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Introduction
Social network analysis (SNA) is a highly visual technique that can be used to describe 
the overall structure of various networks, as well as the relationship between their nodes, 
by transforming the spatial system into quantitative relational data (Ye et al. 2022). Over 
the past 10–15 years, this approach has become an important methodology in regional 
science and economic geography (Hui et  al. 2020). Among the wide range of applica-
tions in these fields, SNA has been successfully employed to study the spatial structure 
of urban and economic agglomeration (Van Meeteren et al. 2016; Liu et al. 2018; Searle 
et al. 2018) and to analyze innovation, knowledge (Morrison 2008; Sebestyén and Varga 
2013; Dahesh et al. 2020; Abonyi et al. 2020; Czvetkó et al. 2021; Weidenfeld et al. 2021), 
trade (Bhattacharya et  al. 2008; Mao and Cheng 2019), and various tourism networks 
(Liu et al. 2012a; D’Agata et al. 2013; Asero et al. 2016; Mou et al. 2020; Seok et al. 2021). 
In contrast to these disciplines, the systematic description, modeling, and analysis of 
network relationships in international business studies remains in its infancy (Kurt and 
Kurt 2020).
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While power-related connections between corporations play an important role in 
understanding our global corporate system (Vitali et al. 2011), few papers have investi-
gated such networks. For example, Nakamoto et al. (2019) employed the so-called Orbis 
database (Dijk 2018) to identify and analyze high-risk intermediate companies used for 
international profit shifting. Using the same database, Khalife et al. (2021) modeled the 
ownership network to establish a methodology to extract and analyze meaningful pat-
terns of capitalistic influence from the graph structure. Mizuno et al. (2020) applied a 
new model on this network to measure a shareholder’s power to control corporations. 
Based on their findings, the landscape of global corporate control appears different if 
we adequately evaluate indirect influence via dispersed ownership. Finally, Takes et al. 
(2018) investigated the essential building blocks (multiplex motifs) of this graph to pro-
vide a better understanding of multiplex corporate networks.

This paper analyzes the European subset of the Orbis database called Amadeus1 to 
provide further insights into the structure of European companies’ ownership networks. 
To this end, we combined the tools of SNA with a gravity model containing different 
economic, technological, and geographic indicators. Ownership was aggregated to the 
NUTS 3 regional level, to which average corporate profitability indicators, the GDP per 
capita characterizing the economic environment, and the number of patents and indus-
trial designs characterizing the technological environment were assigned to NUTS 
regions. The formation of the ownership network between 2010 and 2018 was then char-
acterized using this dataset. As the proposed model accurately describes the formation 
of ownership relationships marked with edges, it is possible to estimate network proper-
ties, such as modularity and centrality.

The aims of the study are twofold, namely, proposing a new, economic null model and 
identify and analyze economic-investment communities (EICs). The stated aims (As) of 
this study are grouped as follows: 

I.	 Propose a new gravity-based economic null model (GEN):

A1	� To improve link prediction with GEN.
A2	� To predict derivative network characteristics such as centralities and modularity 

values.

	II.	 Identify and analyze companies’ ownership structure:

A3	� To identify EICs.
A4	� To analyze the stability of EICs over time.

Incorporating gravity models into null models offers us to predict links more accurately 
(see A1 ). In this way, the formation of the companies’ ownership network, as well as its 

1  Source: https://​www.​bvdin​fo.​com/​en-​gb/​our-​produ​cts/​data/​inter​natio​nal/​amade​us?​gclid=​Cj0KC​QiA-​qGNBh​D3ARI​
sAO_​o7yla​UtImu​qqfTf​lrsCm​F2pzL​uP0Vq​EYFG6​EIyWv​WZIbC​gn3yj​kNALN​MaAhy​8EALw_​wcB, retrieved: 5 May 
2022.

https://www.bvdinfo.com/en-gb/our-products/data/international/amadeus?gclid=Cj0KCQiA-qGNBhD3ARIsAO_o7ylaUtImuqqfTflrsCmF2pzLuP0VqEYFG6EIyWvWZIbCgn3yjkNALNMaAhy8EALw_wcB
https://www.bvdinfo.com/en-gb/our-products/data/international/amadeus?gclid=Cj0KCQiA-qGNBhD3ARIsAO_o7ylaUtImuqqfTflrsCmF2pzLuP0VqEYFG6EIyWvWZIbCgn3yjkNALNMaAhy8EALw_wcB
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properties, such as centralities and modularity values, can also be predicted more accu-
rately (see A2).

The modularity value is a measure of the structure of networks, which measures the 
strength of a network’s communities organized into modules. The proposed GEN-based 
modules specify economic-investment communities on the companies’ ownership net-
work (see A3 ). Within these communities, property relationships—that can be treated 
as investments—are denser than those between two different communities. In addition, 
yearly data between 2010 and 2018 provide the opportunity to analyze the stability of 
EICs (see A4).

The rest of this paper is organized as follows. “Data and methods” section introduces 
the data utilized in this study and the applied methodology. “Results” section presents 
the results of the analysis. “Discussion” section discusses the results, followed by “Sum-
mary and conclusion” section, which provides a summary and conclusions. Finally, 
“Limitations and future works” section highlights the limitations and proposes further 
research directions.

Data and methods
The study combines data-driven and model-driven approaches. The employed data-
driven methods came from network sciences, such as calculating centralities to identify 
the key regions in investment and community-based modularity detection to identify 
communities of regions. On the other hand, the applied gravity model is a frequently 
used economic model, where the rate of flows, such as migration, trade exchanges—or 
in this case, the number of investments—has to be modeled.

The employed data-driven approach, in contrast to the traditional model-driven 
approaches, could not be based on a preliminary research model and the associated 
research hypotheses. However, clearly defined research purposes and the associated 
research questions are formulated. In addition, the combination of data-driven and 
model-driven approaches allows scholars to formulate more specific research questions 
(RQs) as follows: 

I. 	Methodological research questions:

RQ1	� Is it possible to improve link prediction via the proposed GEN null model?
RQ2	� Is it possible to improve the derivative network coefficients, such as centralities 

and modularity values, by the proposed GEN link prediction?

	II.	 Applications of null models:

RQ3	� Do administrative (such as country) borders affect investments?
RQ4	� How do investments change if distance does not play a role?
RQ5	� What kind of EICs can be identified with the GEN null model? Are they stable 

in time and space?



Page 4 of 31Kosztyán et al. Applied Network Science            (2022) 7:61 

RQ1 and RQ2 are derived from A1 and A2 . One of the main goals of this study is to 
propose a better null model that better predicts the links (i.e., the number of own-
ers) between regions. In a spatiotemporal network, which is the company ownership 
network, not only the distance but also the economic and technological environment, 
as well as the financial status of companies, can influence the links between nodes. 
Therefore, not only the links (see A1–RQ1 ) but also the derived network characteris-
tics, such as centrality and modularity values, can be predicted more accurately (see 
A2–RQ2).

Without underestimating the importance of methodological questions, the interest-
ing questions can be centered around the interpretation of the results (see A3–A4 and 
RQ3 – RQ5 ). The establishment of a new subsidiary can be considered an investment in 
which technology and knowledge transfer also take place.

The configuration model of Newman (2010) shows that if links between nodes are 
concentrated around geographical locations, then the distance between nodes should be 
considered in null models (Expert et al. 2011). At the same time, distance dependence 
alone does not explain why administrative boundaries are returned during a module 
search (see RQ3 ). In that case, we can rightly assume that other economic, technologi-
cal, or corporate characteristics also influence the decision of investments. Indeed, while 
in the European Union, the federalist and sovereignist positions fight with each other in 
almost all areas of decision-making (Saurugger 2018; Heidbreder 2022), an important 
question may be whether the administrative borders (here primarily the country bor-
ders) play a role.

Nevertheless, using the distance-dependent null model in community detection gives 
us the opportunity to ask questions about what kind of relationships would develop if 
distance did not play a role (see RQ4 ). In addition, by using GEN-based null models, the 
following question can be answered: how does an EIC change in time and space (see 
RQ5 ). Since EICs show regions where the connections between regions are denser than 
the gravity model predicts if administrative borders are returned as modules, then this 
indicates that the financial, economic, and technological differences are still decisive in 
the unified economic area.

Since the gravity model is a classical economic model that follows a model-driven 
approach, research hypotheses (RHs) can also be stated.

RH1	� The links within companies’ ownership networks can be modeled by the distance 
between regions, the economic and technological properties of the regions, and 
the financial status of the companies.

RH2	� The administrative borders play an important role in the formation of EICs, 
which are stable in space and time.

The RH1 determines the groups of indicators involved in the gravity models. The 
applied GEN-model-based community detection specifies EICs, which mainly reflect 
the country’s borders. We also assume that these EICs are stable in space and time (see 
RH2).
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Data employed

The database was collected and aggregated by employing the freely available database of 
Eurostat,2 as well as the databases of Amadeus,3 and PATSTAT.4 Although the latter two 
are commercial databases, they collect freely available data from European companies 
and patents. Amadeus consists of over 24 million company data from all over Europe. In 
addition to the headquarters of companies, it contains balance sheet and income state-
ment data, as well as ownership relations among companies. The PATSTAT database 
consists of filed and accepted patents, industrial designs, and trademarks from around 
the world, as well as the addresses of the inventor and the exploiter. Most European 
headquarters are assigned to a NUTS 3 region. In addition, we collected per capita GDP 
adjusted for purchasing power parity (PPP) and population data for NUTS 3 regions. 
Note that GDP (PPP) is often used as an indicator that is suitable for international com-
parisons (see, e.g., Abrham and Vosta 2010); however, within the European Union, there 
is a relatively moderate difference between nominal GDP and GDP PPP.5 Two distinct 
data tables are specified. The first table provides the data of nodes (i.e., data of NUTS 
3 regions). All indicators are attached and aggregated to a NUTS 3 region. Data from 
Amadeus (indicators m2 −m15 ) are also aggregated to NUTS 3 regions. The mean val-
ues of company data are calculated for indicators m2 −m14 . The edge dataset connects 
two regions (i and j), and the distances ( di,j ) between two regions are collected from the 
official site of Eurostat.6

Table 1 shows the list of applied indicators and the data sources.
Note that in the Eurostat database, there is no information about the NUTS 3 GDP 

data for Iceland (2 regions), Liechtenstein (1 region), Switzerland (25 regions), and the 
United Kingdom (179 regions); therefore, we used the GDP per capita values for all 
countries.7

To test RH1 , data on companies’ financial status ( m1 −m14 ), as well as regional eco-
nomic ( m15 ) and technological ( m16 ) indicators and interregional distances ( di,j)are 
collected. These variables were treated as independent variables, while the dependent 
variable was the number of owners of i region companies in the j region ( ai,j).

Methods employed

Network representation of ownership

The parent-daughter relationship between firms was characterized by means of a binary 
adjacency matrix A , whose elements are defined as:

2  Source: https://​ec.​europa.​eu/​euros​tat/​data/​datab​ase, retrieved: 5 May 2022.
3  Source: https://​www.​bvdin​fo.​com/​en-​gb/​our-​produ​cts/​data/​inter​natio​nal/​amade​us?​gclid=​Cj0KC​QiA-​qGNBh​D3ARI​
sAO_​o7yla​UtImu​qqfTf​lrsCm​F2pzL​uP0Vq​EYFG6​EIyWv​WZIbC​gn3yj​kNALN​MaAhy​8EALw_​wcB, retrieved: 5 May 
2022.
4  Source: https://​www.​epo.​org/​searc​hing-​for-​paten​ts/​busin​ess/​patst​at.​html, retrieved: 5 May 2022.
5  Source: https://​stati​stics​times.​com/​econo​my/​gdp-​nomin​al-​vs-​gdp-​ppp.​php, retrieved: 5 July 2022. Note that no sig-
nificant changes in coefficients were experienced when we replaced GDP (PPP) with GDP in the gravity model. A similar 
conclusion can be found, e.g., in Paas et al. (2008), which examined international trade within the European Union using 
a gravity model.
6  Source: https://​ec.​europa.​eu/​Euros​tat, retrieved: 5 May 2022.
7  Source: https://​ec.​europa.​eu/​euros​tat/​datab​rowser/​view/​NAMA_​10_​PC__​custom_​18749​28/​defau​lt/​table?​lang=​en, 
retrieved: 5 May 2022.

https://ec.europa.eu/eurostat/data/database
https://www.bvdinfo.com/en-gb/our-products/data/international/amadeus?gclid=Cj0KCQiA-qGNBhD3ARIsAO_o7ylaUtImuqqfTflrsCmF2pzLuP0VqEYFG6EIyWvWZIbCgn3yjkNALNMaAhy8EALw_wcB
https://www.bvdinfo.com/en-gb/our-products/data/international/amadeus?gclid=Cj0KCQiA-qGNBhD3ARIsAO_o7ylaUtImuqqfTflrsCmF2pzLuP0VqEYFG6EIyWvWZIbCgn3yjkNALNMaAhy8EALw_wcB
https://www.epo.org/searching-for-patents/business/patstat.html
https://statisticstimes.com/economy/gdp-nominal-vs-gdp-ppp.php
https://ec.europa.eu/Eurostat
https://ec.europa.eu/eurostat/databrowser/view/NAMA_10_PC__custom_1874928/default/table?lang=en
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Because of the difficulties of interpreting aggregations, the rate of ownership is not con-
sidered. The adjacency matrix A is further called the company ownership matrix (COM). 
The database contains the exact geographical location of each company. Moreover, since 
all our economic and technological indicators were provided at the NUTS 3 level and 
we also wanted to preserve the anonymity of the companies, we aggregated the data to 
the NUTS 3 level. However, these data are stored separately to use in link (i.e., the num-
ber of ownerships) prediction between NUTS 3 regions. Each settlement was assigned 
to a NUTS 3 region (county). Companies are assigned to geographic regions by the 
A
[mo,NUTS 3] and A[da,NUTS 3] incidence matrices, whose elements are defined as:

–	 a
[mo,NUTS 3]
i,j  with element one if the headquarters of the i-th mother company is 

situated in the j-th NUTS 3 geographic region,
–	 a

[da,NUTS 3]
i,j  with element one if the i-th daughter is situated in the j-th NUTS 3 

geographic region,

Therefore, the directed weighted network that defines the number of investment con-
nections between the regions can be defined as:

(1)ai,j =
1 if the i-th company owns the j-th company.
0 otherwise

Table 1  Applied indicators

*Remark: The definition of the indicators can be found in the “Appendix”

v Indicators* Description Data source

Node dataset (NUTS 3 regional data)

m1 TA Total assets Amadeus

m2 SR Solvency ratio (Asset based) (%) Amadeus

m3 SH Shareholders’ funds Amadeus

m4 RB ROE using P/L before tax (%) Amadeus

m5 RCB ROCE using P/L before tax (%) Amadeus

m6 PM Profit margin (%) Amadeus

m7 PLF P/L for period Amadeus

m8 PLB P/L before tax Amadeus

m9 OR Operating revenue Amadeus

m10 FA Fixed assets Amadeus

m11 EN Number of employees Amadeus

m12 CR Current ratio Amadeus

m13 CF Cash flow Amadeus

m14 CO Number of companies Amadeus

m15 GDP GDP/ capita in purchasing power priority Eurostat

m16 PI Patents PATSTAT​

Edges

i FROM The NUTS 3 ID of parent companies Amadeus

j TO The NUTS 3 ID of daughter companies Amadeus

di,j Dist Distance between regions Eurostat

ai,j OWN Number of ownerships Amadeus
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where A[NUTS 3] is the (aggregated) company ownership matrix (ACOM). If both the sub-
sidiary (daughter) and the parent company are stated in the same NUTS 3 region, then a 
self-loop is formated in a NUTS 3 level. ai,j ∈ A

[NUTS 3] represents the number of owners 
between NUTS 3 region i and j.

The advantage of this company-to-local transformation is to create the opportunity to 
analyze connections between regions via yearly cross-sectional analysis.

If we examine several periods, we obtain three-dimensional arrays instead of adja-
cency matrices, where the third dimension is time (i.e., year). As we address intercounty 
relations throughout, the NUTS 3 notation is neglected. An adjacent matrix in year t is 
denoted as At = A

[NUTS 3]
t .

Applied null models

Null models predict connections between nodes. The most widely applied null model is 
the random configuration model specified by Newman and Girvan (2004), which cal-
culates the prediction assuming a random graph conditioned to preserve the degree 
sequence of the original network:

where k[out]i =
∑

j ai,j , k
[in]
j =

∑
i ai,j , and L =

∑
i

∑
j ai,j . Note that self-loops cre-

ated during the regional aggregation of the ownership network have to be treated. To 
this end, Arenas et al. (2008) proposed a multiresolution method called AFG (after the 
authors, Arenas, Fernandez, and Gomez) by adding r self-loops to each node. This algo-
rithm increases the strength of a node without altering the topological characteristics of 
the original network, as follows: Ar = A + r I , where I denotes the identity matrix and r 
the weight of the self-loops of each node. We used this correction in the case of finding 
modules; however, this compensation underestimates the self-loops.

The so-called randomized null model presented by Eq. (3) is inaccurate in most real-
world networks Liu et  al. (2012b). Nevertheless, several community-based detection 
methods, such as modularity detection, are based on this random configuration model 
(Newman 2010).

One of the main disadvantages of the randomized null model is that it neglects the dis-
tance dependency between nodes (i.e., regions). The following null model can be speci-
fied by considering distance dependency and the use of the attractiveness or importance 
of nodes instead of the sum of incoming or outgoing edges (Barthélemy 2011; Expert 
et al. 2011):

where I [out]i  ( I [in]j  ) denotes the importance (or attractiveness) of nodes. α,β are fitting 
parameters. Since 

∑
i

∑
j pi,j =

∑
i

∑
j ai,j , γ = L

∑
i

∑
j

(
I
[out]
i

)α(
I
[in]
j f (di,j)

)β  . The function 

(2)A
[NUTS 3] =

(
A
[da,NUTS 3]

)T
× A × A

[mo,NUTS 3] ,

(3)ai,j ∼ p
[NG]
i,j =

k
[out]
i k

[in]
j

L
,

(4)ai,j ∼ p
[spat]
i,j = γ

(
I
[out]
i

)α(
I
[in]
j

)β
f (di,j),
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f (di,j) can be directly measured from the data by means of a binning procedure, where 
the prediction error should be minimized, similar to that used in Expert et al. (2011):

Note that Eq. (4) is the generalized version of Eq. (3). Additionally, these null models 
are identical if α = β = f (d) = 1, γ = 1/L . AFG correction can also be used in distance-
dependent predictions; however, if f (dij)  = ∞, ∀di,j = 0 then all self-loops can be pre-
dicted by Eq. (4). It is important to note that Eq. (4) is already a hybrid null model. Since 
Eq. (3) predicts links solely by network characteristics, such as incoming and outgoing 
edges, excluding any other influence indicator, which determines the weights of edges 
between nodes, Eq. (4) already includes the distance dependency in the model. In addi-
tion, regression parameters also allow distinguishing the importance of incoming and 
outgoing edges, which has already different meanings.

Only one step remains to estimate the probability of connections with a gravity 
model, where f (di,j) = dδ . Following the notation of gravity models, instead of I, we 
denote m as the characteristics of nodes (i.e., regions) (Gadár et  al. 2018), such as 
GDP per capita and population. The null model is generalized as follows:

where N is the number of indicators belonging to the nodes. α,β , γ , δ are regression 
coefficients. Eq. (6) further called this the gravity-based economic null model. If di,j  = 0 
regression parameters can be estimated via the logarithmic version of GEN (see Eq. (6)):

In this study, ∀mi > 0 , however, because of the self-loops, di,i = 0 . If there is no exact 
knowledge about the distances, there are two ways to handle self-loops. One way is to 
add 1 km to every distance. In this way, log(di,i + 1) = 0 , and Eq. (7) can be solved. Nev-
ertheless, Burger et  al. (2009) showed that this correction can distort the estimation; 
therefore, they suggested solving Eq. (6) by Poisson regression instead of solving Eq. (7) 
directly. At the same time, the geocoded location of the company exists; therefore, in the 
aggregation, the average distance is used in NUTS 3 regional self-loops instead of using 
only one correction value. Note that this average distance can be calculated for every 
pair of regions; however, this correction had no significant effect and was therefore only 
used in self-loops.

Since Eq. (7) provides a linear regression model, and all assumptions of regression 
models, such as normality, homogeneity and independence (i.e., there is no multicol-
linearity), must be satisfied. To test for multicollinearity, we used the variance infla-
tion factor (VIF).

(5)f (d) =

∑
i,j|di,j=d ai,j

∑
i,j|di,j=d I

out
i I inj

.

(6)ai,j ∼ p
[grav]
i,j = γdδi,j

N∏

v=1

m
αv
iv
m

βv
jv
,

(7)log ai,j ∼ log p
[grav]
i,j = log γ + δ log di,j +

N∑

v=1

αv logmiv +

N∑

v=1

βv logmjv .
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where VIFi ∈ [1,∞[ is the variance inflation factor for varia-
ble i. R2

i  is the coefficient of determination of the regression equation 
Xi = α0 + α1X1 + · · · + αi−1Xi−1 + αi+1Xi+1 + · · · + αnXn + ǫ.

To reduce the multicollinearity, the greatest VIF should be less than 2.5 
( maxi VIFi < 2.5 ) Johnston et al. (2018).

The proposed gravity-based economic null model (GEN, see Eq. (6)) and its logarith-
mic version (see Eq. (7)) are purely economic models, and there is no network prop-
erty involved. At the same time, we assume that GEN provides better link predictions 
than other null models (see A1 , RQ1 ). In addition, via better link prediction, an estimated 
network can also be predicted where the network properties, such as centralities and 
modularity values, can be calculated. Better link prediction also provides lower predic-
tion error in derived properties (see A2 , RQ2 ). At the same time, it must not be forgotten 
that the GEN is purely an economic model, which thus models not only the formation of 
edges but also the formation of centralities and modules.

The goodness of fit of null models is determined by how well edges are estimated. 
Therefore, if there are variable parameters, the absolute differences between the real and 
predicted edge values must be minimized. Formally:

This section introduces three kinds of null models. Newman and Girvan (2004)’s model 
considers only network properties during link prediction. While Expert et  al. (2011)’s 
distant dependent null model already considers the spatial dependencies between nodes, 
it can be considered a hybrid model because spatial and network properties are involved 
simultaneously. Several other null models can be found in Barthélemy (2011), but to the 
best of our knowledge, the proposed GEN model is the first, which predicts links based 
on purely spatial, economic, technological, and corporate financial data but does not 
employ network-property data.

Note that in the case of GEN, the minimization problem is very similar to the grav-
ity-based economic models. Since in the regression model the square estimation error, 
while in the case of optimizing null models the absolute difference between the original 
and the predicted links should be minimized. This similarity provides for the employ-
ment of gravity models for link prediction and via link prediction the prediction of the 
company ownership network.

Communities

One of the main applications of null models is to detect communities. Classical modu-
larity optimization-based community detection methods utilize f(C) metrics based on 
the difference between the internal number of edges and their link prediction (Newman 
and Girvan 2004; Yang and Leskovec 2015).

(8)VIFi =
1

1− R2
i

(9)min ←− ǫ = ||A − P||.

(10)
f (C) = (fraction of edges within communities)− (expected fraction of such edges).
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In the case of the proposed directed network, this difference can be formulated as

where pi,j represents the number of estimated ownership relationships from region i to 
region j and δ

(
Ci,Cj

)
 is the Kronecker delta function, which is equal to one if the i-th 

and j-th regions are assigned.
The modularity of the partition C can be calculated as the sum of the modularities of 

the Cc , c = 1, . . . , nc communities:

The value of the modularity Mc of a cluster Cc can be positive, negative or zero. Should it 
be equal to zero, the community has as many links as the null model predicts. When the 
modularity is positive, the Cc subgraph tends to be a community that exhibits a stronger 
degree of internal cohesion than the model predicts. When specifying modules, Eq. (12) 
must be maximized. When using randomized null models, the modules specify com-
munities where connections are stronger between members within a community than 
between members of two distinct communities (Newman 2010). A number of links 
between nodes are dependent on the distances on a spatial network (Expert et al. 2011); 
therefore, modules give a set of nodes that are close together in geographical terms; 
however, if they give larger regional units, such as countries, then other formation forces 
can also be guessed. Therefore, it is a question to be answered whether modules provide 
larger regions (see RQ3).

The distance-dependent modules already compensate for the effect of spatial distances 
between regions. Therefore, the modules can be treated as a module without regional 
distances. In other words, we can analyze what happens if there are no spatial distances 
between regions (see RQ4).

In the case of gravity models, modules specify the area of investments (Gadár et  al. 
2018); we further called economic-investment communities (EICs). EICs specify a set of 
regions where the strength of investments (modeled by a number of ownerships) are 
denser than the economic, financial, and technological opportunities, as well as the geo-
graphical distances predict. If EICs also give back the administrative boundaries, it indi-
cates that the administrative boundaries are the main formation force in investments 
(see RH2 ), which should be considered at the European Union level.

This study proposes a generalization of gravity null models (GEN). This model also 
highlights which economic and technological indicators influence the formation of 
investment areas of regions (see RH1).

Eq. (12) is typically solved via Louvain’s algorithm (Blondel et  al. 2008); however, to 
increase the stability of the results, the recent Leiden’s algorithm is applied in this study 
(Traag et al. 2019).

Since a company ownership network (CON) can represent a static network of owner-
ship, if it is important to analyze CON in time, the one way is to specify a multilayer 
network, where every layer represents a year. Yearly null models deal only with one layer 

(11)f (C) =
1

L

∑

i

∑

j

(
ai,j − pi,j

)
δ
(
Ci,Cj

)
,

(12)max ←− Mc =
1

L

∑

(i,j)∈Cc

(ai,j − pi,j) .
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at once; therefore, all predictions can be performed simultaneously. The other way is to 
use the dynamic network, where edges between nodes are specified within a time frame. 
However, this model is better in the case of continuous time intervals. While the multi-
layer network represents a set of yearly static networks, the existing null models can be 
extended in an easier way to a multilayer network.

Both algorithms can be generalized to multilayer networks, where layers represent a 
time slice. Thus, the proposed Gravity null models can be used to predict the links in a 
multilayer network, and modules can specify the yearly EICs.

The whole network formation can be modeled via link prediction; in this way, several 
network properties, such as centralities, can be estimated. In addition, the formation of 
these coefficients can be explained, and their changes over time can be predicted.

Multilayer network as a discrete model of a spatial‑temporal network

A multilayer network is a pair M = (G, C) , where G = {Gα = (Vα ,Eα ,Wα),α ∈ {1, ..,m}} 
is a family of (directed or undirected, weighted graphs (called layers of M ), where Vα is 
the set of vertices (set of nodes), Eα ⊆ Vα × Vα is the set of edges (links, or arcs), and 
Wα : Vα × Vα → R

+
0  is the weight matrix of edges of graph Gα in layer α and

is the set of interconnections between nodes of different layers Gα ,Gβ ∈ M with α  = β.
In this study, the set of interconnections is not specified; therefore, it is assumed 

that C = ∅ . Note that in the case of spatial and temporal networks, a layer can repre-
sent a time slice (i.e., a year), α = t . In addition, the regions are time invariant; there-
fore, Vt = V , ∀t . Only the weights of edges may change over time. Thus, the connections 
between regions can be estimated separately (see Eq. 14) using a yearly gravity model:

Shifts in regression parameters indicate changes in the role of geographical, economic 
and technological indicators. The analysis of embeddedness using the multilayer version 
of centralities indicates shifts in role-player regions.

Finally, analyzing the shifts in modules in time and space indicates the changes in 
EICs, while calculating modules in a multilayer structure provides time-invariant eco-
nomic-investment communities.

Centralities

Centralities are traditionally used as descriptive network properties in network sci-
ence to identify key nodes (roleplayer) in a network. However, if not only links but also 
links, the whole network can be predicted, and the centralities can be calculated for the 
predicted network. In other words, in this way, the centralities are predicted. This pre-
diction offers scholars to analyze which indicators influence a region to become a role-
player. For this analysis, centralities should be modeled as much as possible (see A2).

Since a directed graph is employed to distinguish the mother-daughter relationships of 
companies, Only the directed versions and generalized versions of centralities are used, 

(13)C = {Eα,β ⊆ Vα × Vβ ,Wα,β : Vα × Vβ → R
+
0 ,α,β ∈ {1, ..,m},α �= β}

(14)log ai,j,t ∼ log p
[grav]
i,j,t = log γt + δt log di,j +

N∑

v=1

αvt logmit,v +

N∑

v=1

βvt logmjt,v .
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such as in-degree, out-degree, betweenness, in-closeness, out-closeness, authorities, 
host, and PageRank centralities.

Degree centrality is defined as the number of links incident upon a node (i.e., the num-
ber of ties that a node has). In the case of a directed network (where ties have direction), 
we usually define two separate measures of degree centrality, namely, in-degree and out-
degree. In-degree is a count of the number of ties directed to the node, and out-degree 
is the number of ties that the node directs to others. The degree centrality of a vertex v is 
defined as:

In a connected graph, the normalized closeness centrality (or closeness) of a node is the 
average length of the shortest path between the node and all other nodes in the graph. 
Thus, the more central a node is, the closer it is to all other nodes.

Closeness is defined by Bavelas (1950) as the reciprocal of farness, that is:

where d(v, w) is the graph distance between vertices v and w. Distances from or to all 
other nodes are irrelevant in undirected graphs, whereas they can produce totally differ-
ent results in directed graphs.

Betweenness centrality ( CB ) quantifies the number of times a node acts as a bridge 
along the shortest path between two other nodes. Vertices that have a high probability 
of occurring on a randomly chosen shortest path between two randomly chosen vertices 
have a high betweenness.

PageRank satisfies the following equation:

where

is the number of neighbors of node j. α ∈ [0, 1] , where N is the number of nodes.
Hub centrality ( CH ) and authority centrality ( CA ) are calculated to obtain the rank-

ing results. The hub value is the centrality of a node in its ability to make a relation with 
other nodes, while the authority value is the centrality value of a node based on the num-
ber of relations to the node.

The Newman and Girvan (2004), Expert et al. (2011) and proposed GEN models pre-
dict links and networks; thus, the centralities can be calculated for both the original and 
predicted networks. The absolute error of the centralities can be calculated as follows:

(15)CDv =deg(v),

(16)C+
D v =in-deg(v),

(17)C−
D v =out-deg(v).

(18)Cc =
1∑

w d(v,w)
,

(19)vi = α
∑

j

aji
vj

L(j)
+

1− α

N
,

(20)L(j) =
∑

i

aji
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where C(v) is the centrality measure for vertex v, N is the number of nodes, C is the 
original, and Ĉ is the predicted centrality measure.

Do not forget that in the case of low ǫC , the GEN-based prediction, which uses purely 
economic, corporate financial, and technological indicators in the prediction, models 
centralities indirectly. This model shows which kind of mixture of spatial-economic-
financial-technological indicators can increase the role of a region.

Results
Descriptive statistics

During the analysis, we investigated the ownership network of European companies 
between 2010 and 2018. The Amadeus database8 contains data from 23,381,325 compa-
nies. From these data, we identified 1,872,272 companies as mother companies or sub-
sidiaries within the examined time period. After data cleaning, we obtained 1,620,340 
different parent companies and subsidiaries. The investigated subsidiaries and parent 
companies are related to 1,435 NUTS 3 regions, which form the nodes of our temporal 
network. The 87,708 identified ownership relations between these companies over the 
studied time period are indicated by the edges of the network. Note that connections 
within the same NUTS 3 region resulted in self-loops.

The 2 table contains descriptive statistics of the main economic and technological data 
for the examined time period.

The profit and loss (P/L) statement shows the mean value in thousand € for years 
considering all the companies, not aggregated for NUTS 3 regions. P/L before taxes is 
the mean value of companies by year in thousand €. In the cash flow line, we can see 
the mean value of cash flows for all companies by year in thousand €. The number of 
employees shows the mean values of the number of the companies’ employees by year.

Except for the last 3 years of patents, all values are increasing over time. The patent 
information comes from the PATSTAT database; we have access to the Spring 2021 
release of PATSTAT. Because the database itself contains only information about appli-
cations that have already been published and because the standard publishing time is 
usually more than 18 months, the number of PATSTAT entries is much lower in 2017 
and 2018.

Null models as link prediction

Null models predict links. At the same time, via link prediction, a predicted network is 
proposed. Figure 1 shows the fits of null models, where A contains the adjacency matrix 
of the original company ownership network (CON); P represents the adjacency matrix 
of predicted networks.

The Newman and Girvan (2004)’a model assumes a random network (see Fig. 1a); 
however, this model cannot explain loops, and the probability of links between spatial 

(21)ǫC =
1

N

∑

v

|C(v)− Ĉ(v)|,

8  https://​www.​bvdin​fo.​com/​en-​gb/​our-​produ​cts/​data/​inter​natio​nal/​amade​us?​gclid=​Cj0KC​QiA-​qGNBh​D3ARI​sAO_​
o7yla​UtImu​qqfTf​lrsCm​F2pzL​uP0Vq​EYFG6​EIyWv​WZIbC​gn3yj​kNALN​MaAhy​8EALw_​wcB, retrieved: 5 May 2022.

https://www.bvdinfo.com/en-gb/our-products/data/international/amadeus?gclid=Cj0KCQiA-qGNBhD3ARIsAO_o7ylaUtImuqqfTflrsCmF2pzLuP0VqEYFG6EIyWvWZIbCgn3yjkNALNMaAhy8EALw_wcB
https://www.bvdinfo.com/en-gb/our-products/data/international/amadeus?gclid=Cj0KCQiA-qGNBhD3ARIsAO_o7ylaUtImuqqfTflrsCmF2pzLuP0VqEYFG6EIyWvWZIbCgn3yjkNALNMaAhy8EALw_wcB


Page 14 of 31Kosztyán et al. Applied Network Science            (2022) 7:61 

Ta
bl

e 
2 

D
es

cr
ip

tiv
e 

st
at

is
tic

s 
of

 (a
bs

ol
ut

e)
 in

di
ca

to
rs

D
es

cr
ip

tio
n

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

A
ll

M
ea

n 
va

lu
e 

of
 P

/L
 fo

r p
er

io
d

10
83

11
22

11
67

12
62

13
53

14
73

16
48

18
74

20
08

1.
44

3

M
ea

n 
va

lu
e 

of
 P

/L
 b

ef
or

e 
ta

xe
s

1.
35

3
1.

41
1

1.
45

8
1.

49
3

1.
62

8
1.

75
7

1.
91

9
2.

19
3

2.
34

1
1.

72
8

M
ea

n 
va

lu
e 

of
 c

as
h 

flo
w

1.
42

6
1.

47
7

1.
56

8
1.

62
2

1.
72

5
1.

90
9

2.
04

5
2.

15
4

2.
23

1
1.

79
5

To
ta

l n
um

be
r o

f e
m

pl
oy

ee
s

51
.7

91
56

.0
05

59
.1

90
63

.4
53

66
.8

19
72

.6
96

77
.4

10
80

.2
43

81
.3

75
67

.6
95

To
ta

l N
um

be
r o

f p
at

en
ts

26
.1

09
27

.0
88

27
.8

68
28

.2
75

28
.8

77
29

.0
65

24
.3

13
9.

75
3

1.
38

5
20

2.
73

3



Page 15 of 31Kosztyán et al. Applied Network Science            (2022) 7:61 	

Fig. 1  Fits of null models (2018)
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nodes (i.e., NUTS 3 regions) is dependent on distance (see Fig. 2). The Expert et al. 
(2011) formula already considers the nonlinear distance dependency between nodes 
(see Fig. 1b), and in this way, the group loops disappear. The (f(d)) distance depend-
ency is compensated for (see Eq. 4) by the spline function (see Fig. 2); nevertheless, 
the best fit ( ǫ = 0.0080 ) is produced by the proposed GEN model.

When applying Eq. (6), the indicators with VIF > 2.5 were removed from the model. 
The adjusted R2 was decreased only slightly (compare Tables 3 and 6 in “Appendix”); 
thus, the assumptions of normality, homogeneity and independence were satisfied for 
the remaining model.

Table 3 shows the results of the proposed GEN model in the years studied. In addi-
tion, it summarizes the coefficients and their significance, as well as the absolute error 
of the fit of the prediction and centralities between the original and predicted network 
by the gravity model. For example, βPIi,2018 = −0.0233 means that if GDP decreases 1% 
from the source (i) region, the number of owners is expected to increase by 0.0233% . 
Positive (negative) significant coefficients on the source side indicate that an increase 
in the components may increase (decrease) ownership relations. Similarly, positive 
(negative) significant coefficients on the host site of the NUTS 3 regions show that an 
increase in such components may increase (decrease) investments and the develop-
ment of new corporate sites.

Table 3(a) shows that the applied model (see Eq. 6) is significant, and the adjusted 
R2 is slightly greater than 0.4. Among the independent variables examined, the 
strongly significant coefficients of fixed assets (FA) are positive on the source side (i) 

Fig. 2  Distance deterrence function (2018)
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and negative on the host side (j). This result indicates that parent companies typically 
own higher FA than their subsidiaries.

The current ratio (CR) is a liquidity measure that represents the quotient of current 
assets and liabilities. The coefficients of this variable are high and significant on the 
source side, but they are smaller and positive only until 2015 on the host side. The 
coefficients of the solvency ratio (SR) show the opposite effect to that of CR. This 
finding suggests that parent companies are typically much more liquid and less sol-
vent than their subsidiaries.

The financial metrics return on capital employed (ROCE), denoted RCB in 
Table 3(a), can be applied to gauge companies’ operational efficiency. The significant 
coefficients of these variables have a negative sign regardless of side, but this negative 
effect is greater and much more significant for subsidiaries.

To examine the effect of the economic and technological development of the NUTS 
3 regions on the formation of ownership relations, GDP per capita (GDP) and the 
annual number of patents (PI) are applied. The coefficients of these indicators are neg-
ative on both sides; however, they are smaller and less significant on the source side. 
This observation shows that, in contrast to parent companies, subsidiaries are typi-
cally related to NUTS 3 regions that have smaller GDP and fewer patent applications.

Furthermore, we applied the number of companies (CO) within the given NUTS 
3 region to control the size of the regions. In the case of this indicator, we obtained 
coefficients corresponding to our preliminary assumptions since the coefficients of 
the number of companies are highly positive, regardless of the side. The coefficients 
of the distance between parent and subsidiary companies are negative and relatively 
constant over the examined time period.

Finally, we predicted the original network based on the applied model (see Eq. 6); 
then, we calculated the mean absolute deviation between centrality measures calcu-
lated from the original and the predicted network. As shown in Table 3(b), these devi-
ations are relatively stable over the examined time period.

Predicting network properties

Since null models predict links between nodes, they can predict networks as well. 
Therefore, centralities can also be calculated for the predicted networks. A good fit 
of the centralities assumes good link predictions. However, the differences between 

Table 4  Prediction error of centralities

Prediction error of centralities Random Spatial Gravity

In-degree,  ǫC+D
33.36681896 32.90683376 4.79292979

Out-degree,  ǫC−D
33.40637236 32.94787645 5.59613725

Betweenness,  ǫCB 170.04457052 169.95647946 182.47883742

In-closeness,  ǫC+C
0.00000940 0.00000919 0.00000243

Out-closeness,  ǫC−C
0.00000938 0.00000917 0.00000377

Hubs,  ǫCH 0.00002001 0.00002003 0.00002061

Authority,  ǫCA 0.00001703 0.00001704 0.00001532

PageRank,  ǫCP 0.00001782 0.00001781 0.00003000
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the real and predicted parameters provide new insight into the structure of corporate 
networks.

Table 4 shows the mean absolute error of centralities between the original and pre-
dicted networks.

Three kinds of networks can be predicted. Newman and Girvan (2004)’s method pro-
vides a random network, where the links are predicted via Eq. (3). Thus, no organizing 
force is assumed. Edges between two regions are estimated as a proportion of incom-
ing and outgoing edges. The spatial network is specified by the Expert et  al. (2011) 
method based on the model of Eq. (4), which compensates for the distance dependency 
between nodes. Although the prediction errors are lower ( ǫNG = 0.0191, ǫspa = 0.0112 ), 
the absolute differences between centralities are very similar. The relevant changes are 
provided by only the gravity model. Since the mean absolute error of link prediction is 
ǫgrab = 0.0080 lower, the degree centrality error is much lower. Furthermore, the predic-
tion error of betweenness centrality and PageRank centrality is greater.

Table 5 shows an example of the power of modeling centralities. Better fits occur in 
the case of in-/out-degree centralities. Table 5 shows the top 5 regions with high inde-
gree centralities. In other words, these regions are the most attractive regions to estab-
lish a new subsidiary company.

Table  5 shows that the gravity (GEN) model better predicts the ranks of the top 5 
regions than the distance-dependent model. These counties are often capitals (e.g., 
Rome, Warsaw, Madrid) or larger cities (e.g., Milan, Barcelona, Turin). The distance-
dependent models, as expected based on the errors ( ǫ ), estimate the regions poorly. This 
indicates that in addition to geographical distances, economic, technological and finan-
cial indicators should be included in the null model to predict top role players.

Figure 3 shows the in-degree centralities of NUTS 3 regions. Figure 3a shows the 
original network, and Fig. 3b–d show the predicted networks. All the predicted net-
works use the same color bars for a clear comparison of the results.

All network predictions indicate low in-degree centrality for Germany, Benelux 
countries (Belgium, Netherlands, and Luxembourg), and the UK. Furthermore, the 
original network contains fewer high in-degree centrality nodes than do the predicted 
networks. The in-degree centralities are overestimated, especially in the case of ran-
dom networks and spatial network models, for both South and Central European 
countries. Thus, the amount of investment (characterized by the making of a corpo-
rate site) for Southern Europe and Central Europe is much less than that predicted 
by any of the models. The investment is much less than allowed by the economic 

Table 5  In-degree centralities to top 5 NUTS 3 region (2018)

C
−

D
Original network GEN model Expert et al. (2011)’s model

Rank NUTS 3 Name NUTS 3 Name Rank NUTS 3 Name Rank

1 ITC4C Milan ITC4C Milan (1) ‘DK014’ Bornholm (1291)

2 ITC11 Turin PL911 Warsaw (3) ‘DK050’ Nordjylland (589)

3 PL911 Warsaw ES300 Madrid (5) ‘EE004’ Lääne-Eesti (634)

4 ES511 Barcelona ES511 Barcelona (4) ‘EE007’ Kirde-Eesti (1081)

5 ES300 Madrid ITI43 Roma (7) ‘EE008’ Lõuna-Eesti (455)
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opportunities, including the spatial, technological and economic distances between 
regions.

Figure  4 shows the closeness centralities of NUTS 3 regions. Figure  4a shows the 
original network, and Fig. 3b–d show the predicted networks. In this case, the pre-
dicted networks use the same color bars to ensure an easy comparison of the results.

Figure 4 shows that the best predictions are provided by the gravity model. Both the 
random network and the spatial network models overestimate the in-closeness centrali-
ties. Both the original and gravity models indicate important roles for several eastern 
German, southern England, and northern French regions. In addition, all models and the 
original network indicate low in-closeness centralities for the Serbian NUTS 3 regions.

Figure 5 shows the in-closeness centralities by year of a multilayer network predicted 
by the proposed GEN model.

Figure 5 shows the changes in the roles of the NUTS 3 regions by investments. The 
changes in the yearly in-closeness centralities predict an increased role of Germany and 
the UK for investments.

Fig. 3  Predicted network structures and their in-degree centralities (2018)



Page 22 of 31Kosztyán et al. Applied Network Science            (2022) 7:61 

Economic communities

In the case of module seeking, the group of nodes that are more connected than the 
predicted model estimates are identified. In the case of Newman and Girvan (2004)’s 
model (see Fig. 6a), the modules represent the set of NUTS 3 regions that are more 
connected to each other within a module than between two different modules. The 
spatial (see Fig.  6b) and proposed GEN model (see Fig.  6c) already consider spatial 
and economic properties during the prediction. Therefore, a distance-dependent 
module indicates communities in which there are stronger connections between 
regions within a module than are predicted by the distant-dependent model. In the 
case of seeking modules based on GEN prediction models, the economic communi-
ties are specified, where the connections are stronger than would be justified by geo-
graphical distance or economic and technological factors.

Figure 6 shows modules by different null models. Modules with lower values (reddish 
regions) contain more regions, while (blueish) modules with fewer regions have a higher 
number. Modules marked in black contain only 1-1 regions. Since the employed data-
base had no data for Turkey, NUTS 3 regions within Turkey are shown in white.

Fig. 4  Predicted network structures and their in-closeness centralities (2018)
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As Gadár et al. (2018) showed, if Newman and Girvan (2004)’s method is employed 
to search for modules for a spatial network, the modules return the borders of the 
higher region area (in this case NUTS 1 regions, i.e., countries).

The compensation of distance dependency (see Fig. 6b) changes the shapes of the 
modules: the locations of modules appear more random. Modules are more separated, 
and there are more smaller modules. This structure can also be treated as organizing 
modules without spatial distance.

Gadár et al. (2018) showed that gravity modules can specify investment catchment 
areas that can extend beyond administrative boundaries. Moreover, the fact that the 
gravity model primarily returned administrative boundaries, the results indicate that 
the established parent-subsidiary companies still have administrative borders. Eco-
nomic communities are formed mainly within countries. Furthermore, most regions 
in Great Britain and Germany and in France and northern Italy form 1-1 economic 
blocks.

Fig. 5  Centralities of GEN predictions 2010–2018
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Fig. 6  Modules of NUTS 3 regions
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Figure  7 shows the economic modules in the multilayer network, where the layers 
specify years.

Figure 7 shows that administrative boundaries, which make it difficult for economic 
communities to form, can be observed every year. The largest block with the most 
regions remains the core of the European economy, Germany, Britain, France and north-
ern Italy.

Discussion
The establishment of subsidiaries itself can be considered a kind of investment since 
the parent company establishes a subsidiary company in another region or country. The 
company takes the required technology to the new site and creates new jobs. Thus, the 
study of such networks is important. However, very few databases fully cover both eco-
nomic and ownership relationships with firms. The paper formulates four research aims 
(see A1-A4 ), five research questions (see RQ1-RQ5 ) and two research hypotheses (see 
RH1-RH2).

The proposed yearly gravity model has shown that company establishments are driven 
by technological and economic inequalities (see Table  3 and RH1 ): capital flows from 
economically and technologically more developed regions to less developed ones. More-
over, the integration with network models has shown that this investment is primarily 

Fig. 7  Layers of economic modules 2010–2018
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domestic (see Figs. 6 and 7, and RH2 ). Although the European Union continues to push 
for higher integration, administrative boundaries still have a significant impact on own-
ership network formation (compare subfigures in Fig.  6, and see RQ3-RQ4 ) and have 
remained broadly unchanged over the period under review (Fig. 7, and RQ5).

The proposed (yearly) GEN models best explain the formation (see Fig.  1, and A1 , 
RQ1 ) of the corporate ownership network (see centrality estimates in Table 4, and A2 , 
RQ2 ). GEN also predicts the most attractive regions for investments well; see Table 5. 
By combining the proposed GEN model with the module search procedures, so-called 
economic communities can be defined and explained. In this way, the combined models 
show that several core countries, such as France, Germany, Great Britain and the Ben-
elux countries, play a key role in ownership formation (see Figs. 3, 4, 5 and 6). Of par-
ticular interest is the strength of Great Britain’s European integration (see, e.g., Fig. 5) of 
the core countries to create an economic community (see Fig. 6, and A3–A4 , RQ3–RQ5).

Summary and conclusion
This study attempts to combine networks using descriptive and economic factors in 
explanatory models, providing an opportunity to exploit the strengths of approaches (see 
A1-A2 ). This paper proposes a generalized yearly gravity-based economic null (GEN) 
model to predict the spatial network of corporate ownership. Gravity models provide 
good estimates of the entire network properties, such as centrality, compared to the 
Newman and Girvan (2004) and Expert et al. (2011) model (see A1-A2 ). The proposed 
gravity-based modularity provides economic communities (see A3-A4 ). In addition, the 
proposed yearly model offers an analysis of the changes in economic communities (see 
RQ5 ). The GEN model provides an opportunity to find a better explanation for the for-
mation of networks.

Limitations and future works
In this research, the authors focused on European organizations; however, the corporate, 
patent, and GDP data are available globally. Nevertheless, NUTS 3 regions can only be 
interpreted within Europe. This study has shown that Great Britain, especially England, 
is connected to the European Union by a thousand strands. However, it may be inter-
esting to examine the network structure after Brexit. In the proposed GEN model, we 
are currently undertaking a yearly estimation of a multilayer network, namely, the own-
ership network. Furthermore, the gravity model can be extended to estimate the con-
nections of several networks organized into a so-called multiplex network. Finally, an 
industry-level analysis of ownership structure may provide additional information on 
the formation of parent-subsidiary relationships.9

Appendix
The indicators described in Table 1 are defined as follows:10

9  Abbreviated from the French version: Nomenclature des Unit’s Territoriales Statistiques.
10  Sources: https://​inves​toped​ia.​com, https://​help.​bvdin​fo.​com/​Learn​ingZo​ne/​Produ​cts/​orbis4.​1/​en-​us/​Conte​nt/I_​
Data/​Under​stand​Data.​htm, retrieved: 7 July 2022.

https://investopedia.com
https://help.bvdinfo.com/LearningZone/Products/orbis4.1/en-us/Content/I_Data/UnderstandData.htm
https://help.bvdinfo.com/LearningZone/Products/orbis4.1/en-us/Content/I_Data/UnderstandData.htm
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m1	� Total assets (thousand €): Total assets = (fixed assets + current assets).
m2	� Solvency ratio (asset based) (%): (shareholder funds/total assets) * 100.
m3	� Shareholders’ funds (thousand €): total equity (capital + other shareholders funds).
m4	� ROE using P/L before tax (%): return on equity (ROE) is a measure of financial 

performance calculated by dividing net income by shareholders’ equity. Because 
shareholders’ equity is equal to a company’s assets minus its debt, ROE is consid-
ered the return on net assets. (Profit before tax/shareholder funds) * 100.

m5	� ROCE using P/L before tax (%): return on capital employed (ROCE) is a financial 
ratio that can be used to assess a company’s profitability and capital efficiency. In 
other words, this ratio can help to understand how well a company is generating 
profits from its capital as it is put to use. (Profit before tax + interest paid)/(share-
holders’ funds + noncurrent liabilities) * 100.

m6	� Profit margin (%): (profit before tax/operating revenue) * 100.
m7	� P/L for period (thousand €): net income.
m8	� P/L before tax (thousand €): operating profit + financial profit.
m9	� Operating revenue (turnover) (thousand €): total operating revenues (net sales + 

other operating revenues + stock variations). The figures do not include VAT. 
Local differences may occur regarding excises taxes and similar obligatory pay-
ments for specific markets of tobacco and alcoholic beverage industries.

m10	� Fixed Assets (thousand €): total amount (after depreciation) of noncurrent assets 
(intangible assets + tangible assets + other fixed assets).

m11	� Number of employees (employee): the number of employees.
m12	� Current ratio (-): The current ratio is a liquidity ratio that measures a company’s 

ability to pay short-term obligations or those due within 1 year. Current assets/
current liabilities.

m13	� Cash Flow (thousand €): The term cash flow refers to the net amount of cash 
and cash equivalents being transferred in and out of a company. Cash received 
represents inflows, while money spent represents outflows. (Profit for period + 
depreciation).

m14	� Number of companies: The accumulated number of companies in the NUTS3 
region.

m14	� Number of companies: The accumulated number of companies in the NUTS3 region.
m15	� GDP per capita in purchasing power priority (thousand €): One popular macroe-

conomic analysis metric to compare economic productivity and standards of liv-
ing between countries is PPP. PPP is an economic theory that compares different 
countries’ currencies through a “basket of goods” approach, not to be confused 
with the Paycheck Protection Program created by the CARES Act.

m16	� Patents: Patents protect technical inventions in all fields of technology. They 
are valid in individual countries for a specified period. Patents give holders the 
right to prevent third parties from commercially exploiting their invention. In 
return, applicants must fully disclose their invention. Patent applications and 
granted patents are published, which makes them a prime source of technical 
information.
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See Table 6.

Table 6  Summary table of complete gravity models

Values are significant at: * p = 0.05 ; **p = 0.01 ; ***p = 0.001 levels

2010 2011 2012 2013 2014 2015 2016 2017 2018

Coefficientsβ β β β β β β β β

(Intercept) 1.5886*** 1.5838*** 1.5350*** 1.5797*** 1.5889*** 1.5754*** 1.2931*** 2.0835*** 2.1312***

Di,j − 0.4730*** − 0.4731*** − 0.4734*** − 0.4741*** − 0.4759*** − 0.4739*** − 0.4740*** − 0.4729*** − 0.4737***

TA i − 0.0510*** − 0.0515*** − 0.0900*** − 0.1057*** − 0.0856*** − 0.1212*** − 0.1363*** − 0.1592*** − 0.1773***

SR i − 0.1107*** − 0.1053*** − 0.0792*** − 0.1055*** − 0.1252*** − 0.1277*** − 0.1572*** − 0.1548*** − 0.1538***

SH i − 0.0227* − 0.0228 − 0.0265* 0.0079 − 0.0207 0.0073 0.0301* 0.0265* 0.0678***

RB i − 0.1127*** − 0.0825*** − 0.1015*** − 0.0978*** − 0.1223*** − 0.1166*** − 0.1453*** − 0.1253*** − 0.1268***

RCB i − 0.0114 − 0.0066 − 0.0237*** − 0.0244*** − 0.0262*** − 0.0176*** − 0.0160** − 0.0174** − 0.0151**

PM i 0.0937*** 0.0514*** 0.0840*** 0.0980*** 0.0932*** 0.1134*** 0.1312*** 0.1120*** 0.1141***

PLF i − 0.0331*** − 0.0412*** − 0.0418*** − 0.0925*** − 0.0591*** − 0.0965*** − 0.0472*** − 0.0460*** − 0.0355**

PLB i 0.0115 0.0209 0.0081 0.0451*** 0.0305* 0.0448** − 0.0184 0.0426** 0.0090

OR i 0.0269*** 0.0223** 0.0381*** 0.0283*** 0.0190* 0.0374*** 0.0794*** 0.0476*** 0.0256**

FA i 0.0838*** 0.0879*** 0.1118*** 0.1173*** 0.1129*** 0.1173*** 0.1068*** 0.1019*** 0.1046***

EN i 0.0005 0.0070 0.0137*** 0.0240*** 0.0449*** 0.0420*** 0.0117* 0.0020 0.0075

CR i 0.1097*** 0.1041*** 0.0853*** 0.1207*** 0.1483*** 0.1034*** 0.1724*** 0.0986*** 0.0644***

CF i 0.0064 − 0.0014 0.0117* 0.0042 − 0.0141** 0.0039 0.0054 0.0087 0.0050

CO i 0.2042*** 0.2058*** 0.2085*** 0.2082*** 0.2133*** 0.2184*** 0.2159*** 0.2145*** 0.2074***

GDP i − 0.0014 − 0.0011 − 0.0001 − 0.0004 − 0.0004 − 0.0222*** − 0.0131** − 0.0157** 0.0214*

PI i 0.0028 0.0031* 0.0019 0.0007 0.0020 0.0012 0.0026 0.0041** 0.0127***

TA j − 0.0264* − 0.0400** − 0.0267* 0.0218 0.0543*** 0.0577*** 0.0302* 0.0242 − 0.0058

SR j − 0.0429*** − 0.0754*** − 0.0523*** − 0.0604*** − 0.0200 0.0386* 0.0139 − 0.0296 − 0.0567***

SH j 0.0777*** 0.0961*** 0.0744*** 0.0740*** 0.0673*** 0.0372** 0.0629*** 0.0579*** 0.0693***

RB j − 0.0252** − 0.0240** − 0.0408*** − 0.0468*** − 0.0475*** − 0.0550*** − 0.0694*** − 0.0826*** − 0.0777***

RCB j − 0.0152** − 0.0130* − 0.0222*** − 0.0172*** − 0.0138** 0.0044 0.0032 − 0.0069 − 0.0028

PM j 0.0566*** 0.0638*** 0.0578*** 0.0517*** 0.0237* 0.0249* 0.0482*** 0.0608*** 0.0529***

PLF j − 0.0192* − 0.0374*** − 0.0497*** − 0.0620*** 0.0321** 0.0034 0.0287* 0.0208 0.0584***

PLB j 0.0026 − 0.0072 0.0055 0.0147 − 0.0954*** − 0.0564*** − 0.1063*** − 0.0778*** − 0.1027***

OR j 0.0240*** 0.0407*** 0.0403*** 0.0098 0.0206* 0.0314*** 0.0729*** 0.0500*** 0.0374***

FA j − 0.0369*** − 0.0338*** − 0.0284*** − 0.0414*** − 0.0535*** − 0.0385*** − 0.0376*** − 0.0348*** − 0.0286***

EN j − 0.0359*** − 0.0246*** − 0.0262*** − 0.0135** − 0.0125** − 0.0194*** − 0.0466*** − 0.0536*** − 0.0483***

CR j 0.0542*** 0.0805*** 0.0655*** 0.0807*** 0.0946*** 0.0231 0.0333* − 0.0411** − 0.0239

CF j − 0.0067 − 0.0104* − 0.0064 − 0.0199*** − 0.0308*** − 0.0342*** − 0.0296*** − 0.0193*** − 0.0144***

CO j 0.2152*** 0.2139*** 0.2168*** 0.2182*** 0.2218*** 0.2280*** 0.2222*** 0.2222*** 0.2202***

GDP j − 0.0085*** − 0.0091*** − 0.0089*** − 0.0099*** − 0.0093*** − 0.0163** − 0.0059 − 0.0162** − 0.0157*

PI j − 0.0067*** − 0.0054*** − 0.0051*** − 0.0073*** − 0.0072*** − 0.0106*** − 0.0083*** − 0.0050** − 0.0007

Adj. R2 0.4061*** 0.4057*** 0.4062*** 0.4073*** 0.4087*** 0.4072*** 0.4082*** 0.4058*** 0.4067***

ǫgrav 0.0078 0.0073 0.0078 0.0077 0.0076 0.0080 0.0081 0.0080 0.0082

ǫC+D
3.0414 5.7021 3.3355 3.5763 4.2312 3.8885 4.6273 6.5212 4.7929

ǫC−D
4.5173 3.6933 5.1694 4.9229 4.9568 5.5349 4.1927 6.3334 5.5961

ǫCB 142.7669 183.9388 139.3517 160.2476 161.9900 147.5215 167.2923 185.0560 182.4788

ǫC+C
2.72E−06 3.25E−06 2.46E−06 2.22E−06 1.75E−06 2.77E−06 2.99E−06 1.91E−06 2.43E−06

ǫC−C
4.62E−06 1.97E−06 4.71E−06 4.06E−06 3.60E−06 4.59E−06 2.77E−06 2.26E−06 3.77E−06

ǫCH 1.98E−05 1.67E−05 2.06E−05 1.94E−05 1.85E−05 2.13E−05 1.81E−05 1.64E−05 2.06E−05

ǫCA 1.42E−05 1.93E−05 1.28E−05 1.38E−05 1.39E−05 1.47E−05 1.45E−05 1.22E−05 1.53E−05

ǫCP 2.83E−05 3.45E−05 2.62E−05 3.15E−05 3.18E−05 3.25E−05 2.23E−05 2.05E−05 3.00E−05
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Table 7 shows the correlation table between variables.

Abbreviations
ACOM	� Aggregated companies’ ownership matrix
COM	� Companies’ ownership matrix
CON	� Companies’ ownership network
GDP	� Gross Domestic Product
GDP (PPP)	� Gross domestic product based on purchasing power parity
GEN	� Gravity-based economic null model
EIC	� Economic-Investment Community
NUTS	� Nomenclature of Territorial Units for Statistics
ROCE	� Return on Capital Employed
SNA	� Social Network Analysis
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