
Algorithms for optimal min hop
and foremost paths in interval temporal graphs
Anuj Jain1,2*    and Sartaj K. Sahni1 

Introduction
Temporal graphs are graphs in which the edges have time stamps. For example, in a tem-
poral graph in which the vertices represent airports, a flight from (say) New York to Chi-
cago that departs New York at 2 pm and has a duration of 3 h (i.e., it arrives at Chicago at
5 pm) could be represented by a directed edge from New York to Chicago with the label
(2 pm, 3 h). Here, 2 pm is the time stamp and 3 h is the traditional edge weight. In a tem-
poral graph that represents a road network, the vertices would represent road intersec-
tions; a directed edge from A to B would represent the road segment from A to B. This
segment could be labeled by a sequence of tuples of the form ([t1− t2], �) where t1 and
t2 are time stamps with the interpretation that if one departs A at a time t, t1 ≤ t ≤ t2 ,

Abstract 

Path problems are fundamental to the study of graphs. Temporal graphs are graphs in
which the edges connecting the vertices change with time. Min hop paths problem in
a temporal graph is the problem of finding time respecting paths from source vertex to
every destination vertex such that the path goes through minimum number of edges.
Foremost paths problem in a temporal graph requires to find time respecting paths
that arrive at the destination vertices at earliest possible time. In this paper we present
algorithms to find min hop paths and foremost paths in interval temporal graphs.
These algorithms are benchmarked against the fastest algorithms known for foremost
and min-hop paths by Wu et al. (IEEE Trans Knowl Data Eng 28(11):2927–2942, 2016a.
https://​doi.​org/​10.​1109/​TKDE.​2016.​25940​65) that work on contact sequence tempo-
ral graph model. On the available test data, our foremost path algorithm provides a
speedup of up to 1800 over the fastest algorithm for contact sequence graphs; the
speedup for our min-hop algorithm is up to 6700. We also demonstrate that interval
temporal graph model on which our algorithms work represents a superset of con-
tact sequence temporal graphs. We show that path problems exist that are NP-hard
in interval temporal graph model but polynomial in the contact sequence temporal
graph model in terms of the number of vertices and edges in the input graph. This
is due to the fact that the contact sequence graph model may require much larger
number of edges than the corresponding interval temporal graph to represent a given
temporal graph.

Keywords:  Interval temporal graphs, Contact sequence temporal graphs, Foremost
path, Min-hop path, NP-hard

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Jain and Sahni ﻿Applied Network Science (2022) 7:60
https://doi.org/10.1007/s41109-022-00499-3

Applied Network Science

This work is an extension of our
paper Min Hop and Foremost
Paths in Interval Temporal
Graphs that appeared in ISCC
2021

*Correspondence:
jainanuj99@gmail.com

1 CISE Department, University
of Florida, Gainesville, USA
2 Engineering Department,
Adobe Systems Inc., Lehi, USA

http://orcid.org/0000-0002-3837-5014
https://doi.org/10.1109/TKDE.2016.2594065
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-022-00499-3&domain=pdf

Page 2 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

one will reach B at time t + � ( [t1− t2] ) denotes the permissible departure interval from
A). The sequence of triples would model different congestion intervals as well as inter-
vals in which the road segment is closed for maintenance. In a contact sequence tempo-
ral graph, the edges are labeled as in the airport application and in an interval temporal
graph, they are labeled as in the road network application. Figures 1 and 2 are examples
of contact sequence and interval temporal graphs, respectively.

When time is discrete, every contact sequence temporal graph has an equivalent inter-
val temporal graph and vice versa. Temporal graphs, which are also known as evolving
graphs, dynamic graphs, and time varying graphs, have been used to study the spread
of viral diseases, study information dissemination by means of physical/virtual contact
between people, understanding the behavior on online social networks, modeling data
transmission in phone networks, modeling traffic flow in road networks, and studying
biological networks at the molecular level, for example Scheideler (2002), Stojmenović
(2002), Holme and Saramäki (2012), Michail (2015), Santoro et al. (2011), Kuhn and
Oshman (2011) and Bhadra and Ferreira (2012).

Temporal graph exploration and reachability problems are studied in Casteigts et al.
(2020), Erlebach et al. (2021) and Michail and Spirakis (2016). Casteigts et al. (2020)
investigates temporal reachability and temporal spanners in random simple temporal

Fig. 1  Contact sequence temporal graph

Fig. 2  Interval temporal graph

Page 3 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

graphs. Such graphs are mathematically equivalent to random edge-ordered graphs. In
Erlebach et al. (2021) authors consider the TEXP problem or the temporal graph explo-
ration problem. This problem is defined as finding a temporal walk that starts at a given
start vertex, visits all vertices of the graph and has smallest arrival time. Michail and Spi-
rakis (2016) studies the traveling salesman problem for temporal graphs. They present
approximation algorithms to find min-cost TSP tour that visits every vertex in a tem-
poral graph. Temporal versions of other combinatorial optimization problems are also
studied in this work.

Path problems on temporal graphs are studied in Wu et al. (2016a), Bui-Xuan et al.
(2003), Bentert et al. (2020) and Guo et al. (2019). While Bui-Xuan et al. (2003) focuses
on interval temporal graphs, Wu et al. (2016a) and Bentert et al. (2020) use the contact
sequence model. Wu et al. (2016a) consider two representations of a contact sequence
graph: a time ordered sequence of edges and a graph representation and demonstrate
that on the datasets used by them, the studied path problems can be solved faster using
the time ordered sequence of edges representation than either the graph representation
proposed by them or the interval temporal graph representation used by Bui-Xuan et al.
(2003). Bentert et al. (2020) consider extensions of the path problems studied in Wu
et al. (2016a) and Bui-Xuan et al. (2003). This extension requires a specified minimum
and maximum wait (stay) time at intermediate vertices. They also permit going through
the same vertex multiple times. Hence, they consider walks from a source vertex to des-
tination vertices while Wu et al. (2016a) and Bui-Xuan et al. (2003) are limited to paths.
The algorithms of Bui-Xuan et al. (2003) are limited to the case when all triples on an
edge have the same travel time � . The path algorithms of Wu et al. (2016a) have been
incorporated into the temporal graph library Tink (Lightenberg et al. 2018).

Our main contributions in this paper are:

1.	 We demonstrate the existence of path problems that are NP-hard for interval tempo-
ral graphs but polynomially solvable for contact sequence temporal graphs.

2.	 The algorithm of Bui-Xuan et al. (2003) for foremost paths in an interval temporal
graph is extended to work when the triples on an edge may have different � values.

3.	 We propose a different data structure for interval temporal graphs than proposed in
Bui-Xuan et al. (2003). Using this data structure, our extended foremost path algo-
rithm is faster than that of Wu et al. (2016a) on about half of the datasets used in Wu
et al. (2016a); the maximum speedup obtained relative to Wu et al. (2016a) is 1800.
On all synthetic datasets generated by us, we are faster with a maximum speedup of
3.77. We note that using the data structure in Bui-Xuan et al. (2003) and Wu et al.
(2016a) report that their algorithm is faster on all datasets and achieves a speedup of
up to 22 over the algorithm in Bui-Xuan et al. (2003).

4.	 We develop an algorithm for min-hop paths on interval temporal graphs that is
faster than that of Bui-Xuan et al. (2003) and unlike the algorithm of Bui-Xuan et al.
(2003) works even when the triples on an edge have different � values. Our algorithm
obtains a speedup of up to 31,000 relative to the min-hop algorithm of Bui-Xuan
et al. (2003) on the datasets of Wu et al. (2016a).

5.	 Our min-hop algorithm is faster than that of Wu et al. (2016a) on all but 2 of the
datasets used in Wu et al. (2016a) and all synthetic datasets generated by us. We

Page 4 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

obtain a speedup of up to 6700 on the datasets of Wu et al. (2016a). On synthetic
datasets, a speedup of up to 22.7 is achieved.

The roadmap of this paper is as follows. In “Preliminaries” section we provide formal
definitions for contact sequence and interval temporal graphs, define path problems
on temporal graphs, give the data structure we use for interval temporal graphs, and
define a function used by our algorithms. In “NP-hard interval temporal graph path
problems” section we demonstrate path problems that are NP-hard for interval tem-
poral graphs but polynomial for contact sequence graphs. In “Redundant intervals”
section, we introduce the notion of a redundant interval and show that the elimina-
tion of these redundant intervals does not change the foremost and min-hop paths
in a temporal graph. Our extension of the foremost path algorithm of Bui-Xuan et al.
(2003) to the case when intervals on an edge may have different � values is described
in “Foremost paths in interval temporal graphs” section and our algorithm for min-
hop paths in interval temporal graphs is developed “Min-hop paths in interval tem-
poral graphs” section. Experimental results are presented in “Experimental results”
section and we conclude in “Conclusion” section.

Preliminaries
Definitions

Definition 1  (Contact sequence temporal graphs) In a contact sequence temporal graph
G = (V ,E) each edge e ∈ E is represented by a tuple (u, v, t, �) , where t is the permissible
departure time for travel from u to v using the edge e and � is the amount of time it takes
to travel on edge e from u to v when one starts at time t. So, u is reached at time t + � .
If there are multiple time instances when departures from u to v are permissible, there
will be multiple such temporal edges between u and v represented as a series of temporal
edges [(u, v, t1, �1); (u, v, t2, �2) . . . ; (u, v, tn, �n)] . The number of temporal edges between
vertices u and v, which is also the number of distinct permissible departure times from u
to v, gives the amount of activity on the connection (u, v).

Definition 2  (Interval temporal graphs) In an interval temporal graph G = (V ,E) , each
edge e ∈ E is represented by a tuple (u, v, intvls). This tuple represents a connection from
u to v. intvls is a time ordered sequence of tuples [(s1, c1, �1); (s2, c2, �2); . . . ; (sn, cn, �n)] .
The ith interval starts at time si and closes (ends) at time ci ; �i is the time it takes to trav-
erse the edge when travel departs u at a time t such that [si ≤ t ≤ ci] (v is reached at time
t + �i ). The intervals are in ascending order of start times si and collectively they define
the permissible departure times from u.

We note that in the interval temporal graph model used by Bui-Xuan et al. (2003),
all intervals associated with an edge (u, v) have the same � value. Further, ci gives the
time by which travel on (u, v) must finish rather than the last permissible departure
time. So, in the model of Bui-Xuan et al. (2003), the permissible departure times for u
defined by the ith interval are si , . . . , ci − �i.

Page 5 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

A path (equivalently, valid path, temporal path or time respecting path) in a tempo-
ral graph is an alternating sequence of vertices and departure times u1, t1,u2, t2, . . . ,uk
where ti is a permissible departure time from ui to ui+1 where 1 ≤ i < k , and
(ti + �i) ≤ ti+1 , ti + �i is the arrival time at ui+1 when departing ui at ti using the
connection (ui,ui+1) . For this path, u1 is the source vertex and uk the destination.
P1 = S, 0,B, 5,C is a path from S to C in the temporal graph of Fig. 2. This path leaves S
at 0 and arrives at B at time 5. It then leaves B immediately at time 5 and arrives at C at
time 6. P1 is a 2-hop path from S to C with a first hop to B and then a second hop to C.
P2 = S, 0,A, 1,B, 3,C is another valid path from S to C. This path also leaves S at time 0.
It gets to A at time 1 and departs immediately for vertex B where it arrives at time 2. At
B, it waits for 1 unit until time 3 and departs for C getting there at time 4. P2 is a 3-hop
path from S to C.

We are interested in paths in a temporal graph that start at a vertex u at a time ≥ tstart
and end at another vertex v. Let S(u, v) comprise all valid paths from u to v that depart
u at a time ≥ tstart . A foremost path is a path in S(u, v) that gets to v at the earliest time;
a min-hop path is a path in S(u, v) that has the fewest number of hops; a fastest path is
a path in S(u, v) for which (arrival time at v—departure time from u) is minimum; and a
shortest path is a path in S(u, v) that minimizes the sum of the � s on the path.1

Bui-Xuan et al. (2003) develop polynomial time algorithms for foremost, min-hop, and
fastest paths in interval temporal graphs. Wu et al. (2016a) do this for contact sequence
graphs.2 They also develop algorithms for reverse-foremost paths (paths with the latest
departure time and terminating at a specified vertex).

Data structures

Bui-Xuan et al. (2003) use linked adjacency lists to represent an interval temporal graph.
We, instead, use array adjacency lists (Sahni 2004). For example, the interval temporal
graph of Fig. 3 is represented by the array adjacency list of Fig. 4. The data structure
comprises a (say) C++ vector with one slot for each vertex in the graph. This is the ver-
tical vector in the figure. Slot for any vertex u itself contains a vector of vertices adjacent

Fig. 3  Example interval temporal graph

1  Bui-Xuan et al. (2003) use the term shortest path to mean a min-hop path.
2  While Wu et al. (2016a) does not explicitly consider min-hop paths, their shortest path algorithm is easily modified to
find min-hop paths.

Page 6 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

from u. For example, the slot for S in the vertical vector has the adjacent vertices vector
(A.B). Associated with each adjacent vertex v from u, there is a vector of time ordered
tuples for the edge (u, v). In Fig. 4, ([0–1],1), ([2–6],3) is the time ordered vector for the
edge (S, A).

Wu et al. (2016a) consider two data structures for contact sequence graphs. In the
first of these, the graph is simply represented as a sorted sequence of edges (tuples) of
the form e = (u, v, t, �) ; this sequence is in non-decreasing order of t. The second rep-
resentation is a graph that is quite different from that of Fig. 4 and which their experi-
ments show to be inferior for all path problems studied by them except the fastest path
problem where the two representations are competitive. Since we do not consider the
fastest path problem here, we do not describe their graph representation. However, we
mention that their graph representation has more edges than their sorted sequence rep-
resentation. When time is discrete, every interval temporal graph can be transformed
into a contact-sequence graph that has the same foremost, min-hop, shortest, fastest,
and reverse-fastest paths. In this transformation, we replace each edge in the interval
temporal graph by as many contact sequence edges as the number of permissible depar-
ture times for edge intervals. For example, if time is an integer, then the the connection
(S, A) in Fig. 3 with the interval sequence ([0–1],1), ([2–6],3) gets replaced by the tuples
(S, A, 0, 1), (S, A, 1, 1), (S, A, 2, 3), (S, A, 3, 3), (S, A, 4, 3), (S, A, 5, 3), (S, A, 6, 3). As is evi-
dent, this transformation preserves valid paths but has the potential for explosive growth
in the number of edges and consequently in the memory needed. For example, the inte-
ger interval [1, 100,000] would result in 100,000 contact sequence edges. As we shall see
in the next section, this explosive growth in instance size can result in a path problem
being NP-hard in the interval model but polynomial in the contact sequence model.

We note also that every contact sequence temporal graph may be transformed into an
equivalent interval temporal graph by coalescing the multiple edges that connect a pair
of vertices (u, v) into a single edge with an appropriate time ordered sequence of inter-
vals; each interval’s start time is ≤ its close time.

Fig. 4  Data structure representing Interval temporal graph of Fig. 3

Page 7 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

The function next

Bui-Xuan et al. (2003) define a function that given a time t and vertices u and v finds
the earliest permissible departure time greater than or equal to t on the edge (u, v). The
function is denoted as f((u, v), t). This function simply does a binary search on the inter-
vals associated with the edge (u, v). It runs in O(log(k)) time, where k is the number of
intervals associated with the edge. This function is used by Bui-Xuan et al. (2003) in their
path algorithms and also used by us in our algorithms. We call this function next.

NP‑hard interval temporal graph path problems
Several problems are known to be NP-hard for contact sequence temporal graphs. For
example, Bhadra and Ferreira (2003) show that computing several types of strongly con-
nected components is NP-hard; Casteigts et al. (2019) show that determining the exist-
ence of a no-wait path between3 two vertices is NP-hard; and Zschoche et al. (2018)
show that computing several types of separators is NP-hard. Additional complexity
results for contact sequence temporal graphs appear in Casteigts et al. (2019). Since
contact sequence temporal graphs can be modeled by interval temporal graphs with at
most a constant factor increase in the instance size (see “Data structures” section), every
problem that is NP-hard for the contact sequence model remains NP-hard in the inter-
val model. However, the reverse may not be true as the transformation from the interval
model to the contact sequence model entails a possible explosion in the instance size. In
this section we demonstrate path problems that are NP-hard in the interval model but
polynomially solvable in the contact sequence model.

No wait acyclic path problem (NAPP)

The underlying static graph for any contact sequence temporal graph is the graph that
results when each edge (u, v, t, �) is replaced by the edge (u, v) and then multiple occur-
rences of the same edge (u, v) are replaced by a single edge (u, v). For an interval tempo-
ral graph, its underlying static graph is obtained by replacing each edge (u, v, intvls) by
the edge (u, v). Figure 5 shows the underlying static graphs for the temporal graphs of
Figs. 1 and 2.

Fig. 5  Underlying static graph for temporal graphs of Figs. 1 and 2

3  In a no-wait path, the arrival and departure times at each intermediate vertex are the same.

Page 8 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

The no-wait acyclic path problem (NAPP) is to find a no-wait (time respecting) path
from a vertex u to a vertex v in a temporal graph whose underlying static graph is acy-
clic. As noted above, Casteigts et al. (2019) have shown that determining the existence
of such a path is NP-hard for contact sequence graphs and hence for interval temporal
graphs when the graphs are not limited to be acyclic. We show below that NAPP is NP-
hard for the interval model but polynomially solvable for the contact sequence model
(for acyclic graphs).

NAPP is NP‑hard

Theorem 1  NAPP is NP-hard for the interval model but polynomially solvable for the
contact sequence model.

Proof  For the NP-hard proof, we use the sum of subsets problem that is known to be
NP-hard. In this problem, we are given n natural numbers S = {s1 , s2 , . . . , sn} and another
natural number M. We are to determine a subset of S that sums to M. For any instance
of the sum of subsets problem, we can construct, in polynomial time, the acyclic interval
temporal graph shown in Fig. 6. For all edges other than (un, v) the permissible depar-
ture times are from 0 through M (i.e., their associated interval is [0–M]) and the edge
(un, v) has the single permissible departure time M (equivalently, its associated interval
is [M–M] or simply [M]). The travel time ( � ) for edge (ui,ui+1) is si , that for (un, v) is 1,
and that for the remaining edges is 0. It is easy to see that the underlying static graph is
acyclic and that for every subset of S, there is a no-wait path from u0 to un that arrives at
un at a time equal to the sum of the si s in that subset. Further, all no-wait paths from u0
to v must get to un at time M. Hence, there is a no-wait path u0 to v iff there is a subset of
S that sums to M; this path gets to v at time M + 1 . Hence, NAPP is NP-hard.

The NAPP may be solved in polynomial time for contact sequence temporal graphs
whose underlying static graph is acyclic by considering vertices in topological order.
Suppose that the start vertex of the desired no-wait path is u and the destination vertex
is v. For each vertex w, we maintain a list of possible arrival times of no-wait paths from
u. Initially, this list is empty for all vertices other than u. The initial list for u is {0} . We
note that the size of the list for vertex w cannot exceed its in-degree as t is a possible
arrival time at w only if there is an edge (x,w, t1, �) such that t = t1+ � . Hence, when
the vertices are examined in topological order, the list for the vertex being currently

Fig. 6  Interval temporal graph demonstrating NP-hard algorithms

Page 9 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

examined may be computed from the lists of its incoming neighbors in polynomial time.
When done, if the list of v is empty, there is no no-wait path from u to v; if this list is not
empty, a no-wait path may be constructed in polynomial time using a traceback from
entries in the list for v. �

We note that the above proof is readily modified to show that finding foremost, fastest,
min-hop, and shortest no-wait paths in interval temporal graphs with an acyclic under-
lying static graph are NP-hard while these problems are polynomial for contact sequence
temporal graphs whose underlying static graph is acyclic. The above proof also shows
that finding no-wait walks (in a walk, a vertex may be visited more than once) in interval
temporal graphs in NP-hard.4 For contact sequence graphs, Bentert et al. (2020) have
developed polynomial time algorithms to find optimal walks using various optimization
functions. Further, the construction used in the proof is easily modified so that every
edge has a � value > 0.

Redundant intervals
It is possible for an interval (or portion of an interval) on an edge of an interval temporal
graph to be redundant in that the departure times in this interval may never be used
in an optimal path (e.g., a foremost path). For example, if the travel from u to v (on a
connection (u, v) represented in an edge e) starts at a time t where t ∈ [si, ci] , for some
interval i = (si, ci, �i) on e, then the arrival time at v is t + �i . If ( ci + �i) ≥ (si+1 + �i+1 )
where (i + 1) = (si+1, ci+1, �i+1) is the next interval on the edge e, then it is possible that
departing from u to v at a time in the interval i reaches v after a departure that starts in
the later interval (i + 1).

For path problems such as finding foremost, min-hop, shortest, and fastest paths, the
portion of the interval i that is beyond time t may be removed as an equal or better path
can always be found by starting at the start time si+1 of the next interval as opposed
to starting at or after time t in the interval i. The portion of interval i that may be so
removed is called redundant. All of the path problems studied in Wu et al. (2016a) and
Bui-Xuan et al. (2003) never need to use these redundant intervals.

Fig. 7  Interval graph with some slow intervals

4  Note that in the graph of Fig. 6, every walk is also a path.

Page 10 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

An example of a graph with some redundant intervals is shown in Fig. 7. In this graph,
a foremost path from S to C is, Pf = (S, 0,A, 5,B, 8,C) arriving at node C at time 9.
Notice that, even though we arrive at node A at time 3 using arc (S, A) and the first inter-
val on the arc (A, B) is still open at time 3, there is no benefit of using this interval with
the travel time of 6 as opposed to waiting at A for 2 time units and then using the next
interval at time 5 with a travel time of 2, that would get us to B, 2 time units sooner at 7.

It is important to note that there are some path problems in which intervals defined
to be redundant are actually useful and so should be retained when solving these path
problems as above. For example, in Fig. 7, if the problem was to find a minimum wait
path from S to C, the optimal path in this case would benefit by departing from the node
A as soon as possible, instead of waiting for the next faster interval. In this case, the min-
imum wait path would be Pmw = (S, 0,A, 3,B, 9,C) arriving at node C at time 10 with a
wait time of 0.

For the path problems studied in this paper (min-hop paths and foremost paths) as
well as those studied in Wu et al. (2016a) and Bui-Xuan et al. (2003) redundant intervals
may be safely removed from the interval temporal graph representation. Therefore, we
assume that our interval temporal graphs are free of redundant intervals.

The algorithm to remove redundant intervals from interval temporal graphs is
described below.

•	 For every edge

•	 Examine the intervals in descending order starting from interval(n− 1)
•	 For each interval(i) that is examined

* if (ci + �i > si+1 + �i+1) ⇒ c′i = si+1 + �i+1 − �i

* if (c′i ≥ si) ⇒ interval(i) ← (si, c
′
i)

* else eliminate interval(i)

Foremost paths in interval temporal graphs
Methodology

As noted earlier, Bui-Xuan et al. (2003) develop an algorithm to find foremost paths from
a source vertex s to all remaining vertices in an interval temporal graph; the foremost
paths are constrained to depart s at a time greater than or equal to tstart . This algorithm,
however, assumes that all intervals of an edge have the same � value (the � may be dif-
ferent for different edges). A minor extension of their algorithm enables it to work for
temporal interval graphs in which the � value may change from interval of an edge to the
next interval for the same edge.

Algorithmic strategy used to find foremost paths is similar to that used in Dijk-
stra’s shortest path algorithm. We begin with knowledge of the foremost paths from
start vertex to itself then generate foremost paths to remaining vertices in order of
the arrival times of these foremost paths. When a new foremost path is found, its
one edge extensions are considered much in the same way as in Dijkstra’s algorithm
and the projected arrival time of the foremost paths to neighbor vertices is updated

Page 11 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

as necessary. A min priority queue of projected foremost paths is maintained and in
each round, the foremost path with least arrival time is considered.

Algorithm details

Algorithm 1 describes this extended algorithm that assumes the interval temporal
graph has been pre-processed to remove redundant intervals.

Some of the key variables used in Algorithm 1 are:

1.	 tEAD—array that stores the earliest known arrival time at every vertex u. When the
algorithm terminates, every index of this array contains the foremost time of arrival
at the corresponding vertex u.

2.	 pred—array that contains the predecessor node for every vertex u in the foremost
path from the source vertex s. The pred array can be used to construct the foremost
path from s to every vertex u.

3.	 PQ—priority queue whose elements are pairs of the form (tEAD[u],u) and the first
element of each pair is the priority key. Our implementation uses a min-heap.

Note that step 10 of our algorithm may result in the priority queue containing many
entries for any given vertex v. However, from all the PQ entries for v, the one with
the least arrival time at v will be the first one to be removed from PQ in step 15, and
marked as closed in step 4. Therefore, when an element corresponding to a closed
vertex is removed from the priority queue, it can simply be discarded as in the loop
from step 13 to step 19. Experimentally we found it is more efficient to simply keep
multiple elements in the priority queue for the same vertex than to update the arrival
times of vertices already in the priority queue so as to ensure all elements correspond
to different vertices.

The correctness proof for Algorithm 1 is the same as that given in Bui-Xuan et al.
(2003).

Page 12 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

Min‑hop paths in interval temporal graphs
The algorithms of Bui‑Xuan et al. (2003) and Wu et al. (2016a)

In the min-hop path problem, we are to find paths from a source vertex s to all remain-
ing vertices in the temporal graph. Each such path must depart s at or after a specified
time tstart and must use the smallest number of hops (edges) in getting to its destination
from among all paths that start at or after tstart.

Bui-Xuan et al. (2003) use the term shortest path instead of min-hop path for this
problem. The complexity of their algorithm5 is O(NMitg log δ) , where N is the number of
vertices, Mitg is the number of edges, and δ is the maximum number of intervals on an
edge.

While Wu et al. (2016a) do not consider the min-hop problem explicitly, they present
algorithms to find the length of shortest paths from a source vertex to all other vertices
in a contact sequence temporal graph. This algorithm is easily modified to compute the
number of hops on min-hop paths from the source vertex by simply assuming that the
distance accumulated on every edge traversal is just 1 instead of the � for the edge. The
complexity of Wu’s algorithm that represents a contact sequence temporal graph as a
time ordered sequence of edges is O(N +Mcsg log dmax) , where dmax is the maximum
in-degree of a vertex (Wu et al. 2016b). Note that the total number of edges Mitg in the
interval temporal graph is different from Mcsg in contact sequence temporal graph rep-
resentation; often, Mcsg is much larger than Mitg.

Our algorithm

Methodology

We now develop a faster min-hop algorithm for Interval temporal graphs than that of
Bui-Xuan et al. (2003). Unlike the algorithm of Bui-Xuan et al. (2003) our algorithm does
not require the � s for all intervals associated with an edge to be the same. It does, how-
ever, assume that redundant intervals have been removed. Our algorithm, Algorithm 2,
is a greedy algorithm that first identifies all vertices that can be reached from s is one
hop, then those that can be reached in 2 hops and so on. The algorithm terminates when
one of the following conditions is met:

1.	 All V vertices have been reached.
2.	 No new vertices are discovered in a given hop or the earliest arrival time for none of

the previously reached vertex decreases. This means that no new vertices will be dis-
covered in future rounds.

3.	 The hop count is V − 1 . Since the maximum hop-count for paths in a graph with V
vertices is V − 1 , hop counts larger than this need not be considered.

Algorithm details

Some of the data structures used in our algorithm are described below.

5  There is a bug in the algorithm presented by Xuan et al. In Step 2.c of Algorithm 3 in their paper (Bui-Xuan et al. 2003),
the algorithm can potentially overwrite a path to v from the previous round with a new path computed in the current
round, before the path to v from the previous round has been extended in the current round.

Page 13 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

1.	 incSt is a structure that keeps track of vertices discovered in every hop. The fields in
this structure are as follows:

(a)	 curVtxId—is the current vertex.
(b)	 arrTm—is the time of arrival at the current vertex.
(c)	 refPrvIncSt—is reference to previous incSt that stores similar information about

previous vertex on this path

2.	 allHopPaths—array of lists that stores list of vertices discovered at every hop. This
array has at most H lists, where H is the maximum number of hops in min-hop paths
from source vertex, s to any of the vertices v ∈ V  . Every element of the list is an
instance of the structure incSt.

3.	 tEKA—array that stores an earliest known arrival time to every vertex v.
4.	 MHP—array used to retrieve the min hop paths to every vertex v ∈ V  . The elements

of the array are a tuple h, refIncSt, where h is the number of hops in the min-hop path
to the vertex v and refIncSt is the reference to an instance of incSt in the list stored at
index h of allHopPaths. This instance of incSt is used to trace back the min-hop path
to vertex v from the source vertex s.

Example

As an example, consider the interval temporal graph of Fig. 8. Let the source vertex be S
and tstart = 0 . In the first round ( hopCnt = 1 ), the neighbors A, B, and C are identified

Page 14 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

as one-hop neighbors of S with one-hop path arrival times of 1, 5, and 10, respec-
tively. In the next round ( hopCnt = 2 ), these one-hop paths are expanded to two-hop
paths to vertices B (S, A, B) and C (S, B, C). The arrival times of these paths are 2 and
6, respectively. Since these arrival times are earlier than the previous arrival times at B
and C, these newly found two-hop paths may lead to new vertices. In the third round
( hopCnt = 3 ), the earlier arriving 2-hop paths to B and C are expanded. While the 2-hop
path to C cannot be expanded any further, the 2-hop path to B is expanded to get a 3-hop
path to C that gets to C at 4. This path is expanded in the next round ( hopCnt = 4 ) and
the 4-hop path to D (S, A, B, C, D) is discovered. This path arrives at D at 5. The algo-
rithm now terminates as hopCnt = 4 = V − 1 (note that coincidentally, totVsRchd = V
at this time in this example).

Correctness proof and complexity

Theorem 2  Algorithm 2 finds min-hop paths from the source vertex, s to all other verti-
ces v ∈ V in the temporal graph G = (V ,E)

Proof  We can prove this by induction. After k hops, assume:

1.	 We have found min-hop paths to all vertices reachable in (≤ k) hops.
2.	 We have found the k-hop foremost paths to all vertices reachable in k hops.
3.	 Any such foremost path that ends at time t at a vertex v, is also a minimum hop path

from s to v arriving at or before time t.

For the next hop k + 1 , any new paths that we discover are one-hop extensions of the
foremost paths found in hop k, using the function next of “The function next” section.
Such newly discovered paths are also the k + 1 hop foremost paths. This is because mini-
mum extension of a foremost path is also a foremost path. Also notice that we find such
paths to all the reachable vertices in k + 1 hops as we try to extend every foremost path
that was reachable in k hops. Further, any vertex discovered for the first time in hop

Fig. 8  Min hop paths in interval graph

Page 15 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

k + 1 requires minimum k + 1 hops to get there, otherwise it should have been discov-
ered in an earlier hop because of the hypothesis above.
It is easy to see that the base condition is true for hop 1, as starting from source ver-
tex, s we find earliest arrival time to all its neighbors using the function f ((s, nbr), tstart) .
Therefore, we find all vertices reachable in 1 hop and we also find the foremost time in
which they can be reached, in 1 hop. �

The asymptotic complexity of Algorithm 2 is O(NM log δ) , which is the same as that of
the min-hop algorithm of Bui-Xuan et al. (2003). Our algorithm is however simpler and
works for interval temporal graphs in which the � s may be different for different inter-
vals on the same edge while that of Bui-Xuan et al. (2003) requires all intervals on an
edge to have the same � . We demonstrate, in the next section, that despite the generality
of our algorithm it is much faster than that of Bui-Xuan et al. (2003) even when all inter-
vals on an edge have the same �.

Experimental results
In this section, we assess the relative performance of our foremost path and min-hop
path algorithms to that of the one-pass algorithms in Wu et al. (2016a) for these prob-
lems and the min-hop algorithm of Bui-Xuan et al. (2003). Our experimental platform
was an Intel Core,i9-7900X CPU @ 3.30GHz processor with 64 GB RAM. The C++
codes for the one-pass contact sequence temporal graph algorithms was obtained from
the authors of Wu et al. (2016a) and their code for the shortest paths problem modi-
fied to compute the number of hops in min-hop paths. All other algorithms were coded
by us in C++. The codes were compiled using the g ++ver.7.5.0 compiler with option
O2. For test data, we used the datasets used in Wu et al. (2016a), which were also used
in Bentert et al. (2020), as well as some synthetic datasets generated by us. As stated in
Wu et al. (2016a), their algorithms do not work when some � s are 0 though they may be
extended to work when this is the case. This limitation did not affect our experiments as
none of the datasets used by us have a � of 0.

The algorithm of Bui-Xuan et al. (2003) for the min-hop problem needed two changes
so it could be compared with our algorithm and that of Wu et al. (2016a). The changes
are as follows:

1.	 We fixed the bug in the min-hop algorithm of Bui-Xuan et al. (2003) that was men-
tioned earlier in “Min-hop paths in interval temporal graphs” section of this paper.

2.	 Algorithm 2 of Bui-Xuan et al. (2003) is repeatedly called by Algorithm 3 of Bui-Xuan
et al. (2003), which is their min-hop algorithm. Algorithm 2 of Bui-Xuan et al. (2003)
goes through all edges in the graph to find new minimum paths in a given hop and
saves them in array variables emin and tmin used by that algorithm. If in a given hop
no new minimum paths are discovered, then they won’t be discovered in any future
hops either. Therefore, their min-hop algorithm can be terminated after the first such
hop. Adding this early termination condition to their algorithm vastly improves their
run time. For example, without the early termination condition, the min-hop algo-
rithm of Bui-Xuan et al. (2003) took 943 s to find minimum hop paths in the arxiv
dataset, but with the early termination condition added, it took only 0.17 s.

Page 16 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

Datasets

The 14 datasets described in Wu et al. (2016a) and also in Bentert et al. (2020) were
downloaded by us from the Koblenz network (Kunegis 2013). The description of the
datasets in Wu et al. (2016a) closely matches the following:

	 1.	 arXiv hep-ph—http://​konect.​cc/​netwo​rks/​ca-​cit-​HepPh
	 2.	 dblp—http://​konect.​cc/​netwo​rks/​dblp_​coaut​hor
	 3.	 delicious—http://​konect.​cc/​netwo​rks/​delic​ious-​ut
	 4.	 digg—http://​konect.​cc/​netwo​rks/​munmun_​digg_​reply
	 5.	 wikipedia elections—http://​konect.​cc/​netwo​rks/​elec
	 6.	 enron—http://​konect.​cc/​netwo​rks/​enron
	 7.	 epinions trust—http://​konect.​cc/​netwo​rks/​epini​ons
	 8.	 facebook—http://​konect.​cc/​netwo​rks/​faceb​ook-​wosn-​links
	 9.	 flickr—http://​konect.​cc/​netwo​rks/​flickr-​growth
	10.	 slashdot—http://​konect.​cc/​netwo​rks/​slash​dot-​threa​ds
	11.	 wikipedia conflict—http://​konect.​cc/​netwo​rks/​wikic​onfli​ct
	12.	 wikipedia edits—http://​konect.​cc/​netwo​rks/​edit-​enwiki
	13.	 wikipedia growth—http://​konect.​cc/​netwo​rks/​wikip​edia-​growth
	14.	 youTube—http://​konect.​cc/​netwo​rks/​youtu​be-u-​growth.

The dblp dataset downloaded from the link mentioned above had a few negative times-
tamps, so we discarded this dataset. The statistics for the remaining 13 datasets are given
in. Table 1. In this table, |V| is the number of vertices, |Es| is the number of edges in the
underlying static graph, Wu-edges is the number of edges in the contact sequence tem-
poral graph, and activity is the ratio Wu-edges/|Es| . Note that the number of edges in the
interval temporal graph is also |Es|.

Wu et al. (2016a) also experimented against flow network from yahoo, but we did not
experiment against that network, because the network is too large to fit into memory
of one computer. Parallel or distributed implementation of these Algorithms are out of
scope of this paper. Statistics of some of the Koblenz networks are different from those

Table 1  Koblenz collection graph statistics

Dataset |V| |Es| Wu-edges Activity

Epin 131.8K 840.8K 841.3K 1

Elec 7119 103.6K 103.6K 1

Fb 63.7K 817K 817K 1

Flickr 2302.9K 33,140K 33,140K 1

Growth 1870.7K 39,953K 39,953K 1

Youtube 3223K 9375K 9375K 1

Digg 30.3K 85.2K 87.6K 1.02

Slash 51K 130.3K 140.7K 1.07

Conflict 118K 2027.8K 2917.7K 1.43

Arxiv 28K 3148K 4596K 1.45

Wiki-en-edit 42,640K 255,709K 572,591K 2.23

Enron 87,274 320.1K 1148K 3.58

Delicious 4512K 81,988K 301,186K 3.67

http://konect.cc/networks/ca-cit-HepPh
http://konect.cc/networks/dblp_coauthor
http://konect.cc/networks/delicious-ut
http://konect.cc/networks/munmun_digg_reply
http://konect.cc/networks/elec
http://konect.cc/networks/enron
http://konect.cc/networks/epinions
http://konect.cc/networks/facebook-wosn-links
http://konect.cc/networks/flickr-growth
http://konect.cc/networks/slashdot-threads
http://konect.cc/networks/wikiconflict
http://konect.cc/networks/edit-enwiki
http://konect.cc/networks/wikipedia-growth
http://konect.cc/networks/youtube-u-growth

Page 17 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

described in Wu et al. (2016a). This may be because the datasets have evolved/changed
since the time they were used by the authors of Wu et al. (2016a). The statistics of the
downloaded datasets are described in Table 1. We implemented the Foremost paths algo-
rithm, described in Algorithm 1 and the Min-Hop paths algorithm described in Algo-
rithm 2 on all these datasets except the dblp network for the reasons described above.
The datasets have a wide range of sizes in terms of the number of vertices and edges. The
temporal activity defined as the ratio of Wu-edges to the static edges, on these datasets
is very low ranging from 1 or no activity to a maximum value of 3.67 on the delicious
dataset. The travel times on each edge is assumed to be a constant value of 1 as the data-
sets do not specify the travel time. Also, choice of this travel time is same as that used for
experimental purposes in Wu et al. (2016a) and Bentert et al. (2020). Algorithms of Wu
et al. (2016a) do not work with the travel time of 0, whereas our Algorithms work for any
travel time ≥ 0 . Wu et al. (2016a) also used an additional much larger dataset called flow.
This dataset, however, was used only to benchmark their parallel algorithms as it was too
large to fit in the memory of the computer used to benchmark their serial codes. We do
not use this very large dataset either. The downloaded Koblenz datasets do not have �
values associated with the edges. All � values were set to 1 by us. The authors of Wu et al.
(2016a) and Bentert et al. (2020) confirmed that they did the same for their experiments.

The activity in the 13 datasets of Table 1, which ranges from a low of about 1 to a high
of about 3.67 is rather low. Further, all � values are 1. So, we generated datasets with
higher activity and variable � s synthetically by starting with the social network graphs
of youtube, flickr, livejournal available at http://​socia​lnetw​orks.​mpi-​sws.​org/​data-​imc20​
07.​html shared by the authors of Mislove et al. (2007). These graphs represent user-to-
user interactions. We synthesized temporal graphs from these large social graphs by ran-
domly adding temporal intervals to each static edge. To generate the temporal intervals
we used three random variables (I, D, T) for assigning random values to three temporal
parameters, namely the number of Intervals on a given edge, the Duration of each inter-
val and the Travel time ( � ) on each of the intervals. We assigned values to each of these
three random variables using the normal distribution around a fixed mean value for each
of the variables. For example, in the first synthetic graph, using a static youtube graph
with 1.15M vertices and 4.9M static edges as a base graph, we added a random number
of temporal intervals on each static edge (random variable I), using a normal distribu-
tion with a mean value of 4. We assigned a random duration to each of these intervals
(random variable D) using a normal distribution with a mean value of 5 time units. We
also assigned a random value for the travel time on each of these intervals (random vari-
able T) using a normal distribution with a mean value of 3 time units. We generated
the synthetic graphs from the other two social networks as well using the random vari-
ables (I, D, T) with normal distribution around the same mean values. Finally, we con-
verted these synthetic interval temporal graphs to contact sequence temporal graphs as
described in “Data structures” section. Table 2 shows the statistics for the 5 synthetic
temporal graphs generated by us.

Table 3 gives the time (in seconds) required to read each dataset from disk as well
as the disk memory required by each dataset. The columns labeled Wu are for the
case when the dataset is stored as a contact sequence temporal graph and those
labeled Ours are for the case when the interval temporal graph representation is

http://socialnetworks.mpi-sws.org/data-imc2007.html
http://socialnetworks.mpi-sws.org/data-imc2007.html

Page 18 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

used. As expected, the reading time and the the disk space required when the con-
tact sequence model is used are less than when the interval model is used when
the edge activity is low; the reverse is the case when the edge activity is high. As
an example, for the large synthetic flickr graph with an activity factor of 32.1, the
reading time of the interval temporal graph is 16.19 s while that of the correspond-
ing contact sequence graph is 148 s. The size of the interval temporal graph for the
same dataset on disk is 1.24 GB as compared 13.6 GB for the corresponding contact
sequence graph.

Table 2  Synthetic graphs statistics

Dataset |V| |Es| Wu-edges Edge activity

Graphs with µI = 4,µD = 5,µT = 3

 Youtube 1157.8K 4945K 105,039K 21.2

 Flickr 1861K 22,613.9K 480,172K 21.24

 Livejournal 5284K 77,402.6K 1,643,438K 21.3

Graphs with µI = 4,µD = 8,µT = 3

 Youtube 1157.8K 4945K 159,103.7K 32.1

 Flickr 1861K 22,613.9K 727,405.9K 32.1

Table 3  Reading times and sizes

Dataset Reading time (in s) Sizes in MBs

Wu Ours Wu Ours

Koblenz collection

 Epin 0.20 0.35 19.6 29.8

 Elec 0.041 0.060 2.3 3.6

 Fb 0.18 0.30 15.4 21.7

 Flickr 8.45 13.31 868 1299

 Growth 9.53 16.38 1051 1571

 Youtube 2.37 3.91 257 379

 Digg 0.039 0.053 2 3.1

 Slash 0.051 0.077 3.3 5

 Conflict 0.67 1.05 74.1 103.3

 Arxiv 0.94 1.32 83.8 103.6

 Wiki-en-edit 143.87 169.72 15.52 17.81

 Enron 0.28 0.30 25.8 29.7

 Delicious 68.38 81.47 7346 8385

Synthetic Datasets with µI = 4,µD = 5,µT = 3

 Youtube 20.94 3.59 1958 272.2

 Flickr 95.26 16.36 9030 1248

 Livejournal 344.13 56.16 33,838 4411.8

Synthetic Datasets with µI = 4,µD = 8,µT = 3

 Youtube 32.58 3.53 2966 272.3

 Flickr 148.03 16.19 13,682 1249

Page 19 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

Run times

For the run times reported in this section, we assume that the graph is resident in mem-
ory (i.e., the read time from disk is not accounted for). This is consistent with the report-
ing in Wu et al. (2016a) and Bentert et al. (2020) and also practice where the temporal
graph is input once and queried often for optimal paths. For the 13 Koblenz datasets,
we report the average of the runtimes from 100 randomly selected source vertices and
for the synthetic graphs the reported run times are the average for 5 randomly selected
source vertices. The reduction from 100 to 5 was necessitated by the bigger size of the
synthetic datasets that resulted in substantially larger run times.

The average run-times (in seconds) for the Koblenz and synthetic datasets are given
in Table 4. The speedups (time taken by competing algorithms of Wu et al. (2016a) and
Bui-Xuan et al. (2003)/time taken by our algorithm) is also shown visually in Figs. 9, 10,
11, 12 and 13. In the visual representation, the speedup for the Koblenz dataset “conflict”
is shaded differently from the others as this speedup is too large to display. For the fore-
most paths problem, our algorithm outperforms that of Wu et al. (2016a) on 6 of the 13
Koblenz datasets and all 5 of the synthetic datasets. The speedups obtained by us over
the algorithm of Wu et al. (2016a) range from 0.286 to 1800 for the Koblenz datasets and
from 1.46 to 3.77 on the synthetic datasets. This is in contrast to the results in Wu et al.
(2016a) where the one-pass foremost paths algorithm of Wu et al. (2016a) outperformed
the algorithm of Bui-Xuan et al. (2003) that we enhanced, on all datasets and often by a
factor more than 10!

Table 4  Dataset run-times in seconds

Dataset Foremost Min-hop

Wu Ours Wu/ours Wu Xuan Ours Wu/ours Xuan/ours

Koblenz run-times

 Epin 0.0012 0.0040 0.3 0.0039 0.052 0.0052 0.74 10

 Elec 0.00020 0.00033 0.606 0.00052 0.0022 0.00033 1.55 6.66

 Fb 0.0010 0.0011 0.9 0.0030 0.042 0.0011 2.65 38.18

 Flickr 0.073 0.26 0.27 0.41 2.94 0.42 0.98 7.024

 Growth 0.14 0.89 0.16 1.44 11.40 1.31 1.1 8.69

 Youtube 0.03 0.018 1.64 0.097 0.34 0.013 7.38 25.8

 Digg 0.0001 0.0001 1.04 0.0004 0.003 7.115e−05 5.7 50.5

 Slash 0.0003 0.001 0.28 0.001 0.011 0.001 1 10.59

 Conflict 0.004 5.4e−07 1.8e3 0.004 0.018 5.9e−07 6.7e3 31.4e3

 Arxiv 0.006 0.006 0.99 0.016 0.17 0.009 1.8 19.44

 Wiki-en-edit 2.3 1.16 1.97 6.22 7.77 1.15 5.3 6.74

 Enron 0.001 0.001 1.37 0.004 0.014 0.0017 2.86 8.76

 Delicious 0.51 0.12 4.3 1.81 3.69 0.24 7.3 14.91

Synthetic run-times with µI = 4,µD = 5,µT = 3

 Youtube 0.31 0.21 1.46 4.11 0.32 12.7

 Flickr 1.35 0.47 2.84 19.2 1.08 17.6

 Livejournal 17.39 5.61 3.09 334.56 21.81 15.3

Synthetic run-times with µI = 4,µD = 8,µT = 3

 Youtube 0.44 0.20 2.15 6.72 0.33 20.1

 Flickr 1.79 0.47 3.77 23.13 1.01 22.7

Page 20 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

For the min-hop problem, our algorithm outperforms that of Bui-Xuan et al. (2003)
on all of the 13 Koblenz datasets and also that of Wu et al. (2016a) on 11 of the 13 Kob-
lenz datasets. Our algorithm outperforms that of Wu et al. (2016a) on all 5 of the syn-
thetic datasets. We do not compare against the algorithm of Bui-Xuan et al. (2003) on
the synthetic datasets as that algorithm assumes the travel times to be the same across
all intervals on a given edge; an assumption that is not valid for our synthetic datasets.
The speedups obtained by us over the algorithm of Bui-Xuan et al. (2003) range from
6.66 to 31,000 on the Koblenz datasets. The speedups obtained by us over the algorithm
of Wu et al. (2016a) range from 0.74 to 6700 for the Koblenz datasets and from 12.7 to
22.7 on the synthetic datasets. The reason for the unusually high speedup observed for

Fig. 9  Speedups over Wu’s algorithm for foremost paths on Koblenz datasets

Fig. 10  Speedups over Wu’s algorithm for foremost paths on synthetic datasets

Page 21 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

the Koblenz dataset “conflict” is that this dataset has very low temporal connectivity and
our foremost and min-hop algorithms are able to detect this and thus terminate very
quickly without examining all edges while the algorithms of Wu et al. (2016a) and Bui-
Xuan et al. (2003) necessarily examine all edges.

Algorithm of Wu et al. (2016a) outperforms our algorithm on some of the Koblenz
datasets. Our algorithm works on interval temporal graph model whereas the algorithm
of Wu et al. (2016a) works on the contact sequence graph model. Interval temporal

Fig. 11  Speedups over Wu’s algorithm for min-hop paths on Koblenz datasets

Fig. 12  Speedups over Wu’s algorithm for min-hop paths on synthetic datasets

Page 22 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

graphs are a superset of contact sequence graphs as described in “Introduction” sec-
tion. Koblenz datasets are represented as contact sequence model that need to be trans-
formed to the interval model for experiments with our algorithm. For graphs that are
small in size and have low temporal activity, contact sequence model is a more efficient
representation and Wu et al’s algorithms can outperform our algorithms for such graphs.
As these graphs get larger in size and temporal activity, our algorithms outperform that
of Wu et al. (2016a) as illustrated in Table 4

The synthetic datasets described in Table 2, have time intervals of edge connectivity
that translate to contact sequence edges at each time instance in such time intervals.
These graphs have much higher temporal activity as described in Table 2. Our algorithm
outperforms that of Wu et al. (2016a) on each of these graph instances.

Conclusion
We have demonstrated path problems that are NP-hard in the interval temporal graph
model but solvable in polynomial time in the contact sequence temporal graph model.
Additionally, we have extended the foremost path algorithm of Bui-Xuan et al. (2003) to
the case when the time to traverse an edge may vary from one time interval to the next
and developed a greedy algorithm to find min-hop paths in interval temporal graphs
that is substantially faster than the min-hop algorithm of Bui-Xuan et al. (2003). Our
new algorithms were benchmarked against the fastest algorithms in Wu et al. (2016a)
using both the datasets used in Wu et al. (2016a) and synthetic datasets. Our algorithm
for foremost paths outperformed the algorithm in Wu et al. (2016a) on 6 of the 13 Kob-
lenz datasets used in Wu et al. (2016a) and all 5 of the synthetic datasets. The speedups
obtained by us range from 0.286 to 1800 for the Koblenz datasets and from 1.46 to 3.77
on the synthetic datasets. For the min-hop problem, our algorithm outperforms that of
Bui-Xuan et al. (2003) on all 13 Koblenz datasets and the speedups range from 6.6 to

Fig. 13  Speedups over Xuan’s algorithm for min-hop paths on Koblenz datasets

Page 23 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60 	

31000. Our algorithm also outperforms that of Wu et al. (2016a) on 11 of the 13 Koblenz
datasets and all 5 of the synthetic datasets. The speedups obtained over Wu et al. (2016a)
range from 0.74 to 6700 for the Koblenz datasets and from 12.7 to 22.7 on the synthetic
datasets. Going forward we would like to extend our work to compute paths and walks
with more than one optimization criteria. For example, when computing foremost walks
and paths in a temporal graph, it would be interesting to examine problems that require
finding foremost walk with minimum waiting time along the walk. In other words we
would like to explore problems like min-wait foremost walks, min-hop foremost walks,
min-cost foremost walks etc. We would also like to study the problem of optimizing lin-
ear combination of multiple optimization criteria for interval temporal graphs which is
studied by Bentert et al. (2020) for contact sequence graphs.

Abbreviations
NAPP	� No-wait acyclic path problem
V	� Number of vertices in a graph
N	� Used interchangeably with V
Es	� Number of edges in underlying static graph
Mitg	� Number of edges in interval temporal graph (same as Es)
Mcsg	� Number of contact sequence edges
�	� Travel duration on an edge at a given departure time
δ	� Maximum number of departure intervals on an edge

Acknowledgements
We acknowledge Wu et al. (2016a) and Bentert et al. (2020) for sharing their implementation with us to benchmark
against.

Author contributions
Both authors contributed equally to the paper. Both authors have read and approved the final manuscript.

Funding
N/A

Availability of data and materials
The koblenz datasets used for benchmarking are available in the KONECT graphs (Kunegis 2013). The social network
graphs of youtube, flickr, livejournal are available at http://socialnetworks.mpi-sws.org/data-imc2007.html. This was
shared by the authors of Mislove et al. (2007)

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 2 October 2021 Accepted: 11 August 2022

References
Bentert M, Himmel A-S, Nichterlein A, Niedermeier R (2020) Efficient computation of optimal temporal walks under

waiting-time constraints. Appl Netw Sci 5(1):73. https://​doi.​org/​10.​1007/​s41109-​020-​00311-0
Bhadra S, Ferreira A (2003) Complexity of connected components in evolving graphs and the computation of multicast

trees in dynamic networks. In: Pierre S, Barbeau M, Kranakis E (eds) Ad-hoc, mobile, and wireless networks. Springer,
Berlin, Heidelberg, pp 259–270

Bhadra S, Ferreira A (2012) Computing multicast trees in dynamic networks and the complexity of connected compo-
nents in evolving graphs. J Internet Serv Appl 3(3):269–275. https://​doi.​org/​10.​1007/​s13174-​012-​0073-z

Bui-Xuan B-M, Ferreira A, Jarry A (2003) Evolving graphs and least cost journeys in dynamic networks. In: WiOpt’03:
modeling and optimization in mobile, ad hoc and wireless networks, Sophia Antipolis, France, p 10. https://​hal.​inria.​
fr/​inria-​00466​676

Casteigts A, Himmel A, Molter H, Zschoche P (2019) The computational complexity of finding temporal paths under
waiting time constraints. arXiv:​1909.​06437

Casteigts A, Raskin M, Renken M, Zamaraev V (2020) Sharp thresholds in random simple temporal graphs. arXiv:​2011.​
03738

Erlebach T, Hoffmann M, Kammer F (2021) On temporal graph exploration. J Comput Syst Sci 119:1–18. https://​doi.​org/​
10.​1016/j.​jcss.​2021.​01.​005

https://doi.org/10.1007/s41109-020-00311-0
https://doi.org/10.1007/s13174-012-0073-z
https://hal.inria.fr/inria-00466676
https://hal.inria.fr/inria-00466676
http://arxiv.org/abs/1909.06437
http://arxiv.org/abs/2011.03738
http://arxiv.org/abs/2011.03738
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1016/j.jcss.2021.01.005

Page 24 of 24Jain and Sahni ﻿Applied Network Science (2022) 7:60

Guo F, Zhang D, Dong Y, Guo Z (2019) Urban link travel speed dataset from a megacity road network. Sci Data 6(1):61.
https://​doi.​org/​10.​1038/​s41597-​019-​0060-3

Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125. https://​doi.​org/​10.​1016/j.​physr​ep.​2012.​03.​001
Kuhn F, Oshman R (2011) Dynamic networks: models and algorithms. SIGACT News 42(1):82–96. https://​doi.​org/​10.​1145/​

19590​45.​19590​64
Kunegis J (2013) Konect: The koblenz network collection. In: Proceedings of the 22nd international conference on world

wide web. WWW ’13 companion. Association for Computing Machinery, New York, NY, USA, pp 1343–1350. https://​
doi.​org/​10.​1145/​24877​88.​24881​73

Lightenberg W, Pei Y, Fletcher G, Pechenizkiy M (2018) Tink: a temporal graph analytics library for apache flink. In:
Companion proceedings of the the web conference 2018. WWW ’18. International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, CHE, pp 71–72. https://​doi.​org/​10.​1145/​31845​58.​31869​34

Michail O (2015) An introduction to temporal graphs: an algorithmic perspective. arXiv:​1503.​00278
Michail O, Spirakis PG (2016) Traveling salesman problems in temporal graphs. Theor Comput Sci 634:1–23. https://​doi.​

org/​10.​1016/j.​tcs.​2016.​04.​006
Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and analysis of online social net-

works. In: Proceedings of the 5th ACM/Usenix internet measurement conference (IMC’07), San Diego, CA
Sahni S (2004) Data structures, algorithms, and applications in C++, 2nd edn. Silicon Press, Summit
Santoro N, Quattrociocchi W, Flocchini P, Casteigts A, Amblard F (2011) Time-varying graphs and social network analysis:

temporal indicators and metrics. arXiv:​1102:​0629
Scheideler C (2002) Models and techniques for communication in dynamic networks. In: Proceedings of the 19th annual

symposium on theoretical aspects of computer science. STACS ’02. Springer, Berlin, Heidelberg, pp 27–49
Stojmenović I (2002) Location updates for efficient routing in ad hoc networks. Wiley, Hoboken, pp 451–471. https://​doi.​

org/​10.​1002/​04712​24561.​ch21
Wu H, Cheng J, Ke Y, Huang S, Huang Y, Wu H (2016a) Efficient algorithms for temporal path computation. IEEE Trans

Knowl Data Eng 28(11):2927–2942. https://​doi.​org/​10.​1109/​TKDE.​2016.​25940​65
Wu H, Cheng J, Ke Y, Huang S, Huang Y, Wu H (2016b) Appendix-h of efficient algorithms for temporal path computation.

IEEE Trans Knowl Data Eng 28(11):2927–2942. https://​doi.​org/​10.​1109/​TKDE.​2016.​25940​65
Zschoche P, Fluschnik T, Molter H, Niedermeier R (2018) The complexity of finding small separators in temporal graphs.

arXiv:​1711:​00963

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41597-019-0060-3
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1145/1959045.1959064
https://doi.org/10.1145/1959045.1959064
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/3184558.3186934
http://arxiv.org/abs/1503.00278
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1016/j.tcs.2016.04.006
http://arxiv.org/abs/1102:0629
https://doi.org/10.1002/0471224561.ch21
https://doi.org/10.1002/0471224561.ch21
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1109/TKDE.2016.2594065
http://arxiv.org/abs/1711:00963

	Algorithms for optimal min hop and foremost paths in interval temporal graphs
	Abstract
	Introduction
	Preliminaries
	Definitions
	Data structures
	The function next

	NP-hard interval temporal graph path problems
	No wait acyclic path problem (NAPP)
	NAPP is NP-hard

	Redundant intervals
	Foremost paths in interval temporal graphs
	Methodology
	Algorithm details

	Min-hop paths in interval temporal graphs
	The algorithms of Bui-Xuan et al. (2003) and Wu et al. (2016a)
	Our algorithm
	Methodology
	Algorithm details
	Example
	Correctness proof and complexity

	Experimental results
	Datasets
	Run times

	Conclusion
	Acknowledgements
	References

