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Introduction
Influence maximum problem (IMP) is an optimization problem for finding a small sub-
set of influential vertexes as Ns seeds which maximize the influence represented by the 
number of activated vertexes from the seeds in a social network, Ns ≥ 1 is a constant 
number. The problem has many applications such as the viral marketing (Valente and 
Davis 1999; Guo et  al. 2021b), brain activation (Morone et  al. 2017), information dis-
semination (Lü et  al. 2011) of community (Guo and Wu 2020), rumor blocking (Guo 
et al. 2021a) and halting global epidemic outbreaks in contact networks (Xu et al. 2020). 
For the maximization, a diffusion model is studied to simulate information propaga-
tion from active individuals. The typical models are called Independent Cascade (IC) 
and Linear Threshold (LT) models (Kempe et al. 2003). Note that a special case of IC 
with a constant infection probability on every links is the susceptible-infected-recovered 
(SIR) model (Pastor-Satorras et al. 2015) as mentioned later. However, the IMP is NP-
hard (Karp 1972) for both IC and LT models (Pastor-Satorras et al. 2015). Thus, many 
researchers have designed heuristic methods for finding single or multiple seeds by 
using local or global network properties with spreading power, such as degree central-
ity (Borge-Holthoefer et al. 2012; Tanaka et al. 2012), k-core (Kitsak et al. 2010), local 
centrality (Chen et al. 2012), local structure centrality (Gao et al. 2014), and collective 

Abstract 

Finding the influential vertexes as seeds in a real network is an important problem 
which relates to wide applications. However, some conventional heuristic methods do 
not consider the overlap phenomenon. In order to avoid the overlap of spreading, we 
propose a new method in combing the statistical physics approach and multi-hop cov-
erage. We also propose a faster epidemic model which does not need the averaging of 
stochastic behavior. Through the computer simulation, the obtained results show that 
our method can outperforms other conventional methods in the meaning of stronger 
spreading power per seed.

Keywords:  Influence maximum problem, Multiple seeds, Vertex cover problem, L-hop 
coverage, Overlapping phenomena, SIR model, Statistical physics approach

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Liao and Hayashi ﻿Applied Network Science            (2022) 7:52  
https://doi.org/10.1007/s41109-022-00491-x

Applied Network Science

*Correspondence:   
s2060004@jaist.ac.jp

Division of Transdisciplinary 
Sciences, Japan Advanced 
Institute of Science 
and Technology, Nomi, Japan

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-022-00491-x&domain=pdf


Page 2 of 16Liao and Hayashi ﻿Applied Network Science            (2022) 7:52 

influence (Teng et  al. 2016). However, there are various drawbacks of these heuristic 
methods. For example, degree centrality is a straightforward and efficient method, how-
ever it considers only the power of direct infections. When two hubs are adjacent to 
each other, the spreading areas overlap heavily. Although some well-known global meth-
ods such as betweenness centrality (BC) (Freeman 1977) and closeness centrality (CC) 
(Sabidussi 1966) can give better results (Dey et al. 2021) for finding multiple seeds, they 
are unsuitable for very large-scale social networks because of the high computational 
complexity (Guzman et al. 2014) of O(| V | × | E |) for BC or O(| V |2) for CC. Where 
V and E denote sets of vertexes and edges, respectively. Although, various efforts have 
been made on the above research, the design of more effective method is still an open 
issue especially for finding multiple seeds.

On the other hands, for several NP-hard problems, there exist practically superior 
approximate algorithms in statistical physics approach. This gives our motivation for 
considering a new method to finding multiple seeds. In application point of view, the 
following problem setting to avoid the overlap of spreading from a fixed number of Ns 
seeds for the IMP:

•	 How to determine the the number Ns of seeds? ⇒ We propose an applying of the 
extended minimum vertex cover (VC) on l-hop coverage.

•	 Is our method is better than the conventional selections of seeds as an approximate 
solution for the IMP? ⇒ The spreading powers in our method and conventional 
methods are compared through numerical simulations.

Our innovative idea is a combination of l-hop coverage in computer science and the 
statistical physics approach (Weigt and Zhou 2006) for the minimum VC in addition 
through a faster simulation of information spreading. Note that these two research fields 
are quite different and not easily contacted. Here, the l-hop coverage means that seeds 
infect their l-hop neighbors. As the special case of l = 1 , the set cover, dominating set, 
and the VC problems are corresponded to 1-hop coverage. Note that, minimum set 
cover problem can be reducted to the minimum VC problem (Karp 1972). However, the 
minimum VC problem is NP-hard (Karp 1972). In order to efficiently estimate the set 
of the minimum VC with global spreading power, we focus on collective computation 
by local interactions through message-passings based on statistical physics (Weigt and 
Zhou 2006). Moreover, to reduce the calculation time, we propose a faster simulation 
based on SIR model inspired from the collective influence (Teng et al. 2016) in physics 
community of network science. It does not need the average of behavior, therefore it is 
expected to be the number of samples times faster than the conventional SIR model. 
Because the SIR model (Pastor-Satorras et  al. 2015) is usually applied to perform the 
spreading process from multiple seeds, however many trials of spreading is necessary for 
the averaging of stochastic behavior. When a network is very large, the conventional SIR 
model requires a lot of time in the averaging of stochastic behavior.

The organization of this paper is as follows. In section “Our Combination Methods”, 
we briefly review the statistical physics approach and propose our method. The conven-
tional SIR model and our faster MP-SIR model are introduced in the subsection “Faster 
MP-SIR model”. Through computer simulation, the spreading power of our method and 
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other heuristic methods are compared in the section “Simulation Results”. Conclusion 
are given in the last section. In section “Appendix”, we explain the conventional heuristic 
methods for finding seeds.

Our combination method
Although the conventional heuristic methods (Borge-Holthoefer et  al. 2012; Tanaka 
et al. 2012; Kitsak et al. 2010; Chen et al. 2012; Gao et al. 2014; Teng et al. 2016) can be 
applied to find multiple seeds, they do not consider the overlap phenomena. As shown 
in Fig. 1a, when hubs are near to each other, High degree(HD) method (Borge-Holthoe-
fer et al. 2012; Tanaka et al. 2012) is not suitable for finding multiple seeds. Because their 
spreading areas heavily overlap. In order to avoid the overlap, we consider a new method 
inspired from a statistical physics approach and l-hop coverage.

The outline of our combination method is as follows. First, the number Ns of seeds is 
determined by the l-hop coverage, in which each distance between seeds is more than l 
hops. A fixed number Ns are corresponding to l=1, 2, 3, and 4 in order to compare the 
power of information spreading in the next section. Second, we explain the l-hop cover-
age. As shown in Fig. 2, vertex i is chosen as the first candidate of VC. After removing 
the vertex i and its l-hop neighbors, as the second candidate of VC, vertex j is chosen 
from the remaining network. Then, repeat the above steps until no vertexes exist in the 
network. The symbol table for our method is shown in Table 1.

Applying a survey propagation to minimum VC

We briefly review the approximate algorithm called survey propagation for the mini-
mum VC problem. In the algorithm (Weigt and Zhou 2006), each vertex i has one of 
the three states: covered (state 1), never covered (state 0), or sometimes covered and 
sometimes not (joker state ∗ ). Note that the joker state ∗ is between the state 0 and 1. The 
number of covered states can be regulated in the extended search space by introducing 
joker state. That is the reason why it is called survey propagation. As shown in Fig. 3, 
these probabilities are denoted as π̂ (1)

j→i (state 1), π̂ (0)
j→i (state 0), and π̂ (∗)

j→i (joker state ∗ ), 
respectively. We take care that the following message-passing for estimating the mini-
mum VC differs from information spreading on SIR model (Pastor-Satorras et al. 2015), 
although the message-passing and information spreading are similar words. For each 
vertex i, the message-passing equations (Weigt and Zhou 2006) are given by

Fig. 1  Two situations of a overlap and b avoiding the overlap
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Table 1  Symbol table for our method

Notation Description

G(V, E) Graph with vertex set V and edge set E

N =| V | , M =| E | Size of vertex set or edge set

n, m n =| V | , m =| E |

k Degree of a vertex (number of edges emanated from a vertex)

Ns Size of seed set

l Number of hops

i, j Index of vertex

∂ i\j Set of the nearest neighbors of vertex i but not including j

e−y Penalty factor for minimizing the size of VC, y is an inverse temperature parameter

i → j Link from vertex i to j

π̂
(0)
i

Probability variable of never covered state 0

π̂
(1)
i

Probability variable of covered state 1

π̂
(∗)
i

Probability variable of sometimes covered and sometimes not joker state ∗

set of ∂Ball(j, l − 1) Set of the l − 1 nearest neighbors of vertex j

Ns Number of seeds

〈k〉 Average degree: 2M/N

β Infection probability

S(t), I(t), R(t) Cumulative probability of each state of S, I, or R at time t

PIi (t) , P
R
i (t) , and Psi (t) Probability of state S, I, and R for a vertex i at time t

| VC | Size of set of vertexes as vertex cover

di,j Distance of i and j defined by the shortest path length between them

tc Convergent time until all infected vertexes are recovered

D Diameter of network as the maximum distance of the shortest path between vertexes

Fig. 2  Illustration of l-hop coverage for determining Ns
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where ∂i\j is the set of the nearest neighbors of vertex i but not including j, e−y is a pen-
alty factor for minimizing the size of VC, y is an inverse temperature parameter. The 
normalization constant is given by

For each link i → k , the probability is also given by

Equations (3)–(6) are calculated through T round iterations. After the convergence, the 
vertex i with the largest π̂ (1)

i  is selected as the VC. Then it is removed and recalculate the 
π̂i until all vertexes are covered in the following decimation process on the l-hop cover-
age. The detail of the extended minimum VC on l-hop coverage is described as follows 

Step 1	� By using Eqs. (3)–(6), the probability π̂ (1)
i  of vertex i is calculated for estimating 

the minimum VC.
Step 2	� As the decimation process, the vertex j with the highest π̂ (1)

j  is selected as a 

(1)π̂
(0)
i =C−1

i

j∈∂i

(1− π̂
(0)
j→i),

(2)π̂
(∗)
i =C−1

i e−y
∑

j∈∂i

π̂
(0)
j→i

∏

j′∈∂i\j

(1− π̂
(0)
j′→i),

(3)π̂
(1)
i =C−1

i e−y



1−
�

j∈∂i

(1− π̂
(0)
j→i)−

�

j∈∂i

π̂
(0)
j→i

�

j′∈∂i\j

(1− π̂
(0)
j′→i)



,

(4)Ci = e−y



1− (1− ey)
�

j∈∂i

(1− π̂
(0)
j→i)



.

(5)π̂
(0)

i→k = C−1

i→k

∏

j∈∂i\k

(1− π̂
(0)
j→i),

(6)Ci→l = e−y



1− (1− ey)
�

j∈∂i\k

(1− π̂
(0)
j→i)



.

Fig. 3  How to probabilistically determine three different states in the survey propagation. Values 0, ∗ , and 1 
are represented by a white, gray, and black circles. The state of vertex i at bottom is determined by the states 
of its neighbors ∂ i at top. a There are no white circle in ∂ i , the bottom circle i is not necessary to be covered 
and gets color white (state 0). b If there is exactly one white circle in ∂ i , the bottom circle i becomes gray 
(joker state). c If there are two or more white circles in ∂ i , the bottom circle i is black as an always covered 
(state 1)
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seed, the chosen vertex j and its ∂Ball(j, l − 1) are removed from the network. 
We emphasize that the ∂Ball(j, l − 1) is represented the l-hop coverage. The 
number of seeds are updated as Ns ← Ns + 1 (initially set as Ns = 0).

Step 3	� Repeat Steps 1 and 2 until all vertexes have been removed in the network. 
Finally, the size of multiple seeds is obtained as Ns.

Faster MP‑SIR model

Let us consider the averaging behavior in a stochastic SIR epidemic model (we call it 
AVG-SIR) (Pastor-Satorras et al. 2015) with three states S: susceptible (inactive) ver-
texes represents the individuals susceptible to the disease, I: infected (active) ver-
texes denotes the individuals that have been infected and are able to spread the 
disease to susceptible individuals, and R: recovered stands for individuals that have 
been recovered and will never be infected again (Pastor-Satorras et al. 2015). At each 
time step, in the spreading process, an infected vertex changes the states of its neigh-
bors from S to I with probability β = �

�k�
�k2�

 (Pastor-Satorras and Vespignani 2002), 

and then changes its own state from I to R with recovery probability µ = 1 . Usually, 
the conventional AVG-SIR model is applied to perform the spreading process from a 
set of vertexes as multiple seeds, however many trials of spreading is necessary for 
the averaging of stochastic behavior with probability β in samplings. It means that if 
the size of the network is very large, AVG-SIR model requires a lot of time for the 
averaging. We set sample size = 1000. In order to reduce the calculation time, we 
consider the following message-passing equations inspired from that in CI (Teng 
et al. 2016).

where PI
i (t + 1) , PR

i (t + 1) , and Ps
i (t + 1) denote the probabilities of states I, R, and S for 

vertex i at time t + 1 , respectively. Note that already averaged probability values PI
i (t) , 

PR
i (t) , and Ps

i (t) are updated by time step. We call it MP-SIR model. These message-pass-
ing Eqs. (7), (8), and (9) are also physics approach. As the remarkable difference, MP-
SIR model is based on already averaged probability variables, therefore it does not need 
many samples for averaging stochastic behavior.

In summary, there are two contributions to algorithm design as follows:

•	 By combining survey propagation for finding the minimum VC and l-hop cover-
age, we propose a new method for finding multiple seeds.

•	 We propose the faster MP-SIR model by message-passing.

(7)PI
i (t + 1) =PS

i (t)



1−
�

j∈∂i

(1− βPI
j (t))



,

(8)PR
i (t + 1) =PR

i (t)+ PI
i (t),

(9)PS
i (t + 1) =1− PI

i (t + 1)− PR
i (t + 1),
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Simulation results
The minimum VC by survey propagation versus 2‑approximation method

We compare the survey propagation and 2-approximation method through numerical 
simulations in a realistic network named LastFM to show that the survey propagation 
can efficiently estimate the minimum VC. As shown in Table 2, the solution by the sur-
vey propagation seems to be nearly optimal, while that by 2-approximation method (Bar-
Yehuda and Even 1985) almost double size of the optimal solution. Note that the survey 
propagation is a statistical physics approach, the 2-approximation method is a computer 
science approach with guaranteed accuracy of the size at most twice. For comparing 
with the survey propagation, we also apply the belief propagation algorithm (Zhou 2013) 
to estimate the VC from the feedback vertex set (FVS). Because the minimum FVS can 
be reducted to the minimum VC. However, after removing the FVS, the remaining part 
of network becomes trees (forest). As shown in Fig. 4, we apply the well known method 
(Chen and Jost 2012) to divide the tree into odd and even layer, and select one of the 
layers (odd or even) whose size is smaller as VC. Table 2 shows that | VC | estimated by 
the survey propagation is slightly better than | VC | estimated by the belief propagation. 
When the inverse temperature parameter is set as y = 7 , the result of the minimum VC 
is the best of the minimum size. Moreover, Table 3 shows that T = 50 round gets the 
best result for the minimum VC. Therefore, we apply the survey propagation with y = 7 
and T = 50 in the following part.

Fig. 4  Well-known assignment method (Chen and Jost 2012) for finding VC in a tree

Table 2  VC  by the survey propagation plus assignment for the remaining tree except FVS versus 
VC  by the belief propagation and 2-approximation under different inverse temperature parameter y 
for the social network lastFM with N = 7624

The bold numbers are the best results with the minimum VC

Inverse temperature parameter y 0 0.5 1 2 3 5 7

VC  by the survey propagation 3520 3510 3517 3510 3508 3511 3507
VC /N 0.462 0.460 0.461 0.460 0.460 0.461 0.460
VC  by the belief propagation 3520 3514 3516 3519 3515 3523 3524

VC /N 0.462 0.461 0.461 0.461 0.461 0.462 0.462

VC  by the 2-approximation 5498

VC /N 0.721
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Faster MP‑SIR versus AVG‑SIR

In this subsection, we show that Faster MP-SIR and AVG-SIR models have similar 
spreading behaviors. In Fig. 5, we investigate the spreading power on AVG-SIR and MP-
SIR models for three different sizes of seed 885 ( l = 2 ), 516 ( l = 3 ), and 407 ( l = 4 ) with 
β = 0.12 at percolation threshold � 〈k〉

〈k2〉
 , � = 1 . These values of l give different size Ns of 

seeds. The rate of seeds are Ns/N = 0.12 ( l = 2 ), 0.07 ( l = 3 ), and 0.05 ( l = 4 ), respec-
tively. Note that Ns/N ≤ 20% is realistic (Kitsak et  al. 2010). Here, we define 
S(t) =

∑N
i=1 P

S
i (t)/N  , I(t) =

∑N
i=1 P

I
i (t)/N  , R(t) = 1− S(t)− I(t) . In Fig.  5a–c, I(t) 

monotonically increases, decreases, and finally converges to zero. R(t) monotonically 
increases and converges to 0.4. S(t) monotonically decreases and converges to 0.6. The 
black lines with circle, square, and triangle marks denote the probabilities of state S, I, 
and R on AVG-SIR model. The red lines with circle, square, and triangle marks denote 
the probabilities of state S, I, and R on MP-SIR model, respectively. Although the size of 
seeds is different, the red and black lines of each state S, I, and R on MP-SIR and AVG-
SIR models are almost coincided. In addition, R(t) converges to 0.4 in (a), 0.37 in (b), and 
0.35 in (c) for t∗ > tc ( tc : it is defined at the convergent time, when all infected vertexes 
are recovered.). Moreover, as l increases, tc also increases gradually ( tc = 5 in (a), tc = 7 
in (b), and tc = 8 in (c)). Note that S(t∗)+ R(t∗) = 1 because of I(t∗) = 0 . Even if the red 
and black lines for each state S, I, and R on MP-SIR and AVG-SIR models are almost 

Table 3  VC  by the survey propagation under different round T for the social network lastFM with 
N=7624

Bold indicates mean the top performers

Round T 5 10 20 50 100 200

VC  by the survey 
propagation

3511 3512 3519 3508 3516 3516

VC /N 0.461 0.461 0.462 0.460 0.461 0.461

Fig. 5  Time evolution of the fractions of three states S, I, and R, in the conventional AVG-SIR and faster MP-SIR 
models



Page 9 of 16Liao and Hayashi ﻿Applied Network Science            (2022) 7:52 	

coincided, the MP-SIR is approximately the number of samples times faster than the 
AVG-SIR (since the MP-SIR does not need the averaging). Besides, before the conver-
gent time tc (early spreading), the red and black lines on MP-SIR and AVG-SIR are 
slightly different. Since there are some gap between the highest R(t) and the lowest R(t) 
in samples on AVG-SIR model as shown in Table 4. Note that, the gap corresponds to 
the difference between the red line and the black line from t = 2 to t = 7 in Fig. 5. In 
other words, as the reason why the difference appears, I(t) and S(t) are underestimated 
on AVG-SIR because of the lowest value. Although the gap between the lowest and the 
highest R(t) is not large, the number N × R(t) of accumulated infection vertexes is large 
enough because of the network size N = 7624 . Moreover, Table 5 shows our faster MP-
SIR model is 30 time faster than the AVG-SIR, it means 1000 samples ≈ 30×T-rounds 
( T = 50 ). The rate of speed up (calculation time of AVG-SIR / MP-SIR) are from 20 to 
30. The detail is shown in the Additional file 1.

Our method versus conventional methods for finding seeds

We compare the spreading power from multiple seeds chosen by our method and the 
conventional HD, k-core, LC, LSC, and CI methods for 8 social networks. The typical 
result for a social network called LastFM is shown below. Note that our method and 
conventional methods have the same seed size. Since the CI3 outperform the other con-
ventional methods, we consider it result as the base line. Similar results are obtained for 
the remaining 7 real networks in the Additional file 1.

Figure 6 shows the time evolution of accumulated infections R(t). As shown in Fig. 6a, 
purple line with square mark (the minimum VC is chosen as seeds) is lower than brown 
line with diamond mark ( CI2 ) and cyan line with pentagon mark ( CI3 ). Although the rea-
son of lower performance is discussed later in Fig. 7, it is considered as that the mini-
mum VC does not consider the multi-hop coverage and can not avoid the overlap. As 
shown in Fig.  6b, c, brown lines with diamond mark ( CI2 ), cyan lines with pentagon 
mark ( CI3 ), orange lines with inverse triangle mark (LC), and red lines with cross mark 

Table 4  Gap of the lowest and the highest accumulated infection R(t) in samples for spreading time 
from 2 to 7 on AVG-SIR model.

t 2 3 4 5 6 7

lowest R(t) 0.11608 0.22258 0.31269 0.36791 0.39178 0.39821

highest R(t) 0.11608 0.24278 0.34693 0.40424 0.42195 0.42799

average R(t) 0.11608 0.23283 0.32923 0.38586 0.40707 0.41360

variance of R(t) 0 1.5401e-06 4.1998e-06 4.5865e-06 4.2386e-06 4.2224e-06

Table 5  The difference and Calculation time until convergence in AVG and MP SIR model (CPU:i7-
11800H, Memory:16GB)

AVG MP

Difference Need the averaging of stochastic behavior Equations for 
already averaged 
variables

Calculation time (Sec) 602.28630 20.06478



Page 10 of 16Liao and Hayashi ﻿Applied Network Science            (2022) 7:52 

(LSC) are higher than green lines with circle mark (HD) and blue lines with triangle 
mark (k-core). We remark that the CI, LC, and LSC have more spreading power than 
the HD and k-core, because CI, LC, and LSC not only consider the nearest neighbors 
of seeds but also the next nearest neighbors, or next-next nearest neighbors, and so on. 
Remember that, Ns=3517, 885, and 407 ( Ns/N =0.46, 0.12, and 0.05). In particular, the 
purple lines with square mark (our method) is the highest above the green lines with 
circle mark (HD), blue lines with triangle mark (k-core), orange lines with inverse trian-
gle mark (LC), red lines with cross mark (LSC), brown lines with diamond mark ( CI2 ), 
and cyan lines with pentagon mark ( CI3 ) on faster MP-SIR model. Although the rea-
son of higher line is discussed later in Fig.  7, it is considered as that seeds chosen by 
our method are located away from each other as illustrated in Fig. 1b. Moreover, after 
the convergent time tc , the gap between purple line with square mark and other lines in 
Fig. 6b is larger than ones in Fig. 6c. Because as the number of seeds becomes smaller, 
the spreading power per seed becomes larger. Besides, as l increases, tc also increases. 
while the size of seeds decreases.

Fig. 6  Time evolution of accumulated infections R(t) on the MP-SIR model for LastFM with � = 2 and 
l = 1, 2, 4

Fig. 7  Distribution of distance di,j of each pair of seeds i,j on 2- or 4-hop coverage ( l = 2, 4)
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Figure 7 shows the distribution of distance di,j of each pair of seeds i,j on 2- or 4-hop 
coverage. The peaks of two purple lines are righter than the peak of other color lines. 
It means that seeds chosen by our method are located more far away from each other 
than ones by the conventional methods. Since the larger distance of two seeds reduces 
the overlap, our method have more spreading power than the conventional methods. 
Moreover, the peak of purple line with filled square marks (at distance d = 6 ) is righter 
than the peak of purple line with square marks (at distance d = 5 ). It indicates that as l(-
hop) increases, the distance of seeds increases. However, there is a limitation of larger l 
as mentioned later with Table 6.

With different spreading rates β = �
�k�
�k2�

 , �=2, 4, 6, and 8, we investigate the perfor-

mance of our method for finding multiple seeds. Note that a higher spreading rate than the 

Fig. 8  Accumulated infections at the convergent time tc versus different infection parameter � from 2 to 10 
on the MP-SIR model for LastFM

Table 6  Spreading power per seed chosen by our method and the conventional six methods on 
the AVG-SIR and MP-SIR models, N × R(tc)/Ns denotes the spreading power per seed, R(tc) denotes 
the accumulated infections at the convergent time tc

Bold indicates mean the top performers

N × R(tc)/Ns in 
AVG-SIR

N × R(tc)/Ns in 
MP-SIR

l-hops 1 2 4 1 2 4

# of seed 3517 885 407 3517 885 407

Our method 1.3222223 3.5621469 6.5798526 1.3412023 3.60896 6.62231
HD 1.2165087 2.8531073 5.4840295 1.242151 2.87991 5.68519

k-core 1.1973728 2.6711864 5.2137592 1.2172916 2.74845 5.5809

LC 1.1977411 2.9990584 5.7027027 1.1993315 3.00862 5.77058

LSC 1.2106251 3.0000389 5.7137027 1.2216768 3.01052 5.78548

CI2 1.382978 3.0109228 5.5593776 1.4116518 3.00742 5.78242

CI3 1.389038 2.9899919 5.6830467 1.419038 3.02844 5.80876
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percolation threshold β = �
�k�
�k2�

 (Pastor-Satorras and Vespignani 2002) is realistic (Moreno 

et al. 2002). As shown in Fig. 8, the horizontal axis indicate the infection parameter � from 
2 to 10 ( β from 0.12 to 0.6). Note that the case of � =2 corresponds to Fig. 6. The vertical 
axis R(tc) is the accumulated infections at the convergent time tc . As shown in Fig.  8a, 
because of the overlap phenomena (l=1 does not consider the multi-hop coverage), purple 
lines with square mark is not the best. When l > 1 , purple lines with square mark (our 
method) are always higher than others (by the conventional methods). However, we can 
see that the difference between our method (purple line with square mark) and others 
(brown lines with diamond mark, cyan lines with pentagon mark, orange lines with inverse 
triangle mark, and red lines with cross mark, green lines with circle mark, and blue lines 
with triangle mark) becomes gradually smaller as spreading rate increases with the param-
eter value of � . Because as spreading rate increases, seeds infect more vertexes.

Furthermore, from Table 6, we can see the spreading power per seed ( N × R(tc)/Ns ) cho-
sen by our method is greater than ones by the conventional methods (each of the best per-
formance is emphasized by bold in comparison with the methods at l-values). In particular, 
as the coverage distance l increases, the spreading power per seed chosen by our method 
becomes larger. Thus seeds chosen by our method on the larger coverage distance l have 
better spreading power as l increases, although l is limited as smaller than the D − 1 of the 
network. Here, D is the diameter of network defined as the maximum distance of the short-
est path between vertexes. Because when l is larger than D − 1 , all vertexes are removed 
after the first seed are chosen. Remember that, the Ns is determined by the number of VC.

Conclusion
In summary, to efficiently find multiple seeds, we propose a new method in approxi-
mately solving the IMP problem. The key idea is a combination of the statistical phys-
ics approach for the minimum VC and l-hop coverage, in order to avoid the overlap 
of spreading. We also propose the MP-SIR model which does not need many samples 
for averaging stochastic behavior, therefore it is approximately number of samples / 
T-rounds times faster than the conventional SIR model. We apply the faster MP-SIR 
model to simulate the spreading process quickly. As obtained results for the time evolu-
tion of accumulated infections, our method can outperform other conventional methods 
for social networks with different sizes.

However, in multi-hop coverage, how many hops are optimal for avoiding overlap is 
still an open problem. As future work, we will consider it and give an optimal number of 
hop that gives the best effect for the IMP.

Moreover, there are two algorithms (Han et  al. 2020; Guo et  al. 2020) based on IC 
model. They are quite different from our method which is based on SIR model as a spe-
cial case of IC model. If we consider IC model extendedly, some relations maybe exist 
between these two algorithms (Han et  al. 2020; Guo et  al. 2020) and our method for 
spread overlap issue. We may find some new way to solve the IMP.

Appendix
The symbol table for the conventional methods is shown in Table 7.
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In considering an IMP, we explain the following widely-used heuristic methods for 
finding seeds, whose spreading power are compared with that by our method in the next 
section.

High degree

The High degree (HD) method selects k vertexes in decreasing order of degrees as the 
influential seeds (Borge-Holthoefer et  al. 2012; Tanaka et  al. 2012). It needs only the 
local topological properties from the connecting nearest neighbors. Therefore, it is sim-
ple and efficient for finding seeds.

k‑core

In k-core method (Kitsak et  al. 2010), seeds are ranked according to their ks values, 
which are calculated through the k-shell decomposition. In the k-shell decomposition, 
vertexes are removed iteratively. Firstly, leaves with ks = 1 are removed. This pruning is 
repeated until there is no leaves. The peripheral k-shell with index ks = 1 consists of a set 
of removed vertexes. Similarly, the next k-shells with index ks ← ks + 1 are extracted, 
the vertexes located within the core have the highest ks values. Actually, in the k-shell 
decomposition, all vertexes are divided into shells. In comparison with the peripheral 
vertexes, the core vertexes tend to involve larger spreading from them. Therefore, the 
vertex in the core with the largest ks is defined as a seed.

Local centrality and local structure centrality

The HD is simple and efficient, however it neglects the global network properties. When 
the neighbors of a hub are leaves, the peripheral hub has weak spreading power only 
for a moment. In contrast, betweenness (BC) and closeness (CC) centrality consider the 
global information, while their calculations are slightly complicated. Thus, Local central-
ity (LC) considers a trade-off between locality and time-consuming for the calculation 
(Chen et al. 2012). The LC is defined as

Table 7  Symbol table for the conventional methods.

Notation Description

ks Level of shell

u, v, and w Index of vertexes

α Tunable balance parameter

CL(v) Local centrality of vertex v

CLS(v) Local structure centrality of vertex v

∂u Set of the nearest neighbors of vertex u

∂Ball(u, 2) Set of the next nearest neighbors of vertex u

ki , kj Degree of vertex i or j

R Radius of the Ball(u,R) from vertex u

CIR(i) Collective influence of vertex i with radius R

i → j Link from i to j
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where ∂u denotes the set of the nearest neighbors of vertex u, ∂Ball(w, k) denotes a set of 
vertexes within k hops from vertex w as shown in Fig. 9.   denotes its size. As a seed, v 
is selected in decreasing order of CLC(v) . Note that LC gives similar spreading power as 
good as the closeness centrality (Chen et al. 2012).

In addition, Local structure centrality (LSC) is an extension of LC (Gao et al. 2014). The 
LSC is defined by the linear interpolation of local clustering coefficient Cw (Watts and Stro-
gatz 1998) and LC with a tunable balance parameter 0 ≤ α ≤ 1.

where ∂Ball(u, 2) is a set of the next nearest neighbors of vertex u. As mentioned in Gao 
et al. (2014), we set α = 0.7

Collective influence

Collective influence (CI) aims to find the minimum set of vertexes for the IMP as follows 
(Teng et al. 2016). At the origin {vi→j} = {0} , the stability of nonlinear message-passing 
equation

QLC(u) =
∑

w∈∂u

2
∑

k=0

| ∂Ball(w, k),

CLC(v) =
∑

u∈∂v

Q(u),

QLSC(u) = α

2
∑

k=0

| ∂Ball(u, k) | +(1− α)
∑

w′∈∂Ball(u,2)

Cw′ ,

CLSC(v) =
∑

u∈∂v

Q(u),

Fig. 9  A set of vertexes from 2-hops from vertex w in the process of LC
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is determined by the largest eigenvalue of the Jacobian matrix 
[

∂vi→j

∂vk→l

]

 . In other words, 

when the largest eigenvalue is less than 1, the spreading is stopped by removing a set of 
vertexes {i : ni = 0} as influences. Thus, by using a greedy algorithm to minimize the 
eigenvalue, CI is derived (Bhatia and Szegö 2002) through a power method for each ver-
tex i,

where R is the radius of the ball. The highest CIR(i) is selected as a seed. After remov-
ing the vertex i, CIR(i′) is recalculated for the remaining vertexes i′ ∈ V  in the network. 
It needs only local topological structure within the ball of the radius R instead of the 
whole network.
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