
Graph neural network inspired algorithm 
for unsupervised network community detection
Stanislav Sobolevsky1,2*    and Alexander Belyi2 

Introduction
The complex networks play a pivotal role in various fields such as physics, biology, eco-
nomics, social sciences, and urban planning. Thus understanding the underlying com-
munity structure of the networks saw a wide range of applications, including social 
science  (Plantié and Crampes 2013), biology(Guimerà and Nunes Amaral 2005), and 
economics (Piccardi and Tajoli 2012). In particular, partitioning the networks of human 
mobility and interactions is broadly applied to regional delineation  (Ratti et  al. 2010; 
Blondel et al. 2010; Sobolevsky et al. 2013; Amini et al. 2014; Hawelka et al. 2014; Kang 
et al. 2013; Sobolevsky et al. 2014; Belyi et al. 2017; Grauwin et al. 2017; Xu et al. 2021) as 
well as urban zoning (Sobolevsky et al. 2018; Landsman et al. 2020, 2021).

Over the last two decades, a large number of approaches and algorithms for com-
munity detection in complex networks have been suggested. Some of them are just 
straightforward heuristics such as hierarchical clustering  (Hastie 2001) or the Girvan-
Newman  (Girvan and Newman 2002) algorithm, while the vast majority rely on opti-
mization techniques based on the maximization of various objective functions. The first 
and the most well-known partition quality function is modularity (Newman and Girvan 
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2004; Newman 2006) assessing the relative strength of edges and quantifying the cumu-
lative strength of the intra-community links. Many modularity optimization strategies 
have been suggested over the last two decades  (Newman and Girvan 2004; Newman 
2006, 2004; Clauset et al. 2004; Agarwal and Kempe 2008; Sun et al. 2009; Blondel et al. 
2008; Guimera et  al. 2004; Good et  al. 2010; Duch and Arenas 2005; Lee et  al. 2012; 
Aloise et al. 2012; Barber and Clark 2009; Liu and Murata 2010; Sobolevsky et al. 2014; 
Džamić et al. 2019; Traag et al. 2019; Biedermann et al. 2018). Comprehensive historical 
overviews are presented in Fortunato (2010); Fortunato and Hric (2016) as well as some 
later surveys (Khan and Niazi 2017; Javed et al. 2018).

And while the problem of finding the exact modularity maximum is known to be NP-
hard  (Brandes et  al. 2006), most of the available modularity optimization approaches 
rely on specific discrete optimization heuristics (although, in some cases, an algorithmic 
optimality proof of the partition is possible Agarwal and Kempe 2008; Aloise et al. 2010; 
Sobolevsky et al. 2017; Belyi et al. 2019, 2021; Belyi and Sobolevsky 2022).

As we show below, modularity optimization can be formulated as a continuous matrix 
optimization problem. However, the direct application of generic gradient descent meth-
ods is inefficient due to a large number of local maxima, which gradient descent might 
not be able to overcome.

Recently, graph neural networks (GNNs) became increasingly popular for supervised 
classifications and unsupervised embedding of the graph nodes with diverse applica-
tions in text classification, recommendation systems, traffic prediction, computer vision 
and many others  (Wu et  al. 2020). GNNs were already successfully applied for com-
munity detection, including supervised learning of the ground-truth community struc-
ture  (Chen et al. 2017) as well as unsupervised learning of the node features enabling 
representation modeling of the network, including stochastic block-model  (Bruna and 
Li 2017) and other probabilistic models with overlapping communities  (Shchur and 
Günnemann 2019) or more complex self-expressive representation  (Bandyopadhyay 
and Peter 2020). However, existing GNN applications overlook unsupervised modularity 
optimization, which so far has been a major approach in classic community detection.

This paper aims to fill this gap by proposing a straightforward GNN-inspired algorith-
mic framework for unsupervised community detection through modularity optimiza-
tion. We perform a comprehensive comparative evaluation of the performance of the 
proposed method against the state-of-the-art ADVNDS and Combo algorithms (capable 
of reaching the best known partition in most cases), a viral Louvain algorithm (which, 
despite its sub-optimal performance, is very fast and capable of handling the large-scale 
networks), and its successor, Leiden algorithm, that improves partition quality while 
preserving short execution time. We demonstrate that the method provides a reason-
able balance between performance and speed for classic, synthetic and real-world net-
works, including temporal networks, and is sometimes capable of finding partitions with 
a higher modularity score that other algorithms cannot achieve.

More importantly, we believe the proposed approach serves as a proof of concept 
of leveraging GNN approaches for solving a broader range of network optimization 
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problems. Such problems often arise when the aim is to reconstruct nodes’ attributes 
based on their features and the network structure, including various types of unsuper-
vised graph clustering  (Kampffmeyer et  al. 2019; Bianchi 2022). Following the work 
applying machine learning to combinatorial optimization problems by   Bengio et  al. 
(2021), several attempts to apply GNNs to hard combinatorial optimization problems 
were recently made. Some first promising results were obtained for the problems of min-
imum vertex cover, maximal clique, maximal independent set, and the satisfiability prob-
lem (Li et al. 2018). Furthermore, various GNN architectures were adapted to address 
the graph correlation clustering problem formulated as the minimum cost multicuts 
problem (Jung and Keuper 2022). Initial steps were even taken towards graph clustering 
via maximizing some variant of modularity function (Lobov and Ivanov 2019; Tsitsulin 
et al. 2020). However, their results still fall behind current state-of-the-art approaches in 
terms of modularity score. In this work, we show that with GNN-inspired techniques it 
is possible to achieve more practical results close to state-of-the-art.

In the following sections, first, we recall the formulation of community detection 
through modularity maximization and show how it could be framed as continuous 
quadratic optimization. Then we propose our GNN-inspired method and describe how 
to select its parameters. Lastly, we evaluate our approach using three benchmarks: clas-
sical real-world networks used previously in the literature to test modularity maximiza-
tion algorithms, synthetic-networks benchmark, and a temporal network of taxi trips. 
The paper ends with conclusions and discussions.

The modularity optimization problem
The network modularity was among the first quality/objective functions proposed to 
assess and optimize the community structure (Newman 2006). However, it is now known 
to have certain shortcomings, including a resolution limit  (Fortunato and Barthélémy 
2007; Good et al. 2010) and the fact that it does not compare with a proper baseline and 
finds communities in random networks. Therefore alternative objective functions should 
be mentioned, e.g., Infomap description code length  (Rosvall and Bergstrom 2007, 
2008), Stochastic Block Model likelihood  (Karrer and Newman 2011; Ball et  al. 2011; 
Bickel and Chen 2009; Decelle et al. 2011, 2011; Yan et al. 2014), and Surprise (Aldecoa 
and Marìn 2011). Nevertheless, despite its limitations, modularity remains perhaps the 
most commonly used objective function so far.

In 2014, the authors proposed a novel optimization technique for community detec-
tion, “Combo”  (Sobolevsky et al. 2014), capable of maximizing various objective func-
tions, including modularity, description code length, and pretty much any other metric 
based on the link scoring and assessing the cumulative score of the intra-community 
links. At the time of publication, for modularity optimization, Combo outperformed 
other state-of-the-art algorithms, including a popular Louvain method  (Blondel et  al. 
2008) in terms of the quality (modularity score) of the resulting partitioning, which could 
be achieved within a reasonable time for most real-world and synthetic networks of up 
to tens of thousands of nodes. The size limitation for the algorithm evaluation is due to 
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the current implementation handling a full modularity matrix in the memory entirely. 
However, this is not a fundamental limitation and could be overcome by using sparse 
matrix operations. Recently, more precise algorithms were proposed, but they are slower 
and often designed to run on a distributed cluster (Džamić et al. 2019; Biedermann et al. 
2018; Hamann et al. 2018; Lu et al. 2015). Moreover, their code is not available.

The proposed algorithms, including Combo, are often quite efficient and, in some 
cases, are able to reach the theoretical maximum of the modularity score as revealed 
by a suitable upper bound estimate  (Sobolevsky et  al. 2017). However, in general, 
finding the theoretically optimal solution may not be feasible, and one has to rely on 
heuristic algorithmic solutions without being certain of their optimality. Instead, an 
empiric assessment of their performance in comparison with other available algo-
rithms could be performed.

The modularity function

In short, the modularity (Newman and Girvan 2004; Newman 2006) function of the 
proposed network partition quantifies how relatively strong all the edges between the 
nodes attached to the same community are. Specifically, if the network edge weights 
between each pair of nodes i, j are denoted as ei,j , then the modularity of the partition 
com(i) (expressed as a mapping assigning community number com to each node i) can 
be defined as

where the quantity qi,j for each edge i, j (call q a modularity score for an edge) is defined 
as its normalized relative edge weight in comparison with the random network model 
with the same node strengths. Namely,

where wout(i) = k ei,k , win(j) =
∑

k ek ,j , T =
∑

i w
out(i) =

∑

j w
in(j) =

∑

i,j ei,j.
Rewrite the modularity optimization problem in a vector form: let Q =

(

qi,j
)

 be the 
matrix of all the modularity scores for all the edges (call it a modularity matrix). Let 
C be an n× k matrix, where n is the number of network nodes and k is the number of 
communities we are looking to build. Each element ci,p of the matrix can be zero or 
one depending on whether the node i belongs to the community p or not, i.e., whether 
com(i) = p . If the communities are not overlapping, then each row of the matrix has 
one single unit element, and the rest of its elements are zeros.

More generally, if we admit uncertainty in community attachment, then the ele-
ments ci,p of the matrix C could represent the probabilities of the node i to be attached 
to the community p. This way, ci,p ∈ [0, 1] and the sum of each row of the matrix C 
equals 1.

(1)M =
∑

i,j,com(i)=com(j)

qi,j ,

qi,j =
ei,j

T
−

wout(i)win(j)

T 2
,
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Then the modularity score M in the case of a discrete community attachment could be 
represented as a trace of matrix product

where tr denotes the trace of the matrix – a sum of all of its diagonal elements.
This way, finding the community structure of up to k communities optimizing the net-

work modularity could be expressed as a constrained quadratic optimization problem 
of finding the n× k matrix C maximizing the trace of matrix product M = tr(CTQC) , 
such that all ci,p ∈ {0, 1} and the sum of each row of the matrix C equals 1 (having a sin-
gle unit element).

Replacing the binary attachment constraint ci,p ∈ {0, 1} with a continuous attachment 
ci,p ∈ [0, 1] relaxes the optimization problem to finding probabilistic community attach-
ments. It could be easily shown that the optimal solution of the binary attachment prob-
lem could be derived from the optimal solution of the probabilistic attachment problem 
after assigning qi,i = 0 for all the diagonal elements of the matrix Q. As diagonal ele-
ments qi,i are always included in the sum M since com(i) = com(j) for i = j , the values 
of the diagonal elements serve as constant adjustment of the objective function M and 
do not affect the choice of the optimal partition, so we are free to null them without loss 
of generality. At the same time, for each given i, once qi,i = 0 , if we fix the community 
attachments of all the other nodes j  = i , the objective function M becomes a linear func-
tion of the variables ci,p subject to constraints 

∑

p ci,p = 1 and ci,p ∈ [0, 1] . Obviously, the 
maximum of the linear function with linear constraints is reached at one of the vertices 
of the domain of the allowed values for ci,p , which will involve a single ci,p being one and 
the rest being zeros. This way, we have proven the following:

Proposition  The optimal probabilistic attachment ci,p ∈ [0, 1] maximizing (2) in the 
case of qi,i = 0 represents a binary attachment ci,p ∈ {0, 1} maximizing (2) for an arbi-
trary original Q.

So the discrete community detection problem through modularity optimization could 
be solved within the continuous constrained quadratic optimization framework. This 
allows the application of methods and techniques developed for continuous optimiza-
tion, such as gradient descent, for example. However, despite its analytic simplicity, the 
quadratic programming problem with indefinite matrix Q is still NP-hard. In particu-
lar, the dimensionality of the problem leads to multiple local maxima challenging direct 
application of the standard continuous optimization techniques, like gradient descent. 
Indeed, any discrete partition, such that no single node could be moved to a different 
community with a modularity gain, will become such a local maximum. Unfortunately, 
finding such a local maximum rarely provides a plausible partition  – such solutions 
could have been obtained with a simple greedy discrete heuristic iteratively adjusting the 
single node attachments, while we know that the modularity optimization, being NP-
hard, generally requires more sophisticated non-greedy heuristics, like Sobolevsky et al. 

(2)M = tr(CTQC),
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(2014). To address this challenge, we introduce a new heuristic method that efficiently 
finds high-quality solutions to the described quadratic optimization problem, although 
without guaranteed achievement of the global optimum.

The GNNS method
In this section, we present a GNN-style method (GNNS) for unsupervised network 
partition through modularity optimization inspired by recurrent graph neural net-
work models (in the definition of  Wu et  al. (2020)) as well as an older Weisfeiler-
Lehmann graph node labeling algorithm Weisfeiler and Leman (1968). Ideas similar 
to the Weisfeiler-Lehmann algorithm have already found their application to com-
munity detection in a well-known label propagation algorithm Raghavan et al. (2007). 
Their development and application to modularity maximization were proposed and 
studied in detail in consequent works (Barber and Clark 2009; Liu and Murata 2010). 
However, they still were discrete optimization heuristics in their spirit and could 
not take into account recent advances in graph neural networks. Unlike these meth-
ods, we propose a continuous optimization technique that considers current nodes’ 
attachments combined with attachments of their neighbors. Namely, we propose a 
simple iterative process starting with a random initial matrix C = C0 and at each step 
t = 1, 2, 3, ...,N  performing an iterative update of the rows ci of the matrix C repre-
senting the node i community attachments as follows:

where Qi =
(

qi,j : j = 1, 2, ..., n
)

 is the i-th row of the modularity matrix Q represent-
ing the outgoing edges from the node i. This way, the term QiC

t−1 collects information 
about the neighbor nodes’ community attachments (this could be viewed as a develop-
ment of ideas discussed in Barber and Clark (2009)), and the equation (3) updates the 
node community attachments with respect to their previous attachments as well as the 
neighbor node attachments. In order to ensure the conditions 

∑

p ci,p = 1 , a further nor-
malization cti,p = c̃ti,p/

∑

p∗ c̃
t
i,p∗ needs to be applied at each iteration.

A simple form for an activation function F could be a superposition of a linear func-
tion subject to appropriate scale normalization and a rectified linear unit 

ReLU(x) =

{

0, x ≤ 0

x, x > 0
 , leading to

where f0, f1, f2 are the model parameters, Cp =
(

cj,p : j = 1, 2, ..., n
)

 is the p-th column of 
the matrix C representing all the node attachments to the community p, and the 
τ ki =

∣

∣

∣
maxp∗ QiC

t−1
p∗

∣

∣

∣
 are the normalization coefficients ensuring the same scale for 

terms of the formulae.

(3)c̃ti = F
(

ct−1
i ,QiC

t−1
)

,

(4)c̃ti,p = ReLU
(

f1c
t−1
i,p + f2QiC

t−1
p /τ ti + f0

)

, cti,p = c̃ti,p/
∑

p∗

c̃ti,p∗ ,
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Intuitive considerations allow defining possible ranges for the model coefficients 
f0, f1, f2 . Defining the coefficient f1 within the range f1 ∈ [0, 1] would ensure decay 
scaling of the community attachment at each iteration unless confirmed by the 
strength of the node’s attachment to the rest of the community expressed by QiC

t−1
p  . 

A free term f0 ∈ [−1, 0] provides some additional constant decay of the community 
attachment at each iteration, while the term QiC

t−1
p /τ ti  strengthens the attachment of 

node i to those communities having positive modularity scores of the edges between 
node i and the rest of the community. Normalization term τ ti  ensures that the strong-
est community attachment gets a maximum improvement of a fixed scale f2.

A consistent node attachment that cannot be improved by assigning the given node 
i to a different community p (i.e., having QiC

t−1
p = τ t−1

i = maxp∗ QiC
t−1
p∗  ) should see 

the fastest increase in the attachment score c̃ti,p , eventually converging to the case of 
ci,p = 1 . Any weaker attachment should see a decreasing community membership 
score cti,p , eventually dropping to zero. This could be ensured by the balancing equa-
tion f1 + f2 + f0 = 1 , allowing to define appropriate  f2 given  f0 and  f1.

Training the GNNS
The sequence of the GNNS iterations (4) depends on the choice of the model parame-
ters f0, f1 , as well as the initial community attachments. The final convergence also often 
depends on those choices. Given that, a good strategy is to simulate multiple iteration 
sequences with different initial attachments and choose the best final result. Also, it 
turns out that the method demonstrates reasonable performance for a broad range of 
parameter values f0 ∈ [−1, 0] , f1 ∈ [0, 1] , so rather than trying to fit the best choice for 
all the networks or a given network, one may simply include the random choice for f0, f1 
along with a random choice of the initial community attachments.

So the proposed GNNS algorithm starts with a certain number of S random parti-
tions and parameter choices. Then the GNNS performs 10 iterations of the parti-
tion updates according to (4). Among those, a batch of the best ⌊S/3⌋ partitions (with 
the highest achieved modularity scores) is selected and further supplemented with 
another S − ⌊S/3⌋ configurations derived from the selected batch by randomly shuf-
fling partitions and assigning new random parameters. Another 10 iterations are per-
formed. Another batch of ⌊S/9⌋ best partitions is selected and shuffled, creating a total 
of ⌊S/3⌋ samples. Then another 30 iterations are performed with those, and for small S 
( S ≤ 1000 ), the best resulting partition is selected as the final outcome of the algorithm. 
For larger S ( S > 1000 ), another batch of ⌊S/30⌋ best partitions is selected and shuffled, 
creating a total of ⌊S/10⌋ samples. Then the final 100 iterations are performed with those, 
and the best resulting partition is selected as the final outcome of the algorithm. Finally, 
the partition is discretized by assigning each node to the cluster with maximum prob-
ability. The following algorithm describes the whole process.
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If matrix Q is stored as a sparse graph matrix and two separate vectors for in- and 
out-degrees, this algorithm has a time complexity of O(Simk), where S is the number 
of attempts with different initial attachments and parameter values, i is the number of 
iterations, m is the number of edges, and k is the maximum number of communities. 
Value k is usually selected as an (educated) guess of the expected maximum number of 
communities or as the maximum feasible value. One nice property the GNNS inherits 
from neural networks is that it is easily parallelizable by modern frameworks.

Below we evaluate the three versions of the GNNS: a fast version with S = 100 denoted 
GNNS100, a slower but more precise version with S = 2500 denoted GNNS2500, and a 
slow but very precise version with S = 25000 denoted GNNS25000.

Comparative evaluation
We implemented the proposed GNNS modularity optimization algorithm in Python 
and ran our experiments in Google Colab1 (results of Combo runs on the three largest 
networks were obtained on a laptop because of the time limits in Colab). The source 
code is available on GitHub2. We evaluate our algorithm against other state-of-the-art 

1  https://​colab.​resea​rch.​google.​com/
2  https://​github.​com/​Alexa​nder-​Belyi/​GNNS

https://colab.research.google.com/
https://github.com/Alexander-Belyi/GNNS
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techniques mentioned above: a fast and popular Louvain method Blondel et al. (2008), 
its successor, the Leiden algorithm  Traag et  al. (2019), Combo algorithm  Sobolevsky 
et  al. (2014), often capable of reaching the best known modularity score over a wide 
range of networks, and the ADVNDS method claimed to be state-of-the-art method in 
2017 Džamić et al. (2019). Both papers introducing Combo and ADVNDS make a thor-
ough comparison with other methods available at their time and conclude that those 
methods outperform their competitors. We also tried all other modularity maximiza-
tion methods implemented in the CDLib library developed specifically for evaluating 
community detection methods  Rossetti et  al. (2019). However, their performance was 
much worse both in terms of running time and achieved modularity scores. Some more 
recent methods claim to be new state-of-the-art, but they are designed to be run on dis-
tributed systems, and their results cannot be fairly compared Biedermann et al. (2018). 
Thus, first, we shall compare our method with four selected approaches over a sample 
of classic network examples. And then, all those methods but ADVNDS (whose imple-
mentation is not available to us) shall also be evaluated over the series of the two types of 
random graphs often used for benchmarking the community detection algorithms:  Lan-
cichinetti et al. (2008) and Block-model graphs (Karrer and Newman 2011).

As the GNNS chooses the best partition among multiple runs, we consider its three 
configurations involving a) 100, b) 2500, and c) 25000 initial random samples of parti-
tions plus model configurations. We shall refer to those as GNNS100, GNNS2500, and 
GNNS25000. All other algorithms in our comparison also involve random steps, and 
the best partition they converge to is not perfectly stable. Thus their performance could 
also benefit from choosing the best partition among multiple runs, especially for the 
Louvain method. It often takes up to 10-20 attempts to find the best partition they are 
capable of producing. E.g. applying Combo and Louvain to the classic case of the Email 
network leads to the following performance reported in Table 1 below. As we see, both 
reach their best performance after 20 iterations (although results of the Combo for this 
network are significantly better compared to Louvain) but do not further improve over 
the subsequent 30 iterations. Based on that, in the further experiments, we shall report 
the best performance of the Combo, Louvain, and Leiden algorithms achieved after 20 
attempts for each. Since the implementation of the ADVNDS algorithm is not available 
to us, we provide results reported in its original paper after ten runs with running time 
calculated as the reported average multiplied by ten Džamić et al. (2019).

Classic examples

Most of the classic instances were taken from the clustering chapter of the 10th 
DIMACS Implementation Challenge3 and were often reused in community detection 

Table 1  The best modularity scores reached by the Combo and Louvain method after a different 
number of attempts for the Email network

Method/attempts 1 5 10 20 50

Combo 0.581918 0.582751 0.582751 0.582829 0.582829

Louvain 0.563761 0.570319 0.573820 0.574912 0.574912

3  All networks were downloaded from http://​www.​cc.​gatech.​edu/​dimac​s10/​downl​oads.​shtml

http://www.cc.gatech.edu/dimacs10/downloads.shtml
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literature Sanders et al. (2014). Table 2 reports the sources and details of those networks. 
Since the complexity of our method is proportional to the maximum number of com-
munities, we limited this dataset to the networks with less than three hundred com-
munities, according to the ADVNDS paper Džamić et al. (2019). All originally directed 
networks were symmetrized, and self-loops were removed. The largest network, Krong-
500slogn16, is synthetic, while all other networks represent real-world data.

Tables  3 and  4 report the performance of the proposed approach compared with 
ADVNDS Džamić et al. (2019), Leiden Traag et al. (2019), Louvain Blondel et al. (2008), 
and Combo methods Sobolevsky et al. (2014). Missing values in the ADVNDS column 
mean that the corresponding networks were not present in the original paper. For the 
Leiden and Louvain methods, we used their implementation in the Python igraph pack-
age, setting the number of iterations to −1 allowing the Leiden algorithm to run until the 
best modularity is achieved. The missing value in the Combo column corresponds to the 
network too large for the current implementation.

According to the results reported in Tables  3 and  4, Louvain is the fastest algo-
rithm, closely followed by the GNNS100 method, especially for larger networks, with 
GNNS100 often providing higher modularity scores, especially for smaller networks, 

Table 2  List, with sources, of the networks we used in our benchmark

a Valdis Krebs, data available online at http://​www.​orgnet.​com
b Vladimir Batagelj and Andrej Mrvar (2006): Pajek datasets. Airports. http://​vlado.​fmf.​uni-​lj.​si/​pub/​netwo​rks/​data/​mix/​USAir​
97.​net
c Data from the Bureau of Transportation Statistics - details at http://​toreo​psahl.​com/​datas​ets/#​usair​ports
d https://​graph​500.​org

No Name Nodes Edges Weighted Description

1 karate 34 78 NO Zachary’s Karate network Zachary (1977)

2 chesapeake 39 170 NO Chesapeake Bay Mesohaline Network Baird and Ulano-
wicz (1989)

3 dolphins 62 159 NO Dolphins’ Social Network Lusseau et al. (2003)

4 lesmis 77 254 YES Co-appeareance of characters in Les Miserables Knuth 
(1993)

5 polbooks 105 441 NO Amazon.com Co-purchases of political booksa

6 adjnoun 112 425 NO Common adjective and noun adjacencies in David Cop-
perfield Newman (2006)

7 football 115 613 NO American College Football games in year 2000 Girvan 
and Newman (2002)

8 jazz 198 2742 NO Network of Jazz Musicians Gleiser and Danon (2003)

9 C.Elegans N. 297 2148 YES Neural network of C. Elegans White et al. (1986)

10 US Airports1997 332 2126 YES US Aiports network from 1997b

11 C.Elegans M. 453 2025 NO Metabolic Network of C. ElegansDuch and Arenas (2005)

12 email 1133 5451 NO Email Networks University of Tarragona Guimerà et al. 
(2003)

13 polblogs 1490 16715 NO Connections among political blogs Adamic and Glance 
(2005)

14 US Airports2010 1858 17215 YES Complete network of US airports in 2010c

15 power 4941 6594 NO A network of the Western States Power Grid of the 
US Watts and Strogatz (1998)

16 PGPgiantcompo 10680 24316 NO Giant component of the network of users of the PGP 
algorithm Boguñá et al. (2004)

17 Krong500slogn16 65536 2456071 NO A synthetic graphs created with the Kronecker 
generatord

http://www.orgnet.com
http://vlado.fmf.uni-lj.si/pub/networks/data/mix/USAir97.net
http://vlado.fmf.uni-lj.si/pub/networks/data/mix/USAir97.net
http://toreopsahl.com/datasets/#usairports
https://graph500.org
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Table 3  Execution time (in seconds) of the ADVNDS, Leiden, Louvain, Combo, and GNNS algorithms 
over the classic network examples

The best results are in bold

No Name ADVNDS Leiden Louvain Combo GNN100 GNN2500 GNN25000

1 karate  2.5 0.02  0.01 0.02  0.04 0.23 4.81

2 chesapeake  3.3 0.02  0.01 0.03  0.03 0.23 4.86

3 dolphins  0.0 0.07  0.01 0.06  0.03 0.26 5.05

4 lesmis  0.0 0.03  0.01 0.20  0.03 0.26 5.28

5 polbooks  0.0 0.08  0.01 0.42  0.03 0.27 5.26

6 adjnoun  2.5 0.12  0.03 0.65  0.03 0.30 5.61

7 football 10.8 0.09  0.02 0.41  0.03 0.35 6.20

8 jazz 30.5 0.23  0.16 0.88  0.07 0.67 6.10

9 C.Elegans N  1.5 0.46  0.29 4.64  0.10 0.71 7.50

10 US Airports1997 – 0.58  0.19 6.08  0.08 0.88 6.97

11 C.Elegans M  16.6 1.00  0.26 24.73  0.08 1.38 12.93

12 email 297.3 2.72  0.72 141.41  0.28 2.71 31.24

13 polblogs  1.2 1.62  0.72 56.63  0.75 15.58 195.01

14 US Airports2010 – 2.06  1.01 170.47  0.85 19.08 237.23

15 power 16439.4 6.28  1.12 2200.80  1.43 39.60 491.33

16 PGPgiantcompo 18000.0 11.41  2.59 25773.10  3.32 101.95 1256.97

17 Krong500slogn16 17610.5 5983.00 298.22 – 45.78 1061.30 13736.06

Table 4  Best modularity scores of the ADVNDS, Leiden, Louvain, Combo, and GNNS algorithms over 
the classic network examples

The best results are in bold, and the second-best are in italic

No Name ADVNDS Leiden Louvain Combo GNN100 GNN2500 GNN25000

1 karate 0.419790 0.419790 0.419790 0.419790 0.419790 0.419790 0.419790
2 chesapeake 0.265796 0.265796 0.265796 0.265796 0.265796 0.265796 0.265796
3 dolphins 0.528519 0.528519 0.527728 0.526799 0.528519 0.528519 0.528519
4 lesmis 0.566688 0.566688 0.566688 0.566688 0.566688 0.566688 0.566688
5 polbooks 0.527237 0.527237 0.526967 0.527237 0.527237 0.527237 0.527237
6 adjnoun 0.313367 0.310563 0.303934 0.311839 0.308758 0.310967 0.313367
7 football 0.604570 0.604570 0.604570 0.604570 0.602872 0.604570 0.604570
8 jazz 0.445144 0.445144 0.445144 0.444469 0.445144 0.445144 0.445144
9 C.Elegans N 0.503782 0.503485 0.498211 0.503782 0.502002 0.503736 0.503782
10 US Airports1997 – 0.214360 0.204418 0.214688 0.212227 0.214531 0.214688
11 C.Elegans M 0.453248 0.452867 0.446379 0.453209 0.441670 0.446602 0.448080

12 email 0.582829 0.582636 0.577651 0.582792 0.568329 0.576863 0.578422

13 polblogs 0.427105 0.427105 0.427098 0.427096 0.426937 0.427059 0.427081

14 US Airports2010 – 0.275479 0.273658 0.275478 0.274653 0.275458 0.275476

15 power 0.940974 0.940714 0.936614 0.939311 0.818490 0.880699 0.915185

16 PGPgiantcompo 0.886647 0.886640 0.884784 0.881017 0.838746 0.865027 0.874771

17 Krong500slogn16 0.065661 0.063362 0.059964 – 0.058143 0.064676 0.066697
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while ADVNDS, Combo, and GNNS25000 are by far the slowest, demonstrating how-
ever superior performance. GNNS2500 finds pretty good partitions for some networks, 
and it works much faster than ADVNDS and Combo. In general, its performance is 
comparable to Leiden. Both algorithms work quickly and find partitions with modular-
ity just a bit below the best-known. Moreover, Combo could not handle the largest net-
work, while GNNS2500 found a partition better than Leiden and did so almost six times 
faster. For that network, GNNS25000 finds the highest modularity score, outperforming 
all other methods, including ADVNDS.

While ADVNDS reported the highest known modularity scores for all the networks 
where it was applied except the largest one, it is much slower than GNNS, and its imple-
mentation is not available, so we could not test it on other networks. Besides, the current 
GNNS implementation uses pure Python, while implementing it in C++ (as done for all 
other algorithms) could provide further speed improvements.

Overall, while no single heuristic is the best solution for all the cases, a GNNS algo-
rithm often finds a plausible solution, sometimes the best-known one, and provides a 
flexible parameter-controlled trade-off between speed and performance ranging from 
the fastest to the close-to-optimal performance, which makes it a valuable addition to 
an existing collection of algorithms. More importantly, since this simple GNN-style heu-
ristic can perform comparably to the state-of-the-art, that serves as a proof-of-concept 
for considering more sophisticated GNN architectures, configurations, and learning 
techniques that could provide further improvement in solving community detection 
problem as well as other complex network optimization problems like minimum vertex 
cover, maximal independent set Li et al. (2018), clique partitioning, correlation cluster-
ing Jung and Keuper (2022), spectral clustering Bianchi et al. (2020), and others Bengio 
et al. (2021), Yow and Luo (2022).

Synthetic networks

In the next test, the methods were applied to the sets of synthetic networks  – Lan-
cichinetti–Fortunato–Radicchi  (LFR)  Lancichinetti et  al. (2008) and Stochastic Block-
Model (SBM) Holland et al. (1983). We built two sets of ten LFR networks of size 250 
each, with overall average node degrees of d = 29.6 and d = 13.3 , and three sets of ten 
SBM networks of size 300 for each value of the parameter ν , defining the ratio of the 
probability for the model graph to have inner-community edges (three communities of 
size 100 each) divided by the probability of the inter-community edges. For all SBM, net-
works the average probability of an edge was 0.1, leading to the average node degree 
d = 30 . The Python package networkx was used to generate these synthetic networks.

Table  5 shows the average values of modularity, normalized mutual information 
(NMI), and execution time obtained after partitioning ten instances of each type using 
the Leiden, Louvain, Combo (best of the 20 runs), and GNNS100 algorithms. As we can 
see, Combo demonstrates superior performance in terms of modularity in all sets of 
networks except for the last SBM set with the highest ν = 3 , where all algorithms per-
formed achieve the same score. While GNNS100 demonstrates suboptimal performance 
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for those networks compared to Combo, it works at unparalleled speed, several times 
faster than Louvain and Leiden and two orders of magnitude faster than Combo. Based 
on that, GNNS100 proves itself to be the fastest solution for partitioning the synthetic 
networks demonstrating reasonable performance in terms of the modularity and NMI 
scores achieved.

Temporal networks

Earlier works established the applicability of the GNN architecture for capturing 
dynamic properties of the evolving graphs Ma et al. (2020). As GNNS is well-suited for 
the iterative partition improvement, it could be suggested for active learning of the tem-
poral network partition. For example, initial warm-up training could be performed over 
the first temporal layers with subsequent tuning iterations while moving from a current 
temporal layer to the next one.

Below we apply the approach to the temporal network of the daily taxi mobility 
between the taxi zones in New York City (NYC). We use the 2016-2017 data provided 
by the NYC Taxi and Limousine Commission4 to build the origin-destination network 
of yellow and green taxi ridership between the NYC taxi zones (edges of the network 
are weighted by the number of trips). The results of the temporal GNNS (GNNStemp) 

Table 5  Comparative evaluation of the Leiden, Louvain, Combo, and GNNS algorithms over the 
synthetic networks

The best results are in bold

Model Leiden Louvain Combo GNNS100
Avg. modularity score

LFR d = 29.6 0.231638 0.230503 0.231827 0.231349

LFR d = 13.2 0.323335 0.318014 0.323993 0.320207

SBM ν = 1.5 0.159593 0.152365 0.165762 0.159826

SBM ν = 2.0 0.175234 0.164898 0.180759 0.174756

SBM ν = 2.5 0.224523 0.223458 0.224523 0.224508

SBM ν = 3.0 0.263608 0.263608 0.263608 0.263608
Avg. NMI

LFR d = 29.6 0.651277 0.641316 0.631941 0.652583

LFR d = 13.2 0.557155 0.544109 0.511360 0.536949

SBM ν = 1.5 0.050049 0.049271 0.036201 0.052641
SBM ν = 2.0 0.335723 0.275103 0.456881 0.322522

SBM ν = 2.5 0.877335 0.859546 0.877335 0.876657

SBM ν = 3.0 0.972523 0.972523 0.972523 0.972523
Avg. time, sec

LFR d = 29.6 0.534 0.268 6.309 0.045

LFR d = 13.2 0.498 0.140 6.200 0.043

SBM ν = 1.5 0.902 0.448 7.580 0.051
SBM ν = 2.0 0.958 0.480 7.842 0.060
SBM ν = 2.5 0.552 0.434 2.342 0.041
SBM ν = 3.0 0.446 0.293 1.655 0.050

4  https://​www1.​nyc.​gov/​site/​tlc/​about/​data.​page

https://www1.nyc.gov/site/tlc/about/data.page
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for each daily ridership network are compared against single runs (for the sake of 
speed) of the Louvain and Combo algorithms as the fastest and the most precise 
from the available algorithms. GNNStemp uses an initial warm-up over the year 2016 
aggregated network and then performs a single run of 20 fine-tune iterations for each 
daily temporal layer in 2017, starting with the previously achieved partition. The 
achieved best modularity scores fluctuate slightly between the daily layers. The 2017 
yearly average of the ratios of the daily scores achieved by each algorithm to the best 
score of all three algorithms for that day look as follows: 97.97% for Louvain, 99.99% 
for Combo, and 99.78% for GNNStemp. At the same time, the total elapsed time is as 
follows: 1.71 sec for Louvain, 16.04 sec for Combo, and 8.40 sec for GNNStemp. Fur-
thermore, GNNStemp managed to find the best modularity score not reached by two 
other algorithms on 11.2% of the temporal layers.

So the performance of GNNStemp in terms of the achieved modularity score falls 
right in the middle between Louvain and Combo, while GNNStemp is nearly twice as 
fast as the single run of Combo.

Details of the day-by-day GNNStemp performance compared to the best of the 
three algorithms are shown in fig. 1. On some days, one may notice somewhat visible 
differences between the top algorithm performance and that of the GNNStemp, but 
GNNStemp captures the temporal pattern of the modularity score dynamics pretty 
well, with a correlation of 99.44% between the GNNStemp score and the top algo-
rithm score timelines.

By performing time-series periodicity and trend-seasonality analysis, one could 
notice some interesting temporal patterns in the strength of the network community 
structure, as also presented in fig. 1. The community structure quantified by means of 
the best achieved modularity score demonstrates a strong weekly periodicity with a 
stronger community structure over the weekends, including Fridays. The strength of 
the community structure also shows noticeable seasonality, with stronger communi-
ties over the winter and weaker over the summer. One may relate this observation 

Fig. 1  Comparative performance of GNNS vs. the best of GNNS, Louvain, and Combo for community 
detection on the temporal network of daily taxi ridership in NYC. Subplots depict achieved network 
modularity and its time-series properties: autocorrelation, seasonality, and periodicity obtained by seasonal 
decomposition using moving averages
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with the people exploring more destinations during their weekend and holiday time. 
As seen in fig.  1, the GNNStemp accurately reproduces the patterns discovered for 
the best partition timeline.

In conclusion, while Combo runs could demonstrate higher partition accuracy at cer-
tain temporal layers, the GNNStemp is capable of reaching similar performance much 
faster while adequately reproducing the qualitative temporal patterns. So GNNStemp 
could be trusted as a fast and efficient solution for extracting insights into the dynamics 
of the temporal network structure.

Conclusions
We proposed a novel recurrent GNN-inspired framework for unsupervised learning of 
the network community structure through modularity optimization. A simple iterative 
algorithm depends on only two variable parameters, and we propose an integrated tech-
nique for tuning those so that parameter selection and modularity optimization are per-
formed within the same iterative learning process.

The algorithm’s performance has been evaluated on classic network examples, syn-
thetic network models, and a real-world temporal network case. Despite its simplicity, 
the new algorithm reaches similar and, in some cases, higher modularity scores com-
pared to the more sophisticated discrete optimization state-of-the-art algorithms. One 
of the possible limitations of the proposed method is its dependence on the number of 
runs. However, this could be viewed as an advantage since it allows flexible adjustment 
of the algorithm’s complexity, tuning the model parameters to find the right balance 
between speed and performance. At the low-complexity settings, it can significantly 
outperform alternative methods in terms of running time while maintaining reasonable 
performance in terms of partition quality. Thus, the algorithm is efficiently applicable in 
both scenarios—when the execution time is of the essence as well as when the quality of 
the resulting partition is a paramount priority.

Furthermore, the algorithm enables a special configuration for the active learning of 
the community structure on temporal networks, reconstructing all the important longi-
tudinal patterns.

But more importantly, we believe the algorithm serves as a successful proof of concept 
for applying more advanced GNN-type techniques for unsupervised network learning, 
and opens possibilities for solving a broader range of network optimization problems. 
Similar approaches could work for such related problems as clique partitioning and 
correlation clustering. Applying more sophisticated model architectures along with 
constantly developing new methods for neural network training can possibly further 
improve the quality of found solutions. Developing these methods will constitute our 
future work in this direction.

Appendix. Results for directed networks
The analysis presented in the paper includes 17 classic sample networks. Their 
sources and characteristics (network size and whether the network is weighted 
and/or directed) are presented in the Table  2. Six of the 17 sample networks are 
directed in their original form. However Python iGraph implementations of the Lei-
den and Louvain methods handle only undirected networks, but Combo and GNNS 
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implementations are capable of handling directed versions of the networks and in 
the Table 6 below we present the achieved modularity scores by Combo, GNNS100, 
GNNS2500, and GNNS25000 for the original directed versions of the sample net-
works. One can see that except of Jazz and US Airports1997, where Combo under-
performs, all three methods reach closely similar modularity scores with a slight lead 
of Combo.
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