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Introduction
Temporal graphs are graphs in which the edges have time stamps. For example, in a tem-
poral graph in which the vertices represent airports, a flight from (say) New York to Chi-
cago that departs New York at 2 pm and has a duration of 3 h (i.e., it arrives at Chicago at 
5 pm) could be represented by a directed edge from New York to Chicago with the label 
(2 pm, 3 h). Here, 2 pm is the time stamp and 3 h is the traditional edge weight. In a tem-
poral graph that represents a road network, the vertices would represent road intersec-
tions; a directed edge from A to B would represent the road segment from A to B. This 
segment could be labeled by a sequence of tuples of the form ([t1− t2], �) where t1 and 
t2 are time stamps with the interpretation that if one departs A at a time t, t1 ≤ t ≤ t2 , 
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one will reach B at time t + � ( [t1− t2] ) denotes the permissible departure interval from 
A). The sequence of triples would model different congestion intervals as well as inter-
vals in which the road segment is closed for maintenance. In a contact sequence tempo-
ral graph, the edges are labeled as in the airport application and in an interval temporal 
graph, they are labeled as in the road network application. Figures 1 and 2 are examples 
of contact sequence and interval temporal graphs, respectively.

When time is discrete, every contact sequence temporal graph has an equivalent inter-
val temporal graph and vice versa. Temporal graphs, which are also known as evolving 
graphs, dynamic graphs, and time varying graphs, have been used to study the spread 
of viral diseases, study information dissemination by means of physical/virtual contact 
between people, understanding the behavior on online social networks, modeling data 
transmission in phone networks, modeling traffic flow in road networks, and studying 
biological networks at the molecular level, for example Scheideler (2002), Stojmenović 
(2002), Holme and Saramäki (2012), Michail (2015), Santoro et  al. (2011), Kuhn and 
Oshman (2011) and Bhadra and Ferreira (2012).

Temporal graph exploration and reachability problems are studied in Casteigts et al. 
(2020), Erlebach et  al. (2021) and Michail and Spirakis (2016). Casteigts et  al. (2020) 
investigates temporal reachability and temporal spanners in random simple temporal 

Fig. 1  Contact sequence temporal graph

Fig. 2  Interval temporal graph
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graphs. Such graphs are mathematically equivalent to random edge-ordered graphs. In 
Erlebach et al. (2021) authors consider the TEXP problem or the temporal graph explo-
ration problem. This problem is defined as finding a temporal walk that starts at a given 
start vertex, visits all vertices of the graph and has smallest arrival time. Michail and Spi-
rakis (2016) studies the traveling salesman problem for temporal graphs. They present 
approximation algorithms to find min-cost TSP tour that visits every vertex in a tem-
poral graph. Temporal versions of other combinatorial optimization problems are also 
studied in this work.

Path problems on temporal graphs are studied in Wu et  al. (2016a), Bui-Xuan et  al. 
(2003), Bentert et al. (2020) and Guo et al. (2019). While Bui-Xuan et al. (2003) focuses 
on interval temporal graphs, Wu et al. (2016a) and Bentert et al. (2020) use the contact 
sequence model. Wu et al. (2016a) consider two representations of a contact sequence 
graph: a time ordered sequence of edges and a graph representation and demonstrate 
that on the datasets used by them, the studied path problems can be solved faster using 
the time ordered sequence of edges representation than either the graph representation 
proposed by them or the interval temporal graph representation used by Bui-Xuan et al. 
(2003). Bentert et  al. (2020) consider extensions of the path problems studied in Wu 
et al. (2016a) and Bui-Xuan et al. (2003). This extension requires a specified minimum 
and maximum wait (stay) time at intermediate vertices. They also permit going through 
the same vertex multiple times. Hence, they consider walks from a source vertex to des-
tination vertices while Wu et al. (2016a) and Bui-Xuan et al. (2003) are limited to paths. 
The algorithms of Bui-Xuan et al. (2003) are limited to the case when all triples on an 
edge have the same travel time � . The path algorithms of Wu et al. (2016a) have been 
incorporated into the temporal graph library Tink (Lightenberg et al. 2018).

Our main contributions in this paper are: 

1.	 We demonstrate the existence of path problems that are NP-hard for interval tempo-
ral graphs but polynomially solvable for contact sequence temporal graphs.

2.	 The algorithm of Bui-Xuan et al. (2003) for foremost paths in an interval temporal 
graph is extended to work when the triples on an edge may have different � values.

3.	 We propose a different data structure for interval temporal graphs than proposed in 
Bui-Xuan et al. (2003). Using this data structure, our extended foremost path algo-
rithm is faster than that of Wu et al. (2016a) on about half of the datasets used in Wu 
et al. (2016a); the maximum speedup obtained relative to Wu et al. (2016a) is 1800. 
On all synthetic datasets generated by us, we are faster with a maximum speedup of 
3.77. We note that using the data structure in Bui-Xuan et al. (2003) and Wu et al. 
(2016a) report that their algorithm is faster on all datasets and achieves a speedup of 
up to 22 over the algorithm in Bui-Xuan et al. (2003).

4.	 We develop an algorithm for min-hop paths on interval temporal graphs that is 
faster than that of Bui-Xuan et al. (2003) and unlike the algorithm of Bui-Xuan et al. 
(2003) works even when the triples on an edge have different � values. Our algorithm 
obtains a speedup of up to 31,000 relative to the min-hop algorithm of Bui-Xuan 
et al. (2003) on the datasets of Wu et al. (2016a).

5.	 Our min-hop algorithm is faster than that of Wu et al. (2016a) on all but 2 of the 
datasets used in Wu et  al. (2016a) and all synthetic datasets generated by us. We 
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obtain a speedup of up to 6700 on the datasets of Wu et al. (2016a). On synthetic 
datasets, a speedup of up to 22.7 is achieved.

The roadmap of this paper is as follows. In “Preliminaries” section we provide formal 
definitions for contact sequence and interval temporal graphs, define path problems 
on temporal graphs, give the data structure we use for interval temporal graphs, and 
define a function used by our algorithms. In  “NP-hard interval temporal graph path 
problems” section we demonstrate path problems that are NP-hard for interval tem-
poral graphs but polynomial for contact sequence graphs. In  “Redundant intervals” 
section, we introduce the notion of a redundant interval and show that the elimina-
tion of these redundant intervals does not change the foremost and min-hop paths 
in a temporal graph. Our extension of the foremost path algorithm of Bui-Xuan et al. 
(2003) to the case when intervals on an edge may have different � values is described 
in  “Foremost paths in interval temporal graphs” section and our algorithm for min-
hop paths in interval temporal graphs is developed  “Min-hop paths in interval tem-
poral graphs” section. Experimental results are presented in “Experimental results” 
section and we conclude in “Conclusion” section.

Preliminaries
Definitions

Definition 1  (Contact sequence temporal graphs) In a contact sequence temporal graph 
G = (V ,E) each edge e ∈ E is represented by a tuple (u, v, t, �) , where t is the permissible 
departure time for travel from u to v using the edge e and � is the amount of time it takes 
to travel on edge e from u to v when one starts at time t. So, u is reached at time t + � . 
If there are multiple time instances when departures from u to v are permissible, there 
will be multiple such temporal edges between u and v represented as a series of temporal 
edges [(u, v, t1, �1); (u, v, t2, �2) . . . ; (u, v, tn, �n)] . The number of temporal edges between 
vertices u and v, which is also the number of distinct permissible departure times from u 
to v, gives the amount of activity on the connection (u, v).

Definition 2  (Interval temporal graphs) In an interval temporal graph G = (V ,E) , each 
edge e ∈ E is represented by a tuple (u, v, intvls). This tuple represents a connection from 
u to v. intvls is a time ordered sequence of tuples [(s1, c1, �1); (s2, c2, �2); . . . ; (sn, cn, �n)] . 
The ith interval starts at time si and closes (ends) at time ci ; �i is the time it takes to trav-
erse the edge when travel departs u at a time t such that [si ≤ t ≤ ci] (v is reached at time 
t + �i ). The intervals are in ascending order of start times si and collectively they define 
the permissible departure times from u.

We note that in the interval temporal graph model used by Bui-Xuan et  al. (2003), 
all intervals associated with an edge (u, v) have the same � value. Further, ci gives the 
time by which travel on (u, v) must finish rather than the last permissible departure 
time. So, in the model of Bui-Xuan et al. (2003), the permissible departure times for u 
defined by the ith interval are si , . . . , ci − �i.



Page 5 of 24Jain and Sahni ﻿Applied Network Science            (2022) 7:60 	

A path (equivalently, valid path, temporal path or time respecting path) in a tempo-
ral graph is an alternating sequence of vertices and departure times u1, t1,u2, t2, . . . ,uk 
where ti is a permissible departure time from ui to ui+1 where 1 ≤ i < k , and 
(ti + �i) ≤ ti+1 , ti + �i is the arrival time at ui+1 when departing ui at ti using the 
connection (ui,ui+1) . For this path, u1 is the source vertex and uk the destination. 
P1 = S, 0,B, 5,C is a path from S to C in the temporal graph of Fig. 2. This path leaves S 
at 0 and arrives at B at time 5. It then leaves B immediately at time 5 and arrives at C at 
time 6. P1 is a 2-hop path from S to C with a first hop to B and then a second hop to C. 
P2 = S, 0,A, 1,B, 3,C is another valid path from S to C. This path also leaves S at time 0. 
It gets to A at time 1 and departs immediately for vertex B where it arrives at time 2. At 
B, it waits for 1 unit until time 3 and departs for C getting there at time 4. P2 is a 3-hop 
path from S to C.

We are interested in paths in a temporal graph that start at a vertex u at a time ≥ tstart 
and end at another vertex v. Let S(u, v) comprise all valid paths from u to v that depart 
u at a time ≥ tstart . A foremost path is a path in S(u, v) that gets to v at the earliest time; 
a min-hop path is a path in S(u, v) that has the fewest number of hops; a fastest path is 
a path in S(u, v) for which (arrival time at v—departure time from u) is minimum; and a 
shortest path is a path in S(u, v) that minimizes the sum of the � s on the path.1

Bui-Xuan et al. (2003) develop polynomial time algorithms for foremost, min-hop, and 
fastest paths in interval temporal graphs. Wu et al. (2016a) do this for contact sequence 
graphs.2 They also develop algorithms for reverse-foremost paths (paths with the latest 
departure time and terminating at a specified vertex).

Data structures

Bui-Xuan et al. (2003) use linked adjacency lists to represent an interval temporal graph. 
We, instead, use array adjacency lists (Sahni 2004). For example, the interval temporal 
graph of Fig.  3 is represented by the array adjacency list of Fig.  4. The data structure 
comprises a (say) C++ vector with one slot for each vertex in the graph. This is the ver-
tical vector in the figure. Slot for any vertex u itself contains a vector of vertices adjacent 

Fig. 3  Example interval temporal graph

1  Bui-Xuan et al. (2003) use the term shortest path to mean a min-hop path.
2  While Wu et al. (2016a) does not explicitly consider min-hop paths, their shortest path algorithm is easily modified to 
find min-hop paths.
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from u. For example, the slot for S in the vertical vector has the adjacent vertices vector 
(A.B). Associated with each adjacent vertex v from u, there is a vector of time ordered 
tuples for the edge (u, v). In Fig. 4, ([0–1],1), ([2–6],3) is the time ordered vector for the 
edge (S, A).

Wu et  al. (2016a) consider two data structures for contact sequence graphs. In the 
first of these, the graph is simply represented as a sorted sequence of edges (tuples) of 
the form e = (u, v, t, �) ; this sequence is in non-decreasing order of t. The second rep-
resentation is a graph that is quite different from that of Fig. 4 and which their experi-
ments show to be inferior for all path problems studied by them except the fastest path 
problem where the two representations are competitive. Since we do not consider the 
fastest path problem here, we do not describe their graph representation. However, we 
mention that their graph representation has more edges than their sorted sequence rep-
resentation. When time is discrete, every interval temporal graph can be transformed 
into a contact-sequence graph that has the same foremost, min-hop, shortest, fastest, 
and reverse-fastest paths. In this transformation, we replace each edge in the interval 
temporal graph by as many contact sequence edges as the number of permissible depar-
ture times for edge intervals. For example, if time is an integer, then the the connection 
(S, A) in Fig. 3 with the interval sequence ([0–1],1), ([2–6],3) gets replaced by the tuples 
(S, A, 0, 1), (S, A, 1, 1), (S, A, 2, 3), (S, A, 3, 3), (S, A, 4, 3), (S, A, 5, 3), (S, A, 6, 3). As is evi-
dent, this transformation preserves valid paths but has the potential for explosive growth 
in the number of edges and consequently in the memory needed. For example, the inte-
ger interval [1, 100,000] would result in 100,000 contact sequence edges. As we shall see 
in the next section, this explosive growth in instance size can result in a path problem 
being NP-hard in the interval model but polynomial in the contact sequence model.

We note also that every contact sequence temporal graph may be transformed into an 
equivalent interval temporal graph by coalescing the multiple edges that connect a pair 
of vertices (u, v) into a single edge with an appropriate time ordered sequence of inter-
vals; each interval’s start time is ≤ its close time.

Fig. 4  Data structure representing Interval temporal graph of Fig. 3
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The function next

Bui-Xuan et al. (2003) define a function that given a time t and vertices u and v finds 
the earliest permissible departure time greater than or equal to t on the edge (u, v). The 
function is denoted as f((u, v), t). This function simply does a binary search on the inter-
vals associated with the edge (u, v). It runs in O(log(k)) time, where k is the number of 
intervals associated with the edge. This function is used by Bui-Xuan et al. (2003) in their 
path algorithms and also used by us in our algorithms. We call this function next.

NP‑hard interval temporal graph path problems
Several problems are known to be NP-hard for contact sequence temporal graphs. For 
example, Bhadra and Ferreira (2003) show that computing several types of strongly con-
nected components is NP-hard; Casteigts et al. (2019) show that determining the exist-
ence of a no-wait path between3 two vertices is NP-hard; and Zschoche et  al. (2018) 
show that computing several types of separators is NP-hard. Additional complexity 
results for contact sequence temporal graphs appear in Casteigts et  al. (2019). Since 
contact sequence temporal graphs can be modeled by interval temporal graphs with at 
most a constant factor increase in the instance size (see “Data structures” section), every 
problem that is NP-hard for the contact sequence model remains NP-hard in the inter-
val model. However, the reverse may not be true as the transformation from the interval 
model to the contact sequence model entails a possible explosion in the instance size. In 
this section we demonstrate path problems that are NP-hard in the interval model but 
polynomially solvable in the contact sequence model.

No wait acyclic path problem (NAPP)

The underlying static graph for any contact sequence temporal graph is the graph that 
results when each edge (u, v, t, �) is replaced by the edge (u, v) and then multiple occur-
rences of the same edge (u, v) are replaced by a single edge (u, v). For an interval tempo-
ral graph, its underlying static graph is obtained by replacing each edge (u, v, intvls) by 
the edge (u, v). Figure 5 shows the underlying static graphs for the temporal graphs of 
Figs. 1 and 2.

Fig. 5  Underlying static graph for temporal graphs of Figs. 1 and 2

3  In a no-wait path, the arrival and departure times at each intermediate vertex are the same.
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The no-wait acyclic path problem (NAPP) is to find a no-wait (time respecting) path 
from a vertex u to a vertex v in a temporal graph whose underlying static graph is acy-
clic. As noted above, Casteigts et al. (2019) have shown that determining the existence 
of such a path is NP-hard for contact sequence graphs and hence for interval temporal 
graphs when the graphs are not limited to be acyclic. We show below that NAPP is NP-
hard for the interval model but polynomially solvable for the contact sequence model 
(for acyclic graphs).

NAPP is NP‑hard

Theorem 1  NAPP is NP-hard for the interval model but polynomially solvable for the 
contact sequence model.

Proof  For the NP-hard proof, we use the sum of subsets problem that is known to be 
NP-hard. In this problem, we are given n natural numbers S = {s1 , s2 , . . . , sn} and another 
natural number M. We are to determine a subset of S that sums to M. For any instance 
of the sum of subsets problem, we can construct, in polynomial time, the acyclic interval 
temporal graph shown in Fig. 6. For all edges other than (un, v) the permissible depar-
ture times are from 0 through M (i.e., their associated interval is [0–M]) and the edge 
(un, v) has the single permissible departure time M (equivalently, its associated interval 
is [M–M] or simply [M]). The travel time ( � ) for edge (ui,ui+1) is si , that for (un, v) is 1, 
and that for the remaining edges is 0. It is easy to see that the underlying static graph is 
acyclic and that for every subset of S, there is a no-wait path from u0 to un that arrives at 
un at a time equal to the sum of the si s in that subset. Further, all no-wait paths from u0 
to v must get to un at time M. Hence, there is a no-wait path u0 to v iff there is a subset of 
S that sums to M; this path gets to v at time M + 1 . Hence, NAPP is NP-hard.

The NAPP may be solved in polynomial time for contact sequence temporal graphs 
whose underlying static graph is acyclic by considering vertices in topological order. 
Suppose that the start vertex of the desired no-wait path is u and the destination vertex 
is v. For each vertex w, we maintain a list of possible arrival times of no-wait paths from 
u. Initially, this list is empty for all vertices other than u. The initial list for u is {0} . We 
note that the size of the list for vertex w cannot exceed its in-degree as t is a possible 
arrival time at w only if there is an edge (x,w, t1, �) such that t = t1+ � . Hence, when 
the vertices are examined in topological order, the list for the vertex being currently 

Fig. 6  Interval temporal graph demonstrating NP-hard algorithms
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examined may be computed from the lists of its incoming neighbors in polynomial time. 
When done, if the list of v is empty, there is no no-wait path from u to v; if this list is not 
empty, a no-wait path may be constructed in polynomial time using a traceback from 
entries in the list for v. �

We note that the above proof is readily modified to show that finding foremost, fastest, 
min-hop, and shortest no-wait paths in interval temporal graphs with an acyclic under-
lying static graph are NP-hard while these problems are polynomial for contact sequence 
temporal graphs whose underlying static graph is acyclic. The above proof also shows 
that finding no-wait walks (in a walk, a vertex may be visited more than once) in interval 
temporal graphs in NP-hard.4 For contact sequence graphs, Bentert et  al. (2020) have 
developed polynomial time algorithms to find optimal walks using various optimization 
functions. Further, the construction used in the proof is easily modified so that every 
edge has a � value > 0.

Redundant intervals
It is possible for an interval (or portion of an interval) on an edge of an interval temporal 
graph to be redundant in that the departure times in this interval may never be used 
in an optimal path (e.g., a foremost path). For example, if the travel from u to v (on a 
connection (u, v) represented in an edge e) starts at a time t where t ∈ [si, ci] , for some 
interval i = (si, ci, �i) on e, then the arrival time at v is t + �i . If ( ci + �i) ≥ (si+1 + �i+1 ) 
where (i + 1) = (si+1, ci+1, �i+1) is the next interval on the edge e, then it is possible that 
departing from u to v at a time in the interval i reaches v after a departure that starts in 
the later interval (i + 1).

For path problems such as finding foremost, min-hop, shortest, and fastest paths, the 
portion of the interval i that is beyond time t may be removed as an equal or better path 
can always be found by starting at the start time si+1 of the next interval as opposed 
to starting at or after time t in the interval i. The portion of interval i that may be so 
removed is called redundant. All of the path problems studied in Wu et al. (2016a) and 
Bui-Xuan et al. (2003) never need to use these redundant intervals.

Fig. 7  Interval graph with some slow intervals

4  Note that in the graph of Fig. 6, every walk is also a path.
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An example of a graph with some redundant intervals is shown in Fig. 7. In this graph, 
a foremost path from S to C is, Pf = (S, 0,A, 5,B, 8,C) arriving at node C at time 9. 
Notice that, even though we arrive at node A at time 3 using arc (S, A) and the first inter-
val on the arc (A, B) is still open at time 3, there is no benefit of using this interval with 
the travel time of 6 as opposed to waiting at A for 2 time units and then using the next 
interval at time 5 with a travel time of 2, that would get us to B, 2 time units sooner at 7.

It is important to note that there are some path problems in which intervals defined 
to be redundant are actually useful and so should be retained when solving these path 
problems as above. For example, in Fig. 7, if the problem was to find a minimum wait 
path from S to C, the optimal path in this case would benefit by departing from the node 
A as soon as possible, instead of waiting for the next faster interval. In this case, the min-
imum wait path would be Pmw = (S, 0,A, 3,B, 9,C) arriving at node C at time 10 with a 
wait time of 0.

For the path problems studied in this paper (min-hop paths and foremost paths) as 
well as those studied in Wu et al. (2016a) and Bui-Xuan et al. (2003) redundant intervals 
may be safely removed from the interval temporal graph representation. Therefore, we 
assume that our interval temporal graphs are free of redundant intervals.

The algorithm to remove redundant intervals from interval temporal graphs is 
described below.

•	 For every edge

•	 Examine the intervals in descending order starting from interval(n− 1)
•	 For each interval(i) that is examined

* if (ci + �i > si+1 + �i+1) ⇒ c′i = si+1 + �i+1 − �i

* if (c′i ≥ si) ⇒ interval(i) ← (si, c
′
i)

* else eliminate interval(i)

Foremost paths in interval temporal graphs
Methodology

As noted earlier, Bui-Xuan et al. (2003) develop an algorithm to find foremost paths from 
a source vertex s to all remaining vertices in an interval temporal graph; the foremost 
paths are constrained to depart s at a time greater than or equal to tstart . This algorithm, 
however, assumes that all intervals of an edge have the same � value (the � may be dif-
ferent for different edges). A minor extension of their algorithm enables it to work for 
temporal interval graphs in which the � value may change from interval of an edge to the 
next interval for the same edge.

Algorithmic strategy used to find foremost paths is similar to that used in Dijk-
stra’s shortest path algorithm. We begin with knowledge of the foremost paths from 
start vertex to itself then generate foremost paths to remaining vertices in order of 
the arrival times of these foremost paths. When a new foremost path is found, its 
one edge extensions are considered much in the same way as in Dijkstra’s algorithm 
and the projected arrival time of the foremost paths to neighbor vertices is updated 
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as necessary. A min priority queue of projected foremost paths is maintained and in 
each round, the foremost path with least arrival time is considered.

Algorithm details

Algorithm  1 describes this extended algorithm that assumes the interval temporal 
graph has been pre-processed to remove redundant intervals.

Some of the key variables used in Algorithm 1 are: 

1.	 tEAD—array that stores the earliest known arrival time at every vertex u. When the 
algorithm terminates, every index of this array contains the foremost time of arrival 
at the corresponding vertex u.

2.	 pred—array that contains the predecessor node for every vertex u in the foremost 
path from the source vertex s. The pred array can be used to construct the foremost 
path from s to every vertex u.

3.	 PQ—priority queue whose elements are pairs of the form (tEAD[u],u) and the first 
element of each pair is the priority key. Our implementation uses a min-heap.

Note that step 10 of our algorithm may result in the priority queue containing many 
entries for any given vertex v. However, from all the PQ entries for v, the one with 
the least arrival time at v will be the first one to be removed from PQ in step 15, and 
marked as closed in step  4. Therefore, when an element corresponding to a closed 
vertex is removed from the priority queue, it can simply be discarded as in the loop 
from step 13 to step 19. Experimentally we found it is more efficient to simply keep 
multiple elements in the priority queue for the same vertex than to update the arrival 
times of vertices already in the priority queue so as to ensure all elements correspond 
to different vertices.

The correctness proof for Algorithm  1 is the same as that given in Bui-Xuan et  al. 
(2003).
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Min‑hop paths in interval temporal graphs
The algorithms of Bui‑Xuan et al. (2003) and Wu et al. (2016a)

In the min-hop path problem, we are to find paths from a source vertex s to all remain-
ing vertices in the temporal graph. Each such path must depart s at or after a specified 
time tstart and must use the smallest number of hops (edges) in getting to its destination 
from among all paths that start at or after tstart.

Bui-Xuan et  al. (2003) use the term shortest path instead of min-hop path for this 
problem. The complexity of their algorithm5 is O(NMitg log δ) , where N is the number of 
vertices, Mitg is the number of edges, and δ is the maximum number of intervals on an 
edge.

While Wu et al. (2016a) do not consider the min-hop problem explicitly, they present 
algorithms to find the length of shortest paths from a source vertex to all other vertices 
in a contact sequence temporal graph. This algorithm is easily modified to compute the 
number of hops on min-hop paths from the source vertex by simply assuming that the 
distance accumulated on every edge traversal is just 1 instead of the � for the edge. The 
complexity of Wu’s algorithm that represents a contact sequence temporal graph as a 
time ordered sequence of edges is O(N +Mcsg log dmax) , where dmax is the maximum 
in-degree of a vertex (Wu et al. 2016b). Note that the total number of edges Mitg in the 
interval temporal graph is different from Mcsg in contact sequence temporal graph rep-
resentation; often, Mcsg is much larger than Mitg.

Our algorithm

Methodology

We now develop a faster min-hop algorithm for Interval temporal graphs than that of 
Bui-Xuan et al. (2003). Unlike the algorithm of Bui-Xuan et al. (2003) our algorithm does 
not require the � s for all intervals associated with an edge to be the same. It does, how-
ever, assume that redundant intervals have been removed. Our algorithm, Algorithm 2, 
is a greedy algorithm that first identifies all vertices that can be reached from s is one 
hop, then those that can be reached in 2 hops and so on. The algorithm terminates when 
one of the following conditions is met: 

1.	 All V vertices have been reached.
2.	 No new vertices are discovered in a given hop or the earliest arrival time for none of 

the previously reached vertex decreases. This means that no new vertices will be dis-
covered in future rounds.

3.	 The hop count is V − 1 . Since the maximum hop-count for paths in a graph with V 
vertices is V − 1 , hop counts larger than this need not be considered.

Algorithm details

Some of the data structures used in our algorithm are described below. 

5  There is a bug in the algorithm presented by Xuan et al. In Step 2.c of Algorithm 3 in their paper (Bui-Xuan et al. 2003), 
the algorithm can potentially overwrite a path to v from the previous round with a new path computed in the current 
round, before the path to v from the previous round has been extended in the current round.
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1.	 incSt is a structure that keeps track of vertices discovered in every hop. The fields in 
this structure are as follows: 

(a)	 curVtxId—is the current vertex.
(b)	 arrTm—is the time of arrival at the current vertex.
(c)	 refPrvIncSt—is reference to previous incSt that stores similar information about 

previous vertex on this path

2.	 allHopPaths—array of lists that stores list of vertices discovered at every hop. This 
array has at most H lists, where H is the maximum number of hops in min-hop paths 
from source vertex, s to any of the vertices v ∈ V  . Every element of the list is an 
instance of the structure incSt.

3.	 tEKA—array that stores an earliest known arrival time to every vertex v.
4.	 MHP—array used to retrieve the min hop paths to every vertex v ∈ V  . The elements 

of the array are a tuple h, refIncSt, where h is the number of hops in the min-hop path 
to the vertex v and refIncSt is the reference to an instance of incSt in the list stored at 
index h of allHopPaths. This instance of incSt is used to trace back the min-hop path 
to vertex v from the source vertex s.

Example

As an example, consider the interval temporal graph of Fig. 8. Let the source vertex be S 
and tstart = 0 . In the first round ( hopCnt = 1 ), the neighbors A, B, and C are identified 
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as one-hop neighbors of S with one-hop path arrival times of 1, 5, and 10, respec-
tively. In the next round ( hopCnt = 2 ), these one-hop paths are expanded to two-hop 
paths to vertices B (S, A, B ) and C (S, B, C). The arrival times of these paths are 2 and 
6, respectively. Since these arrival times are earlier than the previous arrival times at B 
and C, these newly found two-hop paths may lead to new vertices. In the third round 
( hopCnt = 3 ), the earlier arriving 2-hop paths to B and C are expanded. While the 2-hop 
path to C cannot be expanded any further, the 2-hop path to B is expanded to get a 3-hop 
path to C that gets to C at 4. This path is expanded in the next round ( hopCnt = 4 ) and 
the 4-hop path to D (S, A, B, C, D) is discovered. This path arrives at D at 5. The algo-
rithm now terminates as hopCnt = 4 = V − 1 (note that coincidentally, totVsRchd = V  
at this time in this example).

Correctness proof and complexity

Theorem 2  Algorithm 2 finds min-hop paths from the source vertex, s to all other verti-
ces v ∈ V  in the temporal graph G = (V ,E)

Proof  We can prove this by induction. After k hops, assume: 

1.	 We have found min-hop paths to all vertices reachable in (≤ k) hops.
2.	 We have found the k-hop foremost paths to all vertices reachable in k hops.
3.	 Any such foremost path that ends at time t at a vertex v, is also a minimum hop path 

from s to v arriving at or before time t.

For the next hop k + 1 , any new paths that we discover are one-hop extensions of the 
foremost paths found in hop k, using the function next of “The function next” section. 
Such newly discovered paths are also the k + 1 hop foremost paths. This is because mini-
mum extension of a foremost path is also a foremost path. Also notice that we find such 
paths to all the reachable vertices in k + 1 hops as we try to extend every foremost path 
that was reachable in k hops. Further, any vertex discovered for the first time in hop 

Fig. 8  Min hop paths in interval graph
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k + 1 requires minimum k + 1 hops to get there, otherwise it should have been discov-
ered in an earlier hop because of the hypothesis above.
It is easy to see that the base condition is true for hop 1, as starting from source ver-
tex, s we find earliest arrival time to all its neighbors using the function f ((s, nbr), tstart) . 
Therefore, we find all vertices reachable in 1 hop and we also find the foremost time in 
which they can be reached, in 1 hop. �

The asymptotic complexity of Algorithm 2 is O(NM log δ) , which is the same as that of 
the min-hop algorithm of Bui-Xuan et al. (2003). Our algorithm is however simpler and 
works for interval temporal graphs in which the � s may be different for different inter-
vals on the same edge while that of Bui-Xuan et al. (2003) requires all intervals on an 
edge to have the same � . We demonstrate, in the next section, that despite the generality 
of our algorithm it is much faster than that of Bui-Xuan et al. (2003) even when all inter-
vals on an edge have the same �.

Experimental results
In this section, we assess the relative performance of our foremost path and min-hop 
path algorithms to that of the one-pass algorithms in Wu et al. (2016a) for these prob-
lems and the min-hop algorithm of Bui-Xuan et al. (2003). Our experimental platform 
was an Intel Core,i9-7900X CPU @ 3.30GHz processor with 64  GB RAM. The C++ 
codes for the one-pass contact sequence temporal graph algorithms was obtained from 
the authors of Wu et  al. (2016a) and their code for the shortest paths problem modi-
fied to compute the number of hops in min-hop paths. All other algorithms were coded 
by us in C++. The codes were compiled using the g ++ver.7.5.0 compiler with option 
O2. For test data, we used the datasets used in Wu et al. (2016a), which were also used 
in Bentert et al. (2020), as well as some synthetic datasets generated by us. As stated in 
Wu et al. (2016a), their algorithms do not work when some � s are 0 though they may be 
extended to work when this is the case. This limitation did not affect our experiments as 
none of the datasets used by us have a � of 0.

The algorithm of Bui-Xuan et al. (2003) for the min-hop problem needed two changes 
so it could be compared with our algorithm and that of Wu et al. (2016a). The changes 
are as follows: 

1.	 We fixed the bug in the min-hop algorithm of Bui-Xuan et al. (2003) that was men-
tioned earlier in “Min-hop paths in interval temporal graphs” section of this paper.

2.	 Algorithm 2 of Bui-Xuan et al. (2003) is repeatedly called by Algorithm 3 of Bui-Xuan 
et al. (2003), which is their min-hop algorithm. Algorithm 2 of Bui-Xuan et al. (2003) 
goes through all edges in the graph to find new minimum paths in a given hop and 
saves them in array variables emin and tmin used by that algorithm. If in a given hop 
no new minimum paths are discovered, then they won’t be discovered in any future 
hops either. Therefore, their min-hop algorithm can be terminated after the first such 
hop. Adding this early termination condition to their algorithm vastly improves their 
run time. For example, without the early termination condition, the min-hop algo-
rithm of Bui-Xuan et al. (2003) took 943 s to find minimum hop paths in the arxiv 
dataset, but with the early termination condition added, it took only 0.17 s.
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Datasets

The 14 datasets described in Wu et  al. (2016a) and also in Bentert et  al. (2020) were 
downloaded by us from the Koblenz network (Kunegis 2013). The description of the 
datasets in Wu et al. (2016a) closely matches the following: 

	 1.	 arXiv hep-ph—http://​konect.​cc/​netwo​rks/​ca-​cit-​HepPh
	 2.	 dblp—http://​konect.​cc/​netwo​rks/​dblp_​coaut​hor
	 3.	 delicious—http://​konect.​cc/​netwo​rks/​delic​ious-​ut
	 4.	 digg—http://​konect.​cc/​netwo​rks/​munmun_​digg_​reply
	 5.	 wikipedia elections—http://​konect.​cc/​netwo​rks/​elec
	 6.	 enron—http://​konect.​cc/​netwo​rks/​enron
	 7.	 epinions trust—http://​konect.​cc/​netwo​rks/​epini​ons
	 8.	 facebook—http://​konect.​cc/​netwo​rks/​faceb​ook-​wosn-​links
	 9.	 flickr—http://​konect.​cc/​netwo​rks/​flickr-​growth
	10.	 slashdot—http://​konect.​cc/​netwo​rks/​slash​dot-​threa​ds
	11.	 wikipedia conflict—http://​konect.​cc/​netwo​rks/​wikic​onfli​ct
	12.	 wikipedia edits—http://​konect.​cc/​netwo​rks/​edit-​enwiki
	13.	 wikipedia growth—http://​konect.​cc/​netwo​rks/​wikip​edia-​growth
	14.	 youTube—http://​konect.​cc/​netwo​rks/​youtu​be-u-​growth.

The dblp dataset downloaded from the link mentioned above had a few negative times-
tamps, so we discarded this dataset. The statistics for the remaining 13 datasets are given 
in. Table 1. In this table, |V| is the number of vertices, |Es| is the number of edges in the 
underlying static graph, Wu-edges is the number of edges in the contact sequence tem-
poral graph, and activity is the ratio Wu-edges/|Es| . Note that the number of edges in the 
interval temporal graph is also |Es|.

Wu et al. (2016a) also experimented against flow network from yahoo, but we did not 
experiment against that network, because the network is too large to fit into memory 
of one computer. Parallel or distributed implementation of these Algorithms are out of 
scope of this paper. Statistics of some of the Koblenz networks are different from those 

Table 1  Koblenz collection graph statistics

Dataset |V| |Es| Wu-edges Activity

Epin 131.8K 840.8K 841.3K 1

Elec 7119 103.6K 103.6K 1

Fb 63.7K 817K 817K 1

Flickr 2302.9K 33,140K 33,140K 1

Growth 1870.7K 39,953K 39,953K 1

Youtube 3223K 9375K 9375K 1

Digg 30.3K 85.2K 87.6K 1.02

Slash 51K 130.3K 140.7K 1.07

Conflict 118K 2027.8K 2917.7K 1.43

Arxiv 28K 3148K 4596K 1.45

Wiki-en-edit 42,640K 255,709K 572,591K 2.23

Enron 87,274 320.1K 1148K 3.58

Delicious 4512K 81,988K 301,186K 3.67

http://konect.cc/networks/ca-cit-HepPh
http://konect.cc/networks/dblp_coauthor
http://konect.cc/networks/delicious-ut
http://konect.cc/networks/munmun_digg_reply
http://konect.cc/networks/elec
http://konect.cc/networks/enron
http://konect.cc/networks/epinions
http://konect.cc/networks/facebook-wosn-links
http://konect.cc/networks/flickr-growth
http://konect.cc/networks/slashdot-threads
http://konect.cc/networks/wikiconflict
http://konect.cc/networks/edit-enwiki
http://konect.cc/networks/wikipedia-growth
http://konect.cc/networks/youtube-u-growth
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described in Wu et al. (2016a). This may be because the datasets have evolved/changed 
since the time they were used by the authors of Wu et al. (2016a). The statistics of the 
downloaded datasets are described in Table 1. We implemented the Foremost paths algo-
rithm, described in Algorithm 1 and the Min-Hop paths algorithm described in Algo-
rithm 2 on all these datasets except the dblp network for the reasons described above. 
The datasets have a wide range of sizes in terms of the number of vertices and edges. The 
temporal activity defined as the ratio of Wu-edges to the static edges, on these datasets 
is very low ranging from 1 or no activity to a maximum value of 3.67 on the delicious 
dataset. The travel times on each edge is assumed to be a constant value of 1 as the data-
sets do not specify the travel time. Also, choice of this travel time is same as that used for 
experimental purposes in Wu et al. (2016a) and Bentert et al. (2020). Algorithms of Wu 
et al. (2016a) do not work with the travel time of 0, whereas our Algorithms work for any 
travel time ≥ 0 . Wu et al. (2016a) also used an additional much larger dataset called flow. 
This dataset, however, was used only to benchmark their parallel algorithms as it was too 
large to fit in the memory of the computer used to benchmark their serial codes. We do 
not use this very large dataset either. The downloaded Koblenz datasets do not have � 
values associated with the edges. All � values were set to 1 by us. The authors of Wu et al. 
(2016a) and Bentert et al. (2020) confirmed that they did the same for their experiments.

The activity in the 13 datasets of Table 1, which ranges from a low of about 1 to a high 
of about 3.67 is rather low. Further, all � values are 1. So, we generated datasets with 
higher activity and variable � s synthetically by starting with the social network graphs 
of youtube, flickr, livejournal available at http://​socia​lnetw​orks.​mpi-​sws.​org/​data-​imc20​
07.​html shared by the authors of Mislove et al. (2007). These graphs represent user-to-
user interactions. We synthesized temporal graphs from these large social graphs by ran-
domly adding temporal intervals to each static edge. To generate the temporal intervals 
we used three random variables (I, D, T) for assigning random values to three temporal 
parameters, namely the number of Intervals on a given edge, the Duration of each inter-
val and the Travel time ( � ) on each of the intervals. We assigned values to each of these 
three random variables using the normal distribution around a fixed mean value for each 
of the variables. For example, in the first synthetic graph, using a static youtube graph 
with 1.15M vertices and 4.9M static edges as a base graph, we added a random number 
of temporal intervals on each static edge (random variable I), using a normal distribu-
tion with a mean value of 4. We assigned a random duration to each of these intervals 
(random variable D) using a normal distribution with a mean value of 5 time units. We 
also assigned a random value for the travel time on each of these intervals (random vari-
able T) using a normal distribution with a mean value of 3 time units. We generated 
the synthetic graphs from the other two social networks as well using the random vari-
ables (I, D, T) with normal distribution around the same mean values. Finally, we con-
verted these synthetic interval temporal graphs to contact sequence temporal graphs as 
described in “Data structures” section. Table 2 shows the statistics for the 5 synthetic 
temporal graphs generated by us.

Table 3 gives the time (in seconds) required to read each dataset from disk as well 
as the disk memory required by each dataset. The columns labeled Wu are for the 
case when the dataset is stored as a contact sequence temporal graph and those 
labeled Ours are for the case when the interval temporal graph representation is 

http://socialnetworks.mpi-sws.org/data-imc2007.html
http://socialnetworks.mpi-sws.org/data-imc2007.html
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used. As expected, the reading time and the the disk space required when the con-
tact sequence model is used are less than when the interval model is used when 
the edge activity is low; the reverse is the case when the edge activity is high. As 
an example, for the large synthetic flickr graph with an activity factor of 32.1, the 
reading time of the interval temporal graph is 16.19 s while that of the correspond-
ing contact sequence graph is 148 s. The size of the interval temporal graph for the 
same dataset on disk is 1.24 GB as compared 13.6 GB for the corresponding contact 
sequence graph.

Table 2  Synthetic graphs statistics

Dataset |V| |Es| Wu-edges Edge activity

Graphs with µI = 4,µD = 5,µT = 3

 Youtube 1157.8K 4945K 105,039K 21.2

 Flickr 1861K 22,613.9K 480,172K 21.24

 Livejournal 5284K 77,402.6K 1,643,438K 21.3

Graphs with µI = 4,µD = 8,µT = 3

 Youtube 1157.8K 4945K 159,103.7K 32.1

 Flickr 1861K 22,613.9K 727,405.9K 32.1

Table 3  Reading times and sizes

Dataset Reading time (in s) Sizes in MBs

Wu Ours Wu Ours

Koblenz collection

 Epin 0.20 0.35 19.6 29.8

 Elec 0.041 0.060 2.3 3.6

 Fb 0.18 0.30 15.4 21.7

 Flickr 8.45 13.31 868 1299

 Growth 9.53 16.38 1051 1571

 Youtube 2.37 3.91 257 379

 Digg 0.039 0.053 2 3.1

 Slash 0.051 0.077 3.3 5

 Conflict 0.67 1.05 74.1 103.3

 Arxiv 0.94 1.32 83.8 103.6

 Wiki-en-edit 143.87 169.72 15.52 17.81

 Enron 0.28 0.30 25.8 29.7

 Delicious 68.38 81.47 7346 8385

Synthetic Datasets with µI = 4,µD = 5,µT = 3

 Youtube 20.94 3.59 1958 272.2

 Flickr 95.26 16.36 9030 1248

 Livejournal 344.13 56.16 33,838 4411.8

Synthetic Datasets with µI = 4,µD = 8,µT = 3

 Youtube 32.58 3.53 2966 272.3

 Flickr 148.03 16.19 13,682 1249
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Run times

For the run times reported in this section, we assume that the graph is resident in mem-
ory (i.e., the read time from disk is not accounted for). This is consistent with the report-
ing in Wu et al. (2016a) and Bentert et al. (2020) and also practice where the temporal 
graph is input once and queried often for optimal paths. For the 13 Koblenz datasets, 
we report the average of the runtimes from 100 randomly selected source vertices and 
for the synthetic graphs the reported run times are the average for 5 randomly selected 
source vertices. The reduction from 100 to 5 was necessitated by the bigger size of the 
synthetic datasets that resulted in substantially larger run times.

The average run-times (in seconds) for the Koblenz and synthetic datasets are given 
in Table 4. The speedups (time taken by competing algorithms of Wu et al. (2016a) and 
Bui-Xuan et al. (2003)/time taken by our algorithm) is also shown visually in Figs. 9, 10, 
11, 12 and 13. In the visual representation, the speedup for the Koblenz dataset “conflict” 
is shaded differently from the others as this speedup is too large to display. For the fore-
most paths problem, our algorithm outperforms that of Wu et al. (2016a) on 6 of the 13 
Koblenz datasets and all 5 of the synthetic datasets. The speedups obtained by us over 
the algorithm of Wu et al. (2016a) range from 0.286 to 1800 for the Koblenz datasets and 
from 1.46 to 3.77 on the synthetic datasets. This is in contrast to the results in Wu et al. 
(2016a) where the one-pass foremost paths algorithm of Wu et al. (2016a) outperformed 
the algorithm of Bui-Xuan et al. (2003) that we enhanced, on all datasets and often by a 
factor more than 10!

Table 4  Dataset run-times in seconds

Dataset Foremost Min-hop

Wu Ours Wu/ours Wu Xuan Ours Wu/ours Xuan/ours

Koblenz run-times

 Epin 0.0012 0.0040 0.3 0.0039 0.052 0.0052 0.74 10

 Elec 0.00020 0.00033 0.606 0.00052 0.0022 0.00033 1.55 6.66

 Fb 0.0010 0.0011 0.9 0.0030 0.042 0.0011 2.65 38.18

 Flickr 0.073 0.26 0.27 0.41 2.94 0.42 0.98 7.024

 Growth 0.14 0.89 0.16 1.44 11.40 1.31 1.1 8.69

 Youtube 0.03 0.018 1.64 0.097 0.34 0.013 7.38 25.8

 Digg 0.0001 0.0001 1.04 0.0004 0.003 7.115e−05 5.7 50.5

 Slash 0.0003 0.001 0.28 0.001 0.011 0.001 1 10.59

 Conflict 0.004 5.4e−07 1.8e3 0.004 0.018 5.9e−07 6.7e3 31.4e3

 Arxiv 0.006 0.006 0.99 0.016 0.17 0.009 1.8 19.44

 Wiki-en-edit 2.3 1.16 1.97 6.22 7.77 1.15 5.3 6.74

 Enron 0.001 0.001 1.37 0.004 0.014 0.0017 2.86 8.76

 Delicious 0.51 0.12 4.3 1.81 3.69 0.24 7.3 14.91

Synthetic run-times with µI = 4,µD = 5,µT = 3

 Youtube 0.31 0.21 1.46 4.11 0.32 12.7

 Flickr 1.35 0.47 2.84 19.2 1.08 17.6

 Livejournal 17.39 5.61 3.09 334.56 21.81 15.3

Synthetic run-times with µI = 4,µD = 8,µT = 3

 Youtube 0.44 0.20 2.15 6.72 0.33 20.1

 Flickr 1.79 0.47 3.77 23.13 1.01 22.7
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For the min-hop problem, our algorithm outperforms that of Bui-Xuan et al. (2003) 
on all of the 13 Koblenz datasets and also that of Wu et al. (2016a) on 11 of the 13 Kob-
lenz datasets. Our algorithm outperforms that of Wu et al. (2016a) on all 5 of the syn-
thetic datasets. We do not compare against the algorithm of Bui-Xuan et al. (2003) on 
the synthetic datasets as that algorithm assumes the travel times to be the same across 
all intervals on a given edge; an assumption that is not valid for our synthetic datasets. 
The speedups obtained by us over the algorithm of Bui-Xuan et al. (2003) range from 
6.66 to 31,000 on the Koblenz datasets. The speedups obtained by us over the algorithm 
of Wu et al. (2016a) range from 0.74 to 6700 for the Koblenz datasets and from 12.7 to 
22.7 on the synthetic datasets. The reason for the unusually high speedup observed for 

Fig. 9  Speedups over Wu’s algorithm for foremost paths on Koblenz datasets

Fig. 10  Speedups over Wu’s algorithm for foremost paths on synthetic datasets
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the Koblenz dataset “conflict” is that this dataset has very low temporal connectivity and 
our foremost and min-hop algorithms are able to detect this and thus terminate very 
quickly without examining all edges while the algorithms of Wu et al. (2016a) and Bui-
Xuan et al. (2003) necessarily examine all edges.

Algorithm of Wu et  al. (2016a) outperforms our algorithm on some of the Koblenz 
datasets. Our algorithm works on interval temporal graph model whereas the algorithm 
of Wu et  al. (2016a) works on the contact sequence graph model. Interval temporal 

Fig. 11  Speedups over Wu’s algorithm for min-hop paths on Koblenz datasets

Fig. 12  Speedups over Wu’s algorithm for min-hop paths on synthetic datasets
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graphs are a superset of contact sequence graphs as described in “Introduction” sec-
tion. Koblenz datasets are represented as contact sequence model that need to be trans-
formed to the interval model for experiments with our algorithm. For graphs that are 
small in size and have low temporal activity, contact sequence model is a more efficient 
representation and Wu et al’s algorithms can outperform our algorithms for such graphs. 
As these graphs get larger in size and temporal activity, our algorithms outperform that 
of Wu et al. (2016a) as illustrated in Table 4

The synthetic datasets described in Table 2, have time intervals of edge connectivity 
that translate to contact sequence edges at each time instance in such time intervals. 
These graphs have much higher temporal activity as described in Table 2. Our algorithm 
outperforms that of Wu et al. (2016a) on each of these graph instances.

Conclusion
We have demonstrated path problems that are NP-hard in the interval temporal graph 
model but solvable in polynomial time in the contact sequence temporal graph model. 
Additionally, we have extended the foremost path algorithm of Bui-Xuan et al. (2003) to 
the case when the time to traverse an edge may vary from one time interval to the next 
and developed a greedy algorithm to find min-hop paths in interval temporal graphs 
that is substantially faster than the min-hop algorithm of Bui-Xuan et  al. (2003). Our 
new algorithms were benchmarked against the fastest algorithms in Wu et al. (2016a) 
using both the datasets used in Wu et al. (2016a) and synthetic datasets. Our algorithm 
for foremost paths outperformed the algorithm in Wu et al. (2016a) on 6 of the 13 Kob-
lenz datasets used in Wu et al. (2016a) and all 5 of the synthetic datasets. The speedups 
obtained by us range from 0.286 to 1800 for the Koblenz datasets and from 1.46 to 3.77 
on the synthetic datasets. For the min-hop problem, our algorithm outperforms that of 
Bui-Xuan et  al. (2003) on all 13 Koblenz datasets and the speedups range from 6.6 to 

Fig. 13  Speedups over Xuan’s algorithm for min-hop paths on Koblenz datasets
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31000. Our algorithm also outperforms that of Wu et al. (2016a) on 11 of the 13 Koblenz 
datasets and all 5 of the synthetic datasets. The speedups obtained over Wu et al. (2016a) 
range from 0.74 to 6700 for the Koblenz datasets and from 12.7 to 22.7 on the synthetic 
datasets. Going forward we would like to extend our work to compute paths and walks 
with more than one optimization criteria. For example, when computing foremost walks 
and paths in a temporal graph, it would be interesting to examine problems that require 
finding foremost walk with minimum waiting time along the walk. In other words we 
would like to explore problems like min-wait foremost walks, min-hop foremost walks, 
min-cost foremost walks etc. We would also like to study the problem of optimizing lin-
ear combination of multiple optimization criteria for interval temporal graphs which is 
studied by Bentert et al. (2020) for contact sequence graphs.
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