
monotonicity

Fig. 3  Workflow of the SBML2BN pipeline. The BN synthesis step (blue box) is composed of 3 steps among 
which the local inference of the transition functions which uses 3 inputs (thick arrows): a PKN, a TS, and its 
binarisation
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BNs compatible with a given PKN and a multivariate TS with respect to constraints 
closely related to the notion of compatibility defined in “Synthesis of BNs compatible 
with a structure and a dynamics” section. It is decomposed in three steps: (1) the TS 
binarisation, (2) the local inference of transition functions and (3) the global BN assem-
bly. The second step generates the set of formulas that respect the structure and dynam-
ics known for each component, while the third step generates all the BNs from the 
formulas found in the second step. Figure 3 summarises the steps of the algorithm.

TS binarisation

The values in the time-series T obtained in “Extraction of the time-series from the 
SBML model” section are real valued, but ASKeD-BN needs the corresponding Boolean 
observations. The choice of the binarisation is crucial for the outcome. For a given spe-
cies X ∈ C , ASKeD-BN can directly use its binarisation threshold θX if it is provided. 
Otherwise, we compute θX as the midrange of the observations of X : (min+max)/2 , 
where min and max are the observed minimum and maximum of X in the time series. 
With Xt the value of the concentration of X at time t , the binarised value of X at time t is 
1 if Xt � θX and 0 otherwise. Other binarisation procedures are possible (such as mean 
and median-based), but despite its simplicity, the midrange-based binarisation proce-
dure produces good results when applied in the context of BN synthesis from biological 
data (Videla et al. 2015; Ostrowski et al. 2016). In particular, midrange-based binarisa-
tion may be less impacted than the average and median-based binarisation by periods of 
time where the concentration of a species oscillates in a small range of values.

Local inference of transition functions

This step constructs, for each species X ∈ C , all the simplest transition functions that 
are compatible with the given PKN, and explain the TS as well as possible. Overall, it 
solves both a combinatorial problem (structure constraint) and an optimisation problem 
(dynamics and minimality constraints).

Minimality Constraint—What are the best functions with regard to their size? The 
candidate transition functions are represented in Disjunctive Normal Form (DNF), i.e., 
disjunction of conjunctions. We represent a satisfiable conjunctive clause over a list of 
species I ⊆ C as an assignment cI : I → {−1, 1, 0} . The assignment encodes how each 
species appears in the clause (negatively/positively/does not appear). For example, if 
I = (X,Y,Z) , the assignment (1, 1, 0) encodes X ∧ Y and (1,−1, 1) encodes X ∧ ¬Y ∧ Z . 
A DNF is represented by a set of such assignments. Thanks to a constraint minimising 
the number of literals used in the DNF, our encoding retrieves only cardinal-minimal 
DNF.

Structural Constraint—What are the best functions with regard to the PKN P?  
For a component X ∈ C , we denote with P(X) the set consisting of its par-
ents: . A clause cP(X) is said to respect a given PKN if all its assign-
ments σ different from 0 correspond to influences in the PKN. That is, for all species 
Y ∈ P(X) , if cP(X)(Y)  = 0 then . If P(X) = ∅ , the only transition func-
tions that can be synthesised are the constant functions True and False.

Our encoding states that it is forbidden to generate a DNF containing a clause that 
does not respect the given PKN. This constraint ultimately results in synthesising 
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Boolean networks whose interaction graphs are spanning subgraph of the PKN (“Syn-
thesis of BNs compatible with a structure and a dynamics” section).

Dynamical Constraint—What are the best functions with regard to the TS T? Let 
I = P(X) ∪ {X} . From the binarised TS T̂ , we extract the deduplicated sequence of 
configurations SI . It is a sequence of vectors of B|I| as it only concerns the species in 
I  . The configurations that repeat over several successive time steps in T̂ are discarded. 
Hence, the n th configuration in S is different from the configuration n− 1 . We denote 
with s the function that returns the list of time steps that repeat the n th configuration. 
For example, the deduplicated sequence of configurations obtained from the binarised 
observations 000, 100, 100, 110, 110, 111, 000 is 000 → 100 → 110 → 111 → 000 . For 
this example, s(1) = {1} and s(2) = {2, 3} . For each transition in this sequence, input 
refers to the configuration of the species in P(X) (which may include X itself ), and out-
put denotes the next status of X . It is possible to get a sequence with inconsistencies: 
the same input leads to several outputs. However, we never get missing values thanks 
to the numerical integration from “Extraction of the time-series from the SBML model” 
section.

For a given candidate transition function fX , the unexplained configurations are the 
configurations where:

•	 X is activated in the nth configuration of S , but fX does not evaluate to True when 
using assignment of P(X) from the n− 1 th configuration;

•	 X is deactivated in the nth configuration of S , but fX evaluates to True when using 
the assignment of P(X) from the n− 1 th configuration.

The unexplained configurations form the set U . For each unexplained configuration 
n ∈ U , we compute an error ǫn that is the sum of “how far” the value of X is from the 
threshold for all time steps for which the configuration n is repeated: ǫn = t∈s(n) |Xt−θX|

|s(n)|  . 
The total error ǫ is 

∑
n∈U ǫn . It is of 0 if the candidate function explains all transitions. 

Our encoding generates all the functions that minimises ǫ . This constraint ultimately 
results in synthesising functions that fit to the transitions.

Global Boolean networks assembly

The final inferred Boolean networks are produced from the transition functions synthe-
sised in the previous step, by selecting one formula per species. ASKeD-BN produces 
all possible assemblies. There may be numerous assemblies, since their number corre-
sponds to the product of the number of functions synthesised for each species. However, 
in practice, the local inference often finds one function for each species, resulting in a 
unique assembly.

In case there are several assemblies, we also investigated the aggregation of the solu-
tions by simply merging the different DNFs found for each species. More complex com-
binations could be investigated, such as what is done in Aghamiri and Delaplace (2021) 
where the unique assembly produced is the most appropriate one in regard to required 
global properties (such as stable states and monotonicity of the network).
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Evaluation of synthesised Boolean networks

In this last step, we evaluate the quality of the BNs synthesised. Several criteria are 
considered:

•	 number of BN generated, which should be small.
•	 compatibility of the synthesised BNs with the PKN and the TS extracted from the 

model Since they are compatible with the PKN (by construction), our quality check 
focuses on the compatibility with the multivariate TS. As explained in “Synthesis of 
BNs compatible with a structure and a dynamics” section, the coverage ratio is the 
proportion of transitions extracted from the TS that are in the general-asynchronous 
STG. We compute this coverage ratio for each BN synthesised by the pipeline. Then 
we aggregate the individual coverage ratios by computing their median and standard 
deviation. Ideally, the pipeline returns only BNs with maximal coverage ratios i.e., 
with a median of 1 and a std of 0 (“Synthesis of BNs compatible with a structure and 
a dynamics” section).

•	 monotonicity of the local transition functions. Following the basic principle of 
parsimony, a biological species is usually assumed to have either an activation or an 
inhibition role towards another species (Sontag 2007). As a result, non-monotonous 
local transition functions (i.e., functions which contain a literal and its contrary) are 
supposed to be quite unlikely. Only a non-monotonous PKN can result in the synthe-
sis of non-monotonous transition functions. That is, we count the number of parsi-
monious local update functions generated when the given PKN is non-monotonous. 
Note that, by construction, a PKN built from rules and events is non-monotonous.

Implementation

We have made a point of supporting reproducibility and facilitating the installation of 
the pipeline.3 All the tools developed or reused are open-source, well documented and 
freely available. The pipeline is managed using Snakemake (Mölder et al. 2021) (which 
ensures each step is ran properly and in the correct order) and installed using Conda 

Fig. 4  Naive imperative algorithm for the local inference of ASKeD-BN

3  https://​gitlab.​inria.​fr/​avagi​nay/​CNA20​21_​exten​sion.

https://gitlab.inria.fr/avaginay/CNA2021_extension
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(Conda 2021) (which simplifies the management of library dependencies and avoid ver-
sion conflicts).

We implemented a tool to extract the PKN from an SBML model using the library 
libSBML (Bornstein et al. 2008). Because of many special cases, the interpretation and 
simulation of SBML models is difficult. Hence, we used the dedicated program COPASI 
(Hoops et  al. 2006) to retrieve the multivariate TS (with the solver LSODA) and Bio-
cham (Calzone et al. 2006) to determine the well-formedness of the models. PyBoolNet 
(Klarner et al. 2016) is used to compute the GA-STG of the BNs. As for the BN synthe-
sis step, most of ASKeD-BN (Vaginay et al. 2021) is implemented in python, except for 
the local inference step which is implemented declaratively in answer-set programming 
(ASP) (Gebser et  al. 2012). ASP relies on constraints and logic to define the solutions 
of a problem. It is powerful and quite adapted to the local synthesis problem, as it is 
both a combinatorial and optimisation problem. A naive procedural algorithm of this 
step is given in Fig. 4. The procedural algorithm evaluates all the candidates functions, 
but thanks to heuristics (inspired from SAT solvers), ASP performs clever exhaustive 
searches of all the solutions. Each solution it returns is a logical formula in minimal DNF 
which minimises the error in regard to the given TS, and respects the given PKN.

Evaluation of the SBML2BN pipeline
Evaluation on the running example Eq. (1)

We apply SBML2BN with the default midrange-based binarisation on the SBML file (see 
Additional file 1) that models Eq. (1). The Boolean network B1 (Fig. 1a) is the only solu-
tion we obtain. Its interaction graph (Fig. 1b) is a spanning subgraph of the PKN (Fig. 2b) 
by construction. It thus respects the known structure of the original SBML model. As for 
the GA-STG of this BN (Fig. 1c), it covers 4 transitions out of the 5 extracted from the 
binarised TS (Fig. 2c). Its coverage ratio is thus 0.8, and the coverage median and stand-
ard deviation of this singleton of solutions are obviously 0.8 and 0 respectively, mak-
ing SBML2BN successful on this example. Using the synchronous update scheme, two 
fixed-point attractors are found for this BN: 0111 and 1000. They are consistent with 
what we would except biologically. In particular as “nothing happens” if the dynamics 
starts with only E present while there is no S.

We tried the BN synthesis with three other binarisation procedures: median, mean 
and “above 0”. In these cases, the pipeline also returns a unique BN with coverage of 
respectively 0.6, 1 and 0.25. The BN obtained with the median-based binarisation is 
the same as the one obtained when using the midrange-based binarisation, but it has a 
reduce coverage because the sequence of configurations is slightly different. The BN syn-
thesised with the mean-based coverage has the best coverage achievable. Despite this, 
we stick with the midrange-based coverage for the rest of the experiments because it is 
the simplest binarisation and not influenced by periods of time where a species oscillates 
in a small range of value.
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Evaluation on SBML models from BioModels

BioModels (Malik-Sheriff et al. 2020) is a repository of models of biological and bio-
medical systems, including metabolic networks, signalling networks, gene regulatory 
networks and infectious diseases. All models stored in the curated branch of Bio-
Models are encoded in SBML and have passed a manual curation process consist-
ing in extensive annotation of the models elements and asserting the results from 
the paper in which the model was originally published are reproducible by the SBML 
model. In particular, we retrieve the duration of simulations from these curation 
reports, when applicable.

The latest available release of Biomodels4 contains 640 curated SBML models, 
including 369 complete quantitative SBML (i.e., models for which SBML2BN is able 
to extract a PKN and a multivariate TS, see “SBML in a nutshell” section). However, 
the complexity of the BN synthesis problem increases exponentially with the num-
ber of parents for each component. Indeed, the number of possible transition func-
tions for a component with p parents is 22p . Assuming the problem is not tractable 
if a component has more than 10 incoming edges, we are considering the same 209 
SBML models than in Vaginay et al. (2022). The number of species in these models 
ranges from 1 to 61 (median = 8, std ∼ 11), but bigger models would not have been 
a problem per se since ASKeD-BN is not directly impacted by the number of species. 
Among these 209 models, 38 models use rules and/or events (3 have both). Only 30% 
(64) of these models are well-formed according to the tool Biocham.

In order to study the impact of the integration of the rules and events in the con-
struction of the PKN, the pipeline is ran on these models in four different settings:

Setting PKN built from # models concerned

[r] Reactions only 209

[re] Reactions + events 3

[rr] Reactions + rules 38

[rre] Reactions + rules + events 3

Total # xp = 353

In each setting, the pipeline is globally assessed according to four criteria:

•	 the runtime (“Runtime” section): attests that the pipeline scales to real SBML 
models.

•	 the average number of BNs returned for each SBML model (“Number of BNs syn-
thesised” section): attests that the problem is sufficiently constrained such that the 
pipeline does not return an overwhelming number of alternative solutions, among 
which it would be difficult to choose.

•	 the distribution of median and standard deviation summarising the coverage 
ratios of the BNs synthesised for each SBML model (“Compatibility of the BNs 
with the TS (coverage analysis)” section): attest the compatibility of the dynamics 
of the BNs with the TS.

4  release 31 ftp://​ftp.​ebi.​ac.​uk/​pub/​datab​ases/​biomo​dels/​relea​ses/​2017-​06-​26/.

ftp://ftp.ebi.ac.uk/pub/databases/biomodels/releases/2017-06-26/
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•	 the monotonicity of the transition functions (“Monotonicity analysis” section): 
attests the parsimony of the influences used by the BNs.

Note that we do not evaluate the compliance of the synthesised BN with the PKN, 
because they are compliant by construction (“Local inference of transition functions” 
section). Compared to our previous paper (Vaginay et al. 2022), we added the analysis 
of the monotonicity as well as the study of how the results are impacted according 
to the different settings of PKN construction, and a discussion on the well-formed-
ness of the models. For a more detailed analysis of the results concerning the use of 
ASKeD-BN to synthesise BNs from given PKN and TS (not automatically extracted 
from an SBML model), the reader is invited to read (Vaginay et al. 2021).

Runtime

Despite the complexity of the BN synthesis step, about three fourth (187) of the 
experiments terminated in less than 30 h. Table 2 and Fig. 5a show how many models 
were processed in less than 30 h, as well as CPU time of the BN synthesis step in each 
setting. From Fig.  5b, we can see that the BN synthesis step stopped processing an 
interesting number of models after 10 h. In the following, we report the results for the 
187 experiments terminated in less than 30 h.

Table 2  Number of models processed and CPU time of the BN synthesis step

Setting # to process # done < 30 h (%) CPU time 
median (min) 
± std

[r] (reactions only) 209 155 (~ 75) ~ 33 ± 5.6 h

[re] (reactions + events) 3 2 (~ 66) ~ 28 ± 14 min

[rr] (reactions + rules) 38 29 (~ 75) ~ 7 ± 6 h

[rre] (reactions + rules + events) 3 1 (~ 33) ~ 51

Total 253 187 (~ 75) ~ 31 ± 5.6 h

(a) (b)
Fig. 5  Runtime of the BN synthesis step in the four settings (a) and in comparison with [r] (b)
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To see how the addition of rules and/or events impacts the runtime of the local syn-
thesis for a given model, we plot the runtimes for settings [re], [rr] and [rre] against the 
runtimes obtained with the setting [r] (Fig. 5b). The dots are on the diagonal when there 
is no change, and above (resp. below) the diagonal when the addition of rules and/or 
events leads to bigger (resp. smaller) runtime. Surprisingly, adding rules and/or events 
does not necessarily increase the runtime.

Number of BNs synthesised

Around 8 BNs are generated in average in each experiment. This number hides a strong 
disparity, since a single BN was synthesised for almost 70% (126) of the experiments. 
Table 3 shows the details for each setting. We can see that the choice of the setting does 
not have an impact on the number of BNs generated.

Compatibility of the BNs with the TS (coverage analysis)

To assess the coverage ratio criterion, we plot the median of the BNs synthesised for 
each SBML model in Fig. 6. As said before, all the BNs returned by the pipeline for a 
given SBML model would ideally have a perfect coverage ratio, hence with a median of 1 
and a standard deviation of 0. The pipeline synthesises only BNs with maximal coverage 

Table 3  Number of BNs generated, coverage and number of clauses

Setting Median
 # BNs

[r] 1

[re] 1.5

[rr] 1

[rre] 1

All 1

Fig. 6  Coverage evaluation for the BNs synthesised by SBML2BN for 155 SBML models. Each dot represents 
the set of BNs returned for a given SBML model in a given setting. Its coordinates are the coverage ratio 
median (ordinate) and the number of species of the SBML model (abscissa). The yellow line shows where the 
dots are when the pipeline only returns BNs with a perfect coverage. The points are slightly jittered on x and 
y axes with a Gaussian noise of variance 0.2 and 0.02 respectively to ensure readability
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ratio for almost three forth (139) of the experiments. The mean, median and standard 
deviation of the median coverage ratios of the BNs synthesised are of 0.90, 1 and 0.19 
respectively. There are only 4 experiments for which the standard deviation is not 0 (max 
= 0.22). Overall, the pipeline is efficient at finding Boolean networks with good cover-
age median and small standard deviation, whatever the considered setting. Neverthe-
less, there are experiments for which the coverage of the synthesised BNs is not good. In 
particular, there is a significant loss of performance correlated to the number of nodes in 
the systems (Kendall’ τ value of −0.19 , p value of 0.001).

We are currently investigating possible reasons of this correlation, and reasons of poor 
coverage ratio in general. One reason could simply be that Boolean networks cannot 
explain all phenomena (“Synthesis of BNs compatible with a structure and a dynamics” 
section): in some cases, the maximum achievable coverage ratio is smaller than 1, but 
our quality evaluation of the synthesised BNs does not take this fact into account. We 
could use Boolean networks with the most-permissive semantics (Chatain et al. 2020) 
to overcome this limitation, but no implementation is available for BNs having non-
monotonous transition functions (such as the ones our pipeline might produce). In the 
previous version of the paper (Vaginay et al. 2022), we speculated that another reason 
could be that the specifications of SBML leave open the possibility for a model to con-
tain contradictory information. It has been showed in Fages et al. (2012) that more than 
60% of the SBML models tested in 2012 were not well-formed (“Completeness and well-
formedness” section). For example, the model n ◦445 has reactions with species used in 
the kinetics which are not listed as reactants nor modifiers. This has a bad impact on the 

Fig. 7  Evaluation of the impact on the coverage of constructing the PKN with rules and/or events. The points 
are jittered with a Gaussian noise of variance 0.01 on both axes to ensure readability

Table 4  Impact of the setting on the coverage of the synthesised BNs

Setting # xp ր ց =

[re] 2 2

[rr] 29 13 8 8

[rre] 1 1

Total 32 13 8 11

5  https://​www.​ebi.​ac.​uk/​biomo​dels/​BIOMD​00000​00044.

https://www.ebi.ac.uk/biomodels/BIOMD0000000044
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construction of the PKN by our pipeline (“Extraction of the PKN from the SBML model” 
section), since potential parents of some species are not identified. For this particular 
model in setting [r], one BN was generated, with a poor coverage of 0.55. Among the 187 
experiments analysed, 131 concern not well-formed models and 56 well-formed models. 
However, the coverages obtained from well-formed models are not really different from 
the coverages obtained from not well-formed (means and median of 0.9 and 1 in both 
cases). We also hypothesised contradictions were most likely to occur in bigger models, 
but this is not the case. Indeed, the median size of the 64 well-formed models in the 
complete set of models is of 9.5 versus 7 for the 145 not well-formed models.

Let us now we consider specifically the impact of a PKN built with rules and/or reactions 
on the coverage results. For a given SBML model, we check how the coverages in setting 
[re], [rr] and [rre] differ from the ones obtained in setting [r] (Fig. 7 and Table 4). We can 
see that adding events does not impact the coverage of the synthesised BNs. The synthe-
sised BNs are actually the same. Adding rules, however, has a mixed impact. There are 8 
experiments for which it changed nothing, but 13 for which is improves the coverage and 
8 for which it decreases the coverage. We are planning to investigate automatic ways to 
determine in advance which rules are worthy to be considered for the PKN construction.

Monotonicity analysis

Table 5 reports the impact of the introduction of rules and events on the PKN and the syn-
thesised functions in terms of parenthood and monotonicity. The analysis of constancy and 
monotonicity of the synthesized functions is done on the interaction graph of a BN obtained 
by merging the BNs solutions (as explained in “Global Boolean networks assembly” section).

The number of species without any potential parent in the PKN (for which the synthe-
sised function is then the constant False by default) decreases when adding rules and/or 
events. As a result, 4 species in the setting [rr] led to synthesised functions which are not 
the constant function (the default one).

Concerning the monotonicity, the introduction of rules and events leads by construc-
tion to non-monotonous influences in the PKN. Hence, in settings [re], [rr] and [rre], the 
number of species for which the PKN contains at least one non-monotonous influence 
increases compared to what is observed for the setting [r]. However, the synthesised 
functions are all monotonous.

Table 5  Impact of the setting on the search space and synthesised functions in terms of 
monotonicity and constancy

Setting  # models 
concerned

 # species 
concerned

# species in PKN, compared 
to [r]

 # species from IG of merged 
BNs, compared to [r]

 w/ potential 
parents

 w/ only 
monotonous 
incoming 
influence

Constant  Monotonous

 [re] versus [r] 2 72 50 versus 46 
→ + 4

25 versus 29 
→ − 4

70 versus 70 
→ 0

72 versus 72 → 0

 [rr] versus [r] 29 333 309 versus 234 
→ + 75

122 versus 197 
→ − 77

306 versus 310 
→ − 4

333 versus 333 
→ 0

 [rre] versus [r] 1 11 10 versus 7 → 
+ 3

2 versus 5 → 
− 3

10 versus 10 
→ 0

11 versus 11 → 0
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Related works
A mathematical method to convert an ODE system to a partial function from Bn → B

n 
(similar to a BN) has been explored in Davidich and Bornholdt (2008). It consists in a 
coarse-grain interpretation of the equations normalised between 0 and 1. It was success-
fully applied on equations modelling the cell division cycle of fission yeast. However, the 
generated partial function is not a strict BN as generated by our approach. There are no 
local transition functions. Moreover, it is impossible to apply it automatically on given ODE 
systems as the conversion relies on expert choices such as deduplication of some species, 
and the inclusion of some kinetic parameters (as if they were species).

If the SBML model under study corresponds to a Chemical Reaction Network (CRN) i.e., 
a set of reactions over a set of species, without rules nor events, one can automatically build 
a Boolean transition system using Biocham (Calzone et al. 2006). It implements the Boolean 
interpretation of a CRN defined in Fages and Soliman (2008b). A non-deterministic (asyn-
chronous) transition system over the Boolean configurations of the CRN is build in the fol-
lowing way: if there is a reaction A + B → C in the model, then the configurations 110 and 
111 ( A and B present, C don’t care) are connected to the four following configurations: 001, 
101, 011, 111 ( c is for sure present, A and/or B might be consumed). The authors proved that 
this is a correct over-approximation of the quantitative behaviour of the CRN: the absence of 
a behaviour with this Boolean semantics entails its absence in the quantitative semantics of 
the original chemical reaction network, whatever the kinetic expressions are.

Several methods have been proposed in the literature for the BN synthesis from a PKN 
and a multivariate time series (Liang et al. 1998; Lähdesmäki et al. 2003; Ostrowski et al. 
2016) as well as for the more general problem of BN synthesis from experimental data 
(such as omics data) and background knowledge (extracted from literature, or public 
databases) (Aghamiri and Delaplace 2021; Chevalier et al. 2019; Barman and Kwon 2018; 
Dorier et al. 2016). These methods exploit various strategies, especially regarding (i) the 
extraction method of the sequence of configurations and (ii) the fitting method of the 
transition functions to the observations. They all roughly amount to enforcing that the 
IG and STG of the synthesised BNs contains specific edges that corresponding to spe-
cific interactions and transitions of configurations.

Although they inspired us in our work, these studies differ from ours. Indeed, some 
methods such as caspo-TS (Ostrowski et al. 2016) work on explaining the reachability of 
the configurations instead of the transitions themselves. Hence, wildcard are thus added to 
the configurations sequence: 000 → ∗ → 100 → ∗ → 110 → ∗ → 111 → ∗ → 000 . This 
feature is an asset in the case of missing time points, but in our framework, the multivari-
ate TS is complete, and this feature is not necessary [and even counter-productive (Vaginay 
et al. 2021)]. Some others perform a stochastic or greedy search for the candidate BNs. In 
contrast, our study aims at finding all solutions that satisfy the criteria we defined. Some of 
these methods assume that the data has been binarised beforehand and do not include a 
binarisation step. On the other side, they have to identify the correct sequence of configura-
tions which will constrain the BN construction. Some of these methods are ASP-based as 
well (Chevalier et al. 2020; Videla et al. 2015) and were validated on synthetic data or on 
targeted complex biological systems.
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Conclusion and perspectives
In this paper, we presented SBML2BN, a pipeline for the automatic transformation of 
a complete quantitative SBML model into a set of compatible Boolean networks. The 
transformation of biological models from a formalism to another has been investigated 
in several papers (Aghamiri et  al. 2020; Fages and Soliman 2008b) in particular from 
ODE system to Boolean networks (Davidich and Bornholdt 2008). Yet, to the best of 
our knowledge, our study is the first to be dedicated to the automatic transformation of 
a complete quantitative SBML model into Boolean networks. As a complete and auto-
matic process, our pipeline reduces the risk of errors and saves effort and time of biolo-
gists. Our results show that SBML2BN succeeds most of the time at recovering small 
sets of BNs compatible with both the structure and dynamics extracted from the input 
SBML model. By construction, the Boolean networks synthesised by our pipeline are 
compatible with the structure of the input SBML model. They also tend to maximize the 
coverage ratio towards the observed dynamics of the system.

Overall, SBML2BN is an important building block on which we can build upon. So far, 
we take reactions, rules and events to retrieve the influences among species, and we use 
a deterministic simulation of the model to get the behaviour of the species. To go fur-
ther, other SBML elements could be taken into account (such as the ones introduced in 
the last version of SBML (Zhang et al. 2020) to model species with multiple components 
or states). Moreover, certain handcrafted BNs contain tricks to fit to the data. For exam-
ple, using nodes that are parameters and not species per se. These nodes are not exploit-
able by the automatic pipeline, as it is difficult to identify such tricks. One interesting 
perspective would be to take external expert knowledge into account in future versions 
of the pipeline, such as known fixed points and cyclic attractors. We are also investigat-
ing strategies to make the pipeline more efficient, particularly on more complex models. 
Finally, we plan to take benefit of the set of BNs synthesised for a given SBML model by 
combining and simulating them together, as recently proposed in Chevalier et al. (2020). 
We are also investigating how to aggregate BNs from several SBML models when they 
concern distinct parts of the same biological system.
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