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Introduction
The initial hopes that an increasingly interconnected world will provide more equal 
opportunities and remove information barriers are dampened by observations of echo 
chambers and polarisation on social networks (Adamic and Glance 2005; Iyengar and 
Hahn 2009; Prior 2007; Garrett 2009; Gentzkow and Shapiro 2011; Barberá et al. 2015). 
Recent studies have also found that discrimination in social networks can arise through 
simple mechanisms. For example, homophily and minority group size can lead to glass-
ceiling (Avin et al. 2015; Stoica et al. 2018) and chasm effects (Zhang et al. 2021), influ-
ence the ranking of minority nodes (Karimi et al. 2018; Oliveira et al. 2021), and create 
perception bias in social networks (Lee et al. 2019). In addition, a user’s popularity and 
prestige on social networking platforms can be altered through the use of automation 
and social bots to gain unfair advantages (Aiello et al. 2012; Messias et al. 2013; Woolley 
2016; Varol et al. 2017; Varol and Uluturk 2020).

An important role of networks is that they disseminate information, from job and busi-
ness opportunities (Boyd et al. 2014) to medical resources that can be accessed (Freese 
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and Lutfey 2011), and such information is critical to people’s lives. However, inequality 
in access to information in a network has not been fully explored. This is a topic that 
has been discussed in the social and political sciences. For instance, economically dis-
advantaged people have less access to new technologies such as the Internet (DiMaggio 
and Cohen 2021), and groups starting with worse employment status are more likely to 
experience persistent unemployment in the labor market (Calvo-Armengol and Jackson 
2004).

A research topic closely related to information dissemination in networks is informa-
tion maximization, which aims to find the optimal starting (or seed) nodes in a network 
that maximize information spread (Aral and Walker 2011; Kempe et al. 2003). This prob-
lem has been studied over the years, but the fairness aspect in this problem is relatively 
new. For example, Stoica and Chaintreau (Stoica and Chaintreau 2019) investigate two 
fairness criteria for information maximization: fairness for early adopters (where seeds 
should be proportional to the group population) and fairness in outreach (where the 
information should reach the same percentage of each group in the population). They 
experiment on a social network extracted from Instagram. In subsequent work, Stoica 
et  al.  (2020) proposed diversity-enhancing interventions in seeding and explored the 
complicated relationship between diversity and efficiency. Others have explored how 
fairness constraints can be incorporated into the information maximization algorithm, 
including the maximin constraint1   (Fish et  al. 2019; Becker et  al. 2021; Tsang et  al. 
2019), diversity constraint (Tsang et al. 2019), welfare theory (Rahmattalabi et al. 2021), 
and time-sensitive constraint on information  (Ali et  al. 2019). Prior literature sheds 
some light on information equality in networks, but it mostly considers the problem as 
an algorithmic problem (given a fixed graph, what are the optimal information seeds), 
rather than a characteristic problem (what kind of network can better promote informa-
tion equality). Moreover, the spreading process considered is mostly the independent 
cascade model, which may not be representative of real-world processes. Different from 
previous works, Jalali et al.  (2020) define a criterion for information unfairness (based 
on whether information flows equally among all groups in a network) and present an 
algorithm that adds edges to the network to reduce the information unfairness criterion. 
They experiment on a social network extracted from DBLP. This study does not provide 
much information about the performance of various spreading processes on different 
networks. In a recent tutorial, Venkatasubramanian et al.  (2021) survey recent work on 
fairness in networks. They cover topics such as social capital, information access (the 
subject of our work), and interventions. In lieu of a survey paper on fairness in networks, 
we recommend their tutorial to newcomers in this topic.

Here, we study the problem of information access equality in networks from a charac-
teristic point of view. Using several network models with two mutually exclusive groups 
in the population (majority vs. minority), we generate networks with different proper-
ties and constraints that are representative of mechanisms in real networks. We define 
information access equality as follows: for a given process and seeds, the majority and 
minority nodes should receive information at similar rates across various stages of the 

1  The maximin constraint requires that the least advantageous group should be the most improved during the optimiza-
tion process.
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spreading processes. Our goal is to provide insight into which network characteristics 
may affect information access equality and in what ways, and to make recommendations 
for systematic mechanism design. We find that, in general, homophily and preferential 
attachment can harm information access equality, while introducing diversity can pro-
mote information access equality. However, too much diversity can affect the efficiency 
of information spreading. More importantly, we find that information access equal-
ity depends not only on the network, but also on the characteristics of the spreading 
process.

Our main contributions are as follows: (1) Information access equality is a complex 
interplay between network structure and the spreading process. (2) There is a trade-off 
between equality and efficiency of information access under certain circumstances (e.g., 
when the network has low inter-group edges and asymmetric transmission). (3) Spread-
ing process features are statistically significant (p-value ≤ 0.05 ) when it comes to infor-
mation access equality. A symmetric transmission rate will increase equality compared 
to an asymmetric one. A simple contagion will decrease equality compared to a com-
plex contagion. Compared to a mid seeding portion, a low minority seeding portion will 
decrease equality and a high minority seeding portion will increase equality. (4) Network 
features are not always statistically significant. However, two network features stand out 
with respect to information access equality: degree inequality (as measured by power 
inequality or moment glass ceiling) and network distance (as measured by shortest path 
or diameter). Our findings can be used to recommend connections that steer an online 
social network toward information access equality. Ideally, such recommendation sys-
tems will first classify the spreading process (simple vs. complex contagion, symmetric 
vs. asymmetric transmission), then based on that classification recommend new connec-
tions to their users.

Network models
Our study includes several generative models for complex networks. Each model gener-
ates a network with two mutually exclusive groups of nodes: majority and minority. Let 
m denote the proportion of minority nodes. The majority/minority dichotomy is based 
on population size: minority nodes make up less than 50% of the network (i.e., m < 0.5 ). 
A real-world example of such a dichotomy is a computer science collaboration network 
where male scientists are in the majority and female scientists are in the minority.

The generative models produce undirected, unweighted networks. Starting from an 
initial network, a new node enters the network at each time step and connects to some 
nodes according to a mechanism mandated by the model. The initialization procedure is 
the same across the models: a node from the majority group connects to a node from the 
minority group. Table 1 summarizes each model’s properties and provides a comparison 
between the proposed models.

Random network

In the Random Network model, at each time step a new node enters with probability m 
as a minority and 1−m as a majority. With uniform probability, each node connects to 
l existing nodes. This is a growing version of the Erdös-Rényi Random Network (Erdős 
and Rényi 1960).
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Homophily BA

In the Homophily BA model  (Avin et  al. 2015; Karimi et  al. 2018; Lee et  al. 2019),2 
two ingredients influence link formation: preferential attachment and homophily. The 
parameters of Homophily BA include: (1) the proportion of minority nodes m, (2) the 
number of edges l for each new node, (3) the homophily matrix H with entries hgigj , and 
(4) the preferential attachment strength α . Group memberships are denoted by gi and gj 
for nodes i and j, respectively. Each node i can either belong to the majority (maj) or the 
minority (min) group. Thus, we have the following homophily matrix H:

For simplicity, we assume H is a doubly stochastic matrix, with hmaj,min = hmin,maj and 
hmaj,maj = hmin,min . We define h = hmaj,maj = hmin,min . Our assumption reduces the 

homophily matrix to H =
h 1− h

1− h h
. When h = 1 , the network is perfectly homo-

philic – i.e., the network has two distinct groups: majority and minority. The groups are 
connected with a single inter-group edge (due to network initialization). On the other 
hand, if h = 0 , the network is perfectly heterophilic. It has been found that homophily 
can be different for different groups (Messias et al. 2017; Karimi et al. 2018). We leave 
the exploration of asymmetric homophily for future work.

The Homophily BA networks grow as follows.

•	 At each time step, a new node j enters with probability m as a minority and 1−m as 
a majority. Let gj denote its group membership.

•	 Node j connects to l nodes. Each connection to node i in the network is made with 
probability �i : 

H =

[

hmaj,maj hmaj,min

hmin,maj hmin,min

]

Table 1  Relationship between the network models. 

All network models are based on Random Network, a growing network adaptation of the Erdős-Rényi random 
network (Erdős and Rényi 1960). We focus on three mechanisms: preferential attachment, homophily, and diversity 
(through adding inter-group edges). Starting from a Random Network and adding preferential attachment results in the 
BA model. Starting from a Random Network and adding homophily results in the Random Homophily model. Starting from 
a Random Network and adding both preferential attachment and homophily results in the Homophily BA model. Starting 
from Random Homophily and adding diversity results in the Diversified Homophily model. Starting from Homophily BA 
and adding diversity gives us Diversified Homophily BA model. In our study, we treat BA and Random Homophily as the 
variations of the Homophily BA model, and Diversified Homophily as a variation of the Diversified Homophily BA

Random 
network

Preferential 
attachment

Homophily Diversity Resultant network

� � BA

� � Random Homophily

� � � Homophily BA

� � � Diversified Homophily

� � � � Diversified Homophily BA

2  BA is short for Barabási-Albert (Albert and Barabási 2002).
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 where di is the degree of node i.
We are also interested in two special cases of Homophily BA: (1) Without preferen-
tial attachment (Random Homophily with α = 0 , which is equivalent to a Stochastic 
Block Model  (Holland et  al. 1983)) and (2) With random mixing (BA  (Albert and 
Barabási 2002) with h = 0.5).

Diversified homophily BA

We propose the Diversified Homophily BA model to encourage inter-group connec-
tions while maintaining some degree of homophily. The parameters of the Diver-
sified Homophily BA include: (1) The proportion of minority nodes m, (2) The 
number of edges l for each new node, (3) The homophily matrix H (with the same 
assumption as in Homophily BA), (4) Preferential attachment strength α , (5) The 
number of diversified edges for each node ld , and (6) The diversification probability 
pd . The Diversified Homophily BA networks grow as follows:

•	 At each time step, a new node j enters with probability m as a minority and 1−m 
as a majority. Let gj denote its group membership.

•	 Node j forms l − ld links following Homophily BA mechanism �i =
hgjgi k

α
i

∑

i hgj gi k
α
i

 . Let 

Sj denote the nodes connected at this step.
•	 Create diversified links for node j. Let pd denote the probability for node j to 

connect to a node in the opposite group. Thus, the probability that node j con-
nects to node k is defined as follows: 

 Let NSj denote the neighboring nodes for all nodes in Sj . Recall that Sj is the set of 
nodes to which the new node j connected via the Homophily BA mechanism. Gener-
ate a total of ld diversified links by connecting node j to the nodes in NSj . This process 
is as follows. Node j connects to each node k ∈ NSj with probability 
�jk ∝ pjk ×

1

|dk−di|
 , where di is the degree of node i ∈ Sj . The idea behind this step is 

to connect to nodes that are of opposite group, but with similar degree to existing 
neighbors.

Diversified Homophily BA is reducible to Homophily BA when the number of diver-
sified links ld = 0 . We consider this model with ld  = 0 as a potential remedy for 
reducing Homophily BA’s inequality,specifically, the inequality attributable to homo-
phily (as opposed to preferential attachment). The inequality due to homophily has 
been documented before  (Avin et al. 2015; Karimi et al. 2018; Lee et al. 2019). We 
are interested in a special case under Diversified Homophily BA with α = 0 , which 
removes preferential attachment. We call this case Diversified Homophily.

(1)�i =
hgjgid

α
i

∑

i hgjgid
α
i

,

(2)pjk =

{

pd , gj �= gk
1− pd , gj = gk .
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Information access equality
Currently, there is no consensus on how to measure the equality of information access 
in a network. In this work, we choose to measure it experimentally. That is, we simu-
late spreading processes on a given network and observe the differences in information 
spread among majority and minority nodes. In this way, we can explore how the type of 
contagion, the transmission rate, and the information seeds affect equality.

Varying processes that spread information

We consider several variations of dynamic processes. The first variation we consider 
is the distinction between simple vs.  complex contagion. Previous studies have found 
that while simple contagion is appropriate for most diseases and spread of simple facts, 
complex contagion is more common for collective behaviors, such as the spread of new 
technologies and innovations, growth of social movements, and spread of misinforma-
tion (Centola and Macy 2007; Vespignani 2012; Mønsted et al. 2017; Granovetter 1978; 
Centola 2010; Anderson and May 1992; Daley and Kendall 1964; Romero et  al. 2011; 
Weng et al. 2013; Shao et al. 2018). Same network properties may respond differently to 
these two types of contagion. For example, in simple contagion, weak ties are considered 
important because they can disseminate information to an isolated part of the network. 
However, in complex contagion, weak ties might not be as useful because one link is not 
sufficient to disseminate information (Granovetter 1973; Centola and Macy 2007). For 
modeling, we rely on a Susceptible-Infectious (SI) model  (Barrat et  al. 2008) for both 
simple and complex contagion. For complex contagion, we add the parameter of activa-
tion threshold a, where each node can only be infected if a portion of its neighborhood 
is infected.

The second variation we consider is the difference in transmission rate within and 
between groups. Although the transmission rate can be different at the node level (Aral 
and Dhillon 2018), we study the simple case where the transmission rate differs by 
group. In particular, we are interested in the case where the transmission rate between 
all nodes is the same (symmetric) and the case where the transmission rate between dif-
ferent groups is lower than within the same group (asymmetric). There are four sets of 
transmission rates: rmaj→maj , rmin→min , rmaj→min and rmin→maj . Here we assume that 
rmaj→maj = rmin→min = rwithin and rmaj→min = rmin→maj = rbetween . We simulate the SI 
process with symmetric transmission rate as rwithin = rbetween , and asymmetric transmis-
sion rate as rwithin > rbetween.

The last variation we consider is the location where the information is seeded. Dif-
ferent seeding locations can advantage or disadvantage a group. For example, imagine 
a network with two groups (majority vs.  minority) connected by a single edge. Under 
this circumstance, if all seeds belong to the majority community, we would expect the 
minority group to be disadvantaged. To test the influence of seed location, we assume 
random seeding (as opposed to targeted seeding, such as selecting higher degree nodes 
or another form of seeding that assumes knowledge of node characteristics). We assume 
different portions of minority seeds: low (minority seeds below 30% of the seeded popu-
lation), mid (minority seeds between 30% and 70% of the seeded population), and high 
(minority seeds above 70% of the seeded population). For brevity, we show only the 
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low and high minority seeding portions. The results for mid and high minority seeding 
portions are similar.3 Note that, in general, seeding a node with a piece of information 
comes at a cost. Thus, one can expect low seeding portions in real-life scenarios.

Measuring information access equality

To measure information access equality, we compare the number of nodes in state I 
(Infected) between the majority and minority groups. Note that the majority and minor-
ity groups are of different sizes. To allow a fair comparison, we define Imaj and Imin as 
the fraction of nodes in state I (Infected) of each group. In addition, since spreading pro-
cesses can take different times in different networks, we normalize the Imaj and Imin by 
the length of the spreading process T to obtain Imaj(t/T ) and Imin(t/T ) . Then, we calcu-
late the relative difference between them as

We choose the denominator to be Imin(t/T )+ Imaj(t/T ) , which corresponds to twice the 
mean of Imaj(t/T ) and Imin(t/T ) , making this metric symmetric and bounded between 
−1 and 1. When there is equality in information access, �I(t/T ) = 0 ; and the closer 
�I(t/T ) is to 0, the greater the equality between the two groups. �I(t/T ) > 0 means 
that the majority group has a greater advantage. �I(t/T ) < 0 means that the minority 
group has a greater advantage. This measure is intuitive and allows us to inspect equality 
in information access at different stages of the spreading process.

Network measures
To understand the structure and properties of the network, and to gain insight into 
the possible roots of information access inequality, we examine several network meas-
ures. The first set captures homophily in terms of dyadicity and heterophilicity  (Park 
and Barabási 2007). The second set computes distance in the network, which is directly 
related to information spread. The third set calculates difference in social capital (Burt 
2000; Berlingerio et al. 2013) in terms of degree inequalities between the two groups.

Homophily: dyadicity and heterophilicity

The homophily parameter h in Homophily BA and Diversified Homophily BA may not 
reflect the actual homophily level of the final network. To measure the homophily effect 
more accurately, we calculate the dyadicity and heterophilicity score of the net-
work  (Park and Barabási 2007). Suppose we are given a network with N nodes and M 
edges. We have nmaj majority nodes and nmin minority nodes. Thus, N = nmaj + nmin . 
Let p = 2M

N (N−1)
 denote the average probability that two nodes are connected. If the 

group labels (majority or minority) are distributed randomly among the nodes, then the 
expected number of edges within the majority group is m̄maj,maj =

(nmaj

2

)

p ; the expected 
number of edges within the minority group is m̄min,min =

(nmin
2

)

p ; and the expected 
number of edges between the two groups is m̄maj,min =

(nmaj

1

)(nmin
1

)

p . Given the actual 

�I(t/T ) =
Imaj(t/T )− Imin(t/T )

Imaj(t/T )+ Imin(t/T )
.

3  The results for the mid minority seeding are in the Additional file 1.
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number of edges mmaj,maj , mmin,min and mmaj,min , dyadicity among the majority is 
Dmaj =

mmaj,maj

m̄maj,maj
 and among the minority is Dmin =

mmin,min

m̄min,min
 ; heterophilicity is 

H =
mmaj,min

m̄maj,min
 . For a network with random mixing of among groups, dyadicity and hetero-

philicity are expected to be close to 1.

Distance: average shortest path length and diameter

We measure the average shortest path length and the diameter of the network. These 
two measures are directly related to the efficiency of information spreading. The higher 
the shortest path length or diameter, the longer it takes for information to spread to the 
entire network.

Social capital: degree equality

We are interested in whether there is a relationship between equality in social capital 
and information access. We use the following measures for degree equality. (1) Earth 
Mover Distance (EMD). We calculate the Earth Mover Distance (EMD) between the 
degree distributions of the majority and minority nodes. The smaller the distance, the 
more equal the two groups are. (2) Power Inequality (PI). Power inequality (Avin et al. 
2015) measures the “power” (average degree) ratio of the minority and majority groups. 
Let d̄min and d̄maj denote the average degrees of the minority and majority nodes, respec-
tively. The power inequality is defined as PI = d̄min

d̄maj
 . A network with power equality 

should have PI = 1 ; and the lower the PI, the more disadvantaged are the minority 
nodes. (3) Moment Glass Ceiling (g). Moment glass ceiling measures the glass-ceiling 
effect in a network  (Hymowitz and Schellhardt 1986; Avin et  al. 2015). The intuition 
behind it is that a larger second moment (and assuming a similar average degree, i.e., no 
power inequality) leads to a larger variance in the distribution and thus a significantly 
larger number of nodes with high degree (i.e., hubs). Let E(d2min) and E(d2maj) denote the 
second moment of the degree distribution for the minority and majority nodes, respec-
tively. The moment glass ceiling is defined as g =

E(d2min)

E(d2maj)
 . A network with no glass-ceil-

ing effect should have g = 1 ; and the lower the g, the more disadvantaged are the 
minority nodes.

Experiments
We report results on five sets of experiments. Experiment 1 is on information access 
equality across different network models. For each network model and each spreading 
process, we conduct 100K runs. Specifically, we repeat the following procedure 10 times: 
(1) We generate 100 networks for each model. (2) For each spreading process, we run 
100 trials. Thus, we end up with a total of 100K ( = 10× 100× 100 ) runs for each model 
and each spreading process. We observed no discernible effect on the results with 200 
runs, 1K runs, and 10K runs. Experiment 2 is on the effects of different network param-
eters on information access equality. Experiment 3 is on information access equality in 
real-world networks. Experiment 4 is on regression analysis to detect significant features 
in information access equality. Experiment 5 is on the relationship between information 
equality and spreading efficiency.
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For simplicity, we control the parameter space for the information spreading simula-
tions. For all synthetic models, we set the number of seed nodes to be s = 10 , which is 
0.2% of the network, reflecting the assumption that the budget for seeding is limited. For 
the experiments involving real-world networks, we vary the seeding portions from 0.2% 
to 1% to 10% . In symmetric transmission, rwithin = rbetween = 0.7 . In asymmetric trans-
mission, rwithin = 0.7 and rbetween = 0.3 . The activation threshold for complex contagion 
is a = 0.1 . We did not perform experiments in which the size of the network (in terms 
of the number of nodes and edges) was varied. Our results are independent of the size 
of the network, except for the fact that the transmission process takes longer in larger 
networks.

Experiment 1: information access equality across different network models

We create networks with N = 5000 nodes, m = 0.2 (i.e., 20% of the nodes are minority 
nodes) and l = 2 . We set h = 0.8 and α = 1 in Homophily BA and Diversified Homoph-
ily BA, including their variations (namely, Random Homophily and Diversified BA). For 
Diversified Homophily BA, we set ld = 1 and pd = 0.6.

Network measures

In Fig. 1a, b, we compare the networks generated by the various models based on their 
degree distribution, statistics on nodes and edges, dyadicity, heterophilicity, aver-
age shortest path and diameter. For the degree distribution, we show the result of one 
sample network under each model. For all other statistics, we show the average of 100 
realizations.

As expected, we observe that Random Network has dyadicity and heterophilicity of 
1. For all models except Random Network, dyadicity in the minority group is larger 
than dyadicity in the majority group. Homophily BA, Random Homophily and Diversi-
fied Homophily have heterophilicity values below 1. This suggests that there are fewer 
edges between the groups than expected in random mixing. BA and Diversified Homo-
phily BA have heterophilicity slightly above 1. This suggests that there are slightly more 
edges between the groups than expected in random mixing. As expected, the diversified 
versions of network models have larger heterophilicity compared to their undiversified 
versions.

We observe that Homophily BA and BA have the smallest average shortest path 
lengths and diameters due to the presence of hubs. Diversified Homophily and Diversi-
fied Homophily BA have the largest average shortest path length and diameter.

Figure 1c shows the social captial (degree) equality measures across different network 
models. The Earth Mover Distance between the minority degree distribution and the 
majority degree distribution is largest in Homophily BA and smallest in Random Net-
work. For Power Inequality and Moment Glass Ceiling, the minority nodes have the 
most advantage in Diversified Homophily BA, while the majority nodes have the most 
advantage in Homophily BA.

Information access equality

In Fig.  2, we plot information access equality as a heatmap, where the x-axis represents 
the different stages of the spreading process t/T, and the y-axis is the different models. 
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The color of each cell shows �I(t/T ) . The white color denotes �I(t/T ) = 0 (i.e, equal-
ity). The red color denotes �I(t/T ) > 0 (i.e., the majority group is at an advantage), 
while the blue color denotes �I(t/T ) < 0 (i.e., the minority group is at an advantage). 
We omit the performances under mid minority seeding because we found they are very 
close to performance under high seeding portion. The results for mid minority seeding 
are in the Additional file 1.

Under low minority seeding portion (less than 3 seeds, which is 0.3% in minority 
group), the majority group initially has an advantage ( �I(t/T ) > 0 ) for all models, and 
subsequently converges to equality ( �I(t/T ) = 0 ). Comparing the models, we observe 
that Diversified Homophily BA and its variation take shorter time to reach equality, while 
Homophily BA and Random Homophily take longer time. When the minority seeding 

Fig. 1  Statistics of network models. All networks have N = 5000 nodes, where each node joins the network 
with l = 2 edges and 20% of the nodes are minority. We set h = 0.8 , eo = 1 , α = 1 and pd = 0.6 . a Degree 
distributions. BA, Homophily BA, and Diversified Homophily BA all heavy-tailed degree distributions because 
of preferential attachment. b Basic Statistics. As expected, Random Network has dyadicity and heterophilicity 
of 1. For all network models expect Random Network, dyadicity in the minority group is larger than dyadicity 
in the majority group. The diversified versions of network models have larger heterophilicity compared to 
their undiversified versions because of the inter-group edges in the diversified versions. Homophily BA and 
BA have the smallest average shortest path lengths and diameters due to the presence of hubs. Diversified 
Homophily and Diversified Homophily BA have the largest average shortest path length and diameter. 
c Social Captial Equality Measures. For each equality measure, we sort the generative network models 
from most equal (left) to least equal (right). The earth mover distance is the distance between the degree 
distributions of the minority and majority groups. Homophily BA has the largest earth mover distance, while 
Random Network has the smallest distance. The power inequality is the ratio of the average degree in the 
minority group to the average degree in the majority group. The moment glass ceiling is the ratio of the 
second moment of degree distribution in the minority group to the second moment of degree distribution 
in the majority group. For Power Inequality and Moment Glass Ceiling, the minority nodes have the most 
advantage in Diversified Homophily BA, while the majority nodes have the most advantage in Homophily BA.
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portion is high (more than 7 seeds, which is 0.7% in minority group), the minority group 
initially has an advantage ( �I(t/T ) < 0 ) and then converges to equality ( �I(t/T ) = 0 ). 
Under asymmetric transmission, majority group has an advantage ( �I(t/T ) > 0 ) in the 
middle of the process for some models. We again observe that Diversified Homophily 
BA and its variation take shorter time to reach equality, while Homophily BA and Ran-
dom Homophily take longer time.

In summary, Homophily BA and Random Homophily achieve the lowest information 
access equality, followed by Random Network, BA and Diversified Homophily BA and 
their variation. The ranking between Random Network, BA, and Diversified Homophily 
BA depends on the process. Although Random Network and BA are the most equal in 
degree equality measures and have the largest heterophilicity values, they are not always 
the most equal in information access equality (e.g., under complex contagion and asym-
metric transmission rate).

Experiment 2: effects of different network parameters on information access equality

We investigate the information access equality of network models with different param-
eters. Specifically, we investigate Homophily BA under different homophily h, prefer-
ential attachment strength α , and minority portion m. We also investigate Diversified 
Homophily BA under different diversification probability pd.

What is the influence of homophily on information access equality? Figure 3 shows 
the impact of homophily on information access equality. We vary homophily h in the 
range between 0.5 (random mixing) and 1 (perfectly homophilic) under Homophily 
BA (with m = 0.2 , l = 2 , α = 1 ). At low minority seeding portion, we observe that for 

Fig. 2  Information spreading equality of different network models. We plot the spreading equality with low 
and high minority seeding portions. Each plot is a heatmap, where the x-axis represents the relative time 
t/T, the y-axis represents the different models, and the color represents �I(t/T ) . Recall that �I(t/T ) = 0 
represents equality. When the minority seeding portion is low, �I(t/T ) is initially positive (i.e., the majority 
group has a greater advantage); it then decreases to 0 for all models. When the minority seeding portion 
is high, �I(t/T ) is initially negative (i.e., the minority group has a greater advantage). Under symmetric 
transmission, �I(t/T ) increases to 0. However under asymmetric transmission, �I(t/T ) increases to 0, then 
becomes positive, and eventually becomes 0. We observe that regardless of the contagion type and the 
seeding condition, Homophily BA and Random Homophily take longer to reach �I(t/T ) = 0 , indicating less 
equality. On the contrary, Diversified Homophily BA and Diversified Homophily reach �I(t/T ) = 0 faster, 
sometimes even faster than Random Network and BA, indicating more equality. The differences between the 
models are more pronounced under complex contagion
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all processes smaller h values have more information access equality. At high minor-
ity seeding portion, under symmetric transmission rate (Fig.  3a, c), smaller h values 
also achieve more information access equality. However, under asymmetric transmis-
sion rate and high minority seeding portion, (Fig. 3b, d), we observe that the major-
ity nodes gain an advantage around t/T = 40 and keep that advantage until t/T = 70 
before equality is established.What is the influence of preferential attachment strength 
on information access equality? We experiment with α between 0 and 1.4, from no 

Fig. 3  Information spreading equality for homophily BA with different levels of homophily h. We plot the 
spreading equality for Homophly BA networks with low and high minority seeding portions. Each plot is a 
heatmap, where the x-axis represents the relative time t/T, the y-axis represents the graph’s homophily h, and 
the color represents �I(t/T ) . Recall that �I(t/T ) = 0 represents equality. At low minority seeding, the lower 
h values, the more information access equality. This holds across all processes. However at high minority 
seeding portion, the behavior depends on the symmetry of the transmission. Under symmetric transmission 
rates (shown in a and c) with high minority seeding portion, lower h values achieve more information access 
equality. Under asymmetric transmission rates (shown in b and d) with high minority seeding portion, lower 
h values increase to zero, then become positive, before finally decreasing to zero. This makes it hard to judge 
which h value achieves more equality when one has an asymmetric transmission and high minority seeding

Fig. 4  Information spreading equality for homophily BA with different preferential attachment strengths 
α . When α < 1 , we observe few differences in information equality, implying that for sublinear preferential 
attachment, other factors such as homophily are more important for information access equality. However, 
for α ≥ 1 (which is often the case in real-world networks), the type of contagion is important. For example 
when α = 1.4 , simple contagion achieves information access equality quickly (shown in a and b). This is not 
true under complex contagion (shown in c and d). This highlights the importance of the type of contagion 
on the network
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preferential attachment ( α = 0) to preferential attachment ( α > 1 ). Figure 4 shows the 
impact of α on information access equality. When α < 1 , we find limited differences 
in information access equality, implying that with sublinear preferential attachment, 
other factors such as homophily are more important for information access equality. 
However, for α ≥ 1 , under simple contagion (Fig. 4a, b) we observe a slight decrease 
and then an increase in equality. α = 1.4 achieves the most information access equal-
ity. However, under complex contagion (Fig.  4c, d), we find that α = 1.4 achieves 
the least information access equality. This could be related to the different functions 
hubs play under simple and complex contagion. Under simple contagion, hubs are 
pathways, while under complex contagion, hubs are bottlenecks. This observation 
suggests that the occurrence of hubs on information access equality seems to be sig-
nificant only under super-linear preferential attachment.

What is the influence of minority portion on information access equality? For the 
minority portion m, we experiment in the range between 0.05 (almost no minority 
nodes) and 0.5 (no population difference between majority and minority nodes). We 
find that the influence of m on information access equality is strongly dependent on 
minority seeding portion; this is independent of contagion type and transmission 
rate (see Fig. 5). At low minority seeding portion, more equality is achieved with the 
smallest m (0.05 in our experiments). At high seeding proportion, the larger m val-
ues achieve more equality (0.5 under our experiment). This can be explained by the 
fact that minority seeding portion (as an absolute value), has a different relative effect 
among different minority populations. For example, minority seeding portion of 0.3 is 
considered smaller when m = 0.5 compared to m = 0.1.

What is the influence of diversity on information access equality? We investigate the 
behavior of Diversified Homophily BA with different pd values: 0.01, 0.05, 0.1, 0.2, 0.4, 
0.6 and 0.8. We set m = 0.2 , h = 0.8 , ld = 1 , and α = 1 . We observe that, in general, 
larger pd values achieve more information access equality, especially for low minority 
seeding portion (Fig. 6). This matches our observation that larger pd values have more 
degree equality and less homophily.

Fig. 5  Information spreading equality for homophily BA with different minority portions m. The influence of 
m on information access equality is strongly dependent on the minority seeding portion and is independent 
of contagion type and transmission rate. At low minority seeding portion, more equality is achieved with the 
lowest m (0.05 in our experiments)
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Experiment 3: information access equality in real‑world networks

We experiment with three real-world networks: (1) The Github follower network, (2) 
The DBLP collaboration network, and (3) The APS citation network  (Lee et  al. 2019). 
The Github and DBLP networks have gender as a grouping attribute. APS has research 
field as the grouping attribute. We filter the networks by including only labeled nodes 
and selecting the largest connected component. The basic statistics of the three net-
works are in the table presented as part of Fig. 7b. For these information access simula-
tions, we keep the parameters the same as in Experiments 1 and 2, except for the seeding 
portion and the number of simulations. We run experiments on 0.2% , 1% and 10% seed-
ing portions. Since the results across these seeding portions are similar, we only report 
the results on 0.2% seeding portion here. The figures for the other experiments are in 
the Additional file 1. For APS, 0.2% of the nodes is only 2 nodes, which makes it difficult 
to enforce a different portion of minority seeding, so we set s = 5 . The results reported 
below are averages over 100 simulations.

Figure 7a shows the degree distributions of the real networks. We observe that all net-
works have heavy-tailed degree distributions. The basic statistics for these networks are 
in Fig. 7b. We note that all networks have dyadicity greater than 1 and heterophilicity 
less than 1, indicating homophily in the network. Comparing across the networks, we 
observe that APS has the largest dyadicity and the smallest heterophilicity, followed by 
Github and DBLP. The social capital (degree) equality measures are in Fig. 7c. In terms 
of degree equality, Github is the most equal, followed by DBLP and then APS.

Figure 8 shows information access equality on real networks. For Github, we find that 
initially �I(t/T ) < 0 , indicating that minority nodes have a greater advantage. This is 
because Github has the smallest minority portion, and this is consistent with the obser-
vation for influence on equality with different minority portion m values (see Fig.  5). 
Across all process settings, we find that APS takes the longest to reach equality. This is 
consistent with our previous observation that APS is less equal in degree and has more 
homophily. DBLP is most equal in information access, which is consistent with less 
homophily. We find that the information access equality landscape depends on differ-
ent process settings. For example, under asymmetric transmission rate, we notice that 

Fig. 6  Information spreading equality for diversified homophily BA with different diversification probabilities 
pd . In general, we observe that the higher the pd , the higher the information access equality, especially for 
low minority seeding portion
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�I(t/T ) becomes positive for Github and DBLP under high seeding portion, which is 
not the case under symmetric transmission rate. We also find that achieving equality is 
much harder under complex contagion and asymmetric transmission rate. These vari-
ations are consistent with our earlier observation that equality in information access is 
related to both the network structure and the properties of the spreading process (see 
Fig. 8).

Fig. 7  Statistics of real networks. a Degree Distributions. We see that all networks have heavy-tail degree 
distributions, but we note that the minority group in APS has a much shorter tail. b Basic Statistics. The table 
lists basic statistics, including node composition, average and maximum degree, edge composition, dyadicity 
and heterophilicity scores for the three networks. Github has the lowest proportion of minority nodes, while 
APS has the highest proportion of minority nodes. DBLP has the highest average and maximum degree. All 
the networks have dyadicity greater than 1 and heterophilicity less than 1, indicating homophilic behavior. 
Among them, APS has the highest dyadicity value and the lowest heterophilicity value.  c Social Captial 
Equality Measures. The Earth Mover Distance of the three networks are all positive, indicating that the degree 
distribution is different between the groups. APS has the highest Earth Mover Distance. All networks have 
power inequality less than 1, indicating that minority groups have a lower average degree. For the moment 
glass ceiling, GitHub is slightly higher than 1, but the other two networks both have a moment glass ceiling 
lower than 1, indicating that there are fewer minority nodes as hubs
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Experiment 4: regression analysis to detect significant features in information access 

equality

To systematically analyze what features contributes to information access equality, we 
construct datasets with multiple network features and process features, and build lin-
ear regression models to predict �I(t/T ) at t/T = 40 . We perform feature scaling on 
the numerical features and one-hot encoding on the categorical features. We observe 
that regardless of the experiment (namely, Experiments 1, 2, or 3), the process fea-
tures are all statistically significant at p-value of 0.05. We observe that a symmetric 
transmission rate will increase equality compared to an asymmetric one. A simple 
contagion will decrease equality compared to a complex contagion. Compared to a 
mid seeding portion, a low minority seeding portion will decrease equality and a high 
minority seeding portion will increase equality. However, all network features are not 
statistically significant across all of the experiments. We observe that degree inequal-
ity (as measured by power inequality or moment glass ceiling) is significant in 80% of 
the experiments. The higher the power inequality, the higher the information access 
inequality. This means that when minority nodes have more advantage, the informa-
tion access inequality is lower. We also observe that network distance (as measured by 
shortest path or diameter) is significant in 60% of the experiments. Additionally, the 
higher the (Min, Min) shortest path, the more information access inequality, and the 
lower the (Maj, Min) shortest path, the more information access equality. For brevity, 
we do not include the full regression table here; however, the reader will find the table 
in the Additional file 1.

Fig. 8  Information spreading equality of real networks. Recall that we plot the spreading equality with low 
and high minority seeding portions. Each plot is a heatmap, where the x-axis represents the relative time t/T, 
the y-axis represents the different real-world networks, and the color represents �I(t/T ) while �I(t/T ) = 0 
represents equality. For Github, we find that initially �I(t/T ) < 0 for high minority seeding portion and 
�I(t/T ) ≈ 0 for low minority seeding portion, indicating that majority nodes don’t have many advantage. 
This is because Github has the smallest minority portion, and this is consistent with the observation for 
influence on equality across different m values (see Fig. 5). Across all process settings, we find that APS takes 
the longest to reach equality, which is consistent with our previous observation that APS is less equal in 
degree and has a higher homophily level. DBLP is the most equal in information access, which is consistent 
with lower homophily. We find that the information access equality landscape depends on different process 
settings. For example, under asymmetric transmission rate, we notice that �I(t/T ) becomes positive for 
Github and DBLP under high seeding portion, which is not the case under symmetric transmission rate. We 
also find that achieving equality is much harder under complex contagion and asymmetric transmission rate
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Experiment 5: relationship between information equality and spreading efficiency

Research on fairness in AI has shown a phenomenon called the “price of fair-
ness” (Menon and Williamson 2018; Corbett-Davies et al. 2017), where researchers have 
found that fairness comes at a cost to other performance measures of interest. For infor-
mation spreading, the relationship between equality and efficiency is a rather important 
one, especially when the information is time-sensitive. Past work has found the “price of 
fairness” under information maximization (Tsang et al. 2019).

Figure 9 shows the efficiency of information spread across different network models. 
The x-axis is the time (in the number of iterations) needed to reach 100% of the nodes. 
The y-axis is the different generative network models. We show the average and stand-
ard deviation values of the time needed to reach 100% of the nodes across 100K runs 
for each model and each spreading process. On average, more time is needed with 
asymmetric transition. Diversified Homophily and Diversified Homophily BA are, on 
average, slower in spreading information than other models because they have more 
inter-group edges. Recall that the same inter-group edges slow down the spreading pro-
cess help increase information access equality. The spreading inefficiency is more pro-
nounced with complex contagion. With complex contagion, the standard deviation on 
time to reach 100% of the nodes is larger for Diversified Homophily BA. This is most 
likely due to the fact that hubs become bottlenecks in complex contagion and Diversified 
Homophily BA enforces diversification.4 For a heatmap view of efficiency in information 
spread across different generative models, see the Additional file 1.

Fig. 9  Information spreading efficiency of different generative models of complex networks. We inspect 
information access efficiency by looking at the time needed to reach 100% of the nodes. The x-axis is 
the time (in the number of iterations) needed to reach 100% of the nodes. The y-axis is the different 
generative models. We show the average and standard deviation values of the time needed for 100% 
outreach across 100K runs for each model and each spreading process. On average, more time is needed 
with asymmetric transition. Diversified Homophily and Diversified Homophily BA are, on average, slower 
in spreading information than other models (especially with a complex contagion). This is due to their 
inter-group edges. With complex contagion, the standard deviation on time for 100% outreach is larger 
for Diversified Homophily BA. We conjecture that this is due to the fact that hubs become bottlenecks in 
complex contagion and Diversified Homophily BA enforces diversification. The hyperparameters used here 
are the same as in Experiment 1: pd = 0.6 , h = 0.8 , α = 1 , and m = 20% . For a heatmap view of efficiency in 
information spreading of different generative models, see the Additional file 1.

4  The hyperparameters used here are the same as in Experiment 1: pd = 0.6 , h = 0.8 , α = 1 , and m = 20%.
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By inspecting different network parameters, we observe that except for the minority 
population m, all other parameters can affect the information spreading efficiency. For 
brevity, we report a summary of these results here. The Additional file 1 include the rel-
evant figures. For homophily h, h = 1 always has the lowest efficiency, possibly due to the 
extreme case where only one edge connects the two groups. We observe that for asym-
metric transmission rate, a lower h has a slightly slower spreading speed due to more inter-
group edges, again showing the equality and efficiency trade-off of inter-group edges.

We observe a clear trend in spreading efficiency and the preferential attachment 
strength α . Under simple contagion, the larger the α , the faster the spreading. In con-
trast, under complex contagion, the larger the α , the slower the spreading speed. This is 
to be expected because the emergence of hubs promotes simple contagion but hinders 
complex contagion. Recall that we observed that larger α values have higher equality in 
simple contagion and lower equality in complex contagion.

We observe a slight decrease in spreading efficiency as diversification probability pd 
varies under simple contagion. Under complex contagion, larger pd values significantly 
decrease the spreading speed, again showing the trade-off between efficiency and equal-
ity with increasing inter-group edges.

In short, we find that there is a trade-off between information access equality and 
information spreading efficiency. This is mainly due to the inter-group edges. However, 
similar to the observation that equality is related to spreading process setting, this trade-
off is also dependent on the spreading process setting.

Conclusion and discussion
We focused on information access equality in complex networks when the population 
is divided into two mutually exclusive groups: majority vs. minority. We measured the 
information access equality of various processes on different network models with dif-
ferent parameters and on three real networks. We found that information access equality 
depends not only on the network structure, but also on different contagion types (i.e., 
simple vs.  complex), different transmission rates (symmetric vs.  asymmetric), and dif-
ferent minority proportions. For instance, the occurrence of hubs on information access 
equality seems to be significant only under super-linear preferential attachment. Based 
on regression analyses, we observed that process features are all statistically significant 
(p-value ≤ 0.05 ) for information access equality. A symmetric transmission rate will 
increase equality compared to an asymmetric one. A simple contagion will decrease 
equality compared to a complex contagion. Compared to a mid seeding portion, a low 
minority seeding portion will decrease equality and a high minority seeding portion will 
increase equality. The network features were not always statistically significant. However, 
two network features stood out: degree inequality (as measured by power inequality or 
moment glass ceiling) and network distance (as measured by shortest path or diameter). 
Although it is very difficult to draw a single conclusion about what type of networks can 
promote information access equality, we find that, in general, more inter-group edges 
can help achieve equality. However, we note one drawback to more inter-group edges: 
they may reduce the efficiency of information spreading. Designing a network with 
information access equality requires more knowledge about the spreading process itself. 
Our findings can be used to guide recommendations for mechanistic design of social 
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networks that foster more equal information access. For example, social networking 
platforms, such as Facebook and LinkedIn, can recommend new connections that lead 
to more equal information access for various spreading processes on their platforms. 
Ferrara et al. Ferrara et al. (2022) show how link recommendation algorithms can reduce 
the visibility of the minority group when both group are heterophilic. Deployment of our 
findings in a real-world system is part of our future work.
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