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Introduction
The global trade network has gotten significant attention in recent years due to its 
importance. In this network, countries are represented by their export/import relations 
and the amount and value of goods they transfer. Looking from different perspectives, 
this network can provide us with valuable information for political decisions and better 
insights into what is going on in the world economy. On this ground, the global trade 
network can be an interesting subject of study for both economists and researchers in 
social networks. Many questions about the world economy can be answered by studying 
it:

•	 Do rich countries tend to have more export than poor countries?
•	 Do political issues make countries less preferable for others to be the destination of 

the goods being exported?
•	 Do factors other than political and economic ones influence the formation of the 

trade network?

All these questions and more may be answered by studying the trade network struc-
ture and investigating the latent features extracted from it. The network structure of 
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the global trade network can be glossed over and the result would be just data contain-
ing information about the involving countries and the corresponding amount of export 
among them. However, with the advances in social network analysis, more importance 
can be put on the network’s structure when studying such data. Features of the global 
trade network that pertain to the network’s structure, such as the triangular structures 
and other characteristics that originate from the network of the exchanges between 
countries, are pretty informative about the network processes and this can justify our 
endeavor to incorporate the structure of the network into our analysis. Observing the 
global trade network from different perspectives, various features and information other 
than the economic and political ones can be considered for analysis, which makes the 
study of this network an interdisciplinary area. An example of this would be including 
the data available on countries’ official languages, landlockedness, and country dis-
tances. So, to do an all-embracing analysis of the global trade network, one can add the 
features available on the countries and the network itself and take into account all the 
different aspects of this network. In this study, we use exponential random graph mod-
els (ERGMs), a family of models suitable to model the formation of dyads in relational 
data like network datasets. The main advantage of the ERGM method is its capability 
to incorporate different structural and non-structural features and even other networks 
into the analyses. We aim to model the global trade network from a social network per-
spective and incorporate different features available on countries and their relations in 
order to find the factors that affect the structure formation of this network.

Trade relation networks can be constructed and analyzed from different perspec-
tives. One may study the trade network from the firm-level viewpoint; for example 
Chakraborty et  al. (2021) and Krichene et  al. (2019a, 2019b) study trades taking into 
account firms and their trade relations. Another approach is considering the bipartite 
network of trade exchanges. Chakraborty et al. (2019) used this approach and analyzed 
the bipartite network of banks and firms using the Bernoulli and the two-star model. 
Alternatively, we can perform a product-level analysis of the trade network; one example 
is Cingolani et al. (2017), which analyzes the trade flows in different industrial sectors. 
Our study analyzes and constructs the country-level trade network.

Multiple studies have been conducted on the global country-level trade network, each 
focusing on a different aspect. Most of the existing work look at the trade network from 
a non-structural perspective (Anderson and van Wincoop 2003; Helpman et al. 2007; de 
Soyres and Gaillard 2019), and do not consider the structural features of the network. As 
a step to take into account the structure of the global trade network (Bhattacharya et al. 
2008), focused on the characteristics of the network analogous to the study that Ben-
edictis et al. (2014) performed investigating the centrality metrics and the distribution 
of the statistics extracted from various features in the network. Also, Sajedianfard et al. 
(2021) worked on reconstructing missing edges in the network and analyzed the central-
ity and degree distribution of the constructed data.

As the next step to delve deeper into understanding the underlying formation process of 
the global trade network, modeling the formation of the network is done in different ways. 
Exploiting gravity models and other extensions of this family of models, De Benedictis and 
Tajoli (2011), Fagiolo (2010), and Dueñas and Fagiolo (2013) tried to model the global trade 
network. They incorporated the magnitude of the exports between countries and, focusing 
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on gross domestic product (GDP), added this feature to their model too. Fagiolo (2010) 
built a residual trade network after applying the gravity equations and then compared the 
residual and original networks. Dueñas and Fagiolo (2013) predicted the weighted proper-
ties of the global trade network using gravity models.

Talking about the structure of the network as an integral part of our study, Almog et al. 
(2015) attempted to take into account the structural properties of the global trade network. 
They created a model based on countries’ GDP and predicted the weighted structure of the 
global trade network. However, less attention has been given to simultaneous considering 
of various features at both local and global levels, which can be done utilizing the power 
of the exponential family of random graphs. ERGMs are a rich family of random graph 
models used pervasively to model the formation of complex networks coming from various 
domains. The network of migration flows, and the factors involved in the formation of that 
network were modeled by Windzio (2018) using ERGMs. Additionally, the authors used 
temporal ERGMs to investigate the migration network evolution over time. They found 
that social network analysis, and ERGMs in particular, can effectively capture social pro-
cesses’ embeddedness. Additionally, Gutiérrez-Moya et al. (2020) analyzed the global wheat 
network using ERGM approaches and found multiple features, including reciprocity, GDP, 
and country’s surface affecting the formation of wheat trades. The evolution of the global 
trade network is also analyzed in Cepeda-López et al. (2019), and Fagiolo et al. (2009). Also, 
taking into consideration the international trade network through time Abbate et al. (2012) 
analyzed the structures of the network. To the best of our knowledge, ERGM as a tool used 
to model the formation of the global trade network with simultaneous including of various 
structural, political, geographical, and economic features has not yet been done until now.

Overall, our contributions are primarily associated with finding and exploring the charac-
teristics of the global trade network from different aspects. The trade relations are analyzed 
from temporal and static viewpoints in the study. Our results show that GDP, being land-
locked, diplomatic exchanges, and distances are of more significance to the static trade rela-
tions between countries when considering all the various features. Additionally, structural 
features, GDP, inflation, being landlocked, and official languages are significant in the tem-
poral analysis of trade relationships. Broadly speaking, the results of our study demonstrate 
the effective attributes alongside their importance in forming the global trade network in 
different levels of detail. Obtaining these factors and characteristics would allow the people 
working in various disciplines to interpret the network and its behavior either as a static 
or dynamic entity more accurately and based on the rich set of features that the network 
structure offers, in addition to the more country-specific features that one can incorporate 
modeling the network.

The rest of this study is organized as follows. The dataset and the methodology being 
used are described thoroughly in “Dataset and methods” section. “Results and discussion” 
section discusses the results of this study, and finally, future directions and conclusion are 
presented in “Conclusion” section.

Dataset and methods
To examine trade network relations, we collected import and export trade data for the 
years 2011, 2013, 2015, and 2017. We enriched this network with the available infor-
mation on each country and embedded various geographical, cultural, and political 
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features. This part explains the methods and datasets used in our analysis. First, we pre-
sent the trade network and the aggregation method used to create the directed trade 
network. Next, the network backbone extraction method used to keep the essential 
trades is described. Afterward, we present the other networks and features used for our 
research. After that, ERGM and STERGM, how we employed them, and the goodness of 
fit are described. Additionally, we provide an explanation of the gravity model of trade, 
which served as a baseline for the study. We conclude with the explanation of the com-
munity detection method used in our study.

Trade network

We got trade network data for the years 2011, 2013, 2015, and 2017 from the World 
Integrated Trade Solutions public website.1 These datasets contain details on a total of 
241 countries and their weighted directed trade exchanges. To build the base network, 
we used the countries as the nodes and trades as edges alongside the amount of trade 
in terms of US dollars as the edge weights. The summary of trade network statistics for 
the year 2011 is shown in Table 1. A graph visualization of a sample of the global trade 
network is depicted in Fig. 1.

This dataset is a multi-edge network, which means multiple trades and their quanti-
ties are reported between countries. We calculated the total export and import between 
every two countries and used it as the weight of the edge connecting them. To create 
this new network, ReporterISO3, PartnerISO3, and Trade Value were used as the source, 
target, and edge weight, respectively. According to the World Integrated Trade Solutions 
definitions:

•	 The ReporterISO3 is the three-digit alphabetic country code for the importer coun-
try.

•	 The PartnerISO3 is also a three-digit alphabetic country code representing the 
exporter taking part in the trade.

•	 The Trade Value shows the amount of trade in thousand of US dollars.

Table 1  Global trade network summary

Statistic Value

Node count 241

Edge count 23,085

Graph density 0.39

Average degree 95.78

Average clustering coefficient 0.77

Average shortest path length 1.02

1  https://​wits.​world​bank.​org.

https://wits.worldbank.org
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Network backbone extraction

We used the network backbone extraction method to develop an unweighted net-
work containing just the essential trades in the network. Network backbone 
extraction is the process of reducing a graph to a more meaningful and compact 
representation. We applied the disparity filter (Serrano et al. 2009), which is a well-
known network reduction algorithm, to the global trade network to only keep the 
essential trade exchanges. Other algorithms such as minimum spanning trees or 
thresholding methods can also be applied. However, we chose the backbone extrac-
tion method because it better perseveres the structure of the network and the 
essential edges. The disparity filter starts from the null hypothesis: the normalized 
weights which correspond to the edges of a certain node are produced by a random 
assignment from a uniform distribution. Next, defining a significance level and the 
probability density function, the filter keeps significant edges to act as the backbone 
of the graph. We used the significance level 0.2 in our study. We chose the significant 
level by an experiment in which we applied different significant levels and observed 
the count of the remaining edges. Serrano et al. (2009) proposes this method of pro-
gressively changing the significance level to focus on the more relevant edges. The 
probability density function is provided in Eq. 1 where k is the degree value.

We used the network resulting from the disparity filter as an unweighted network repre-
senting the backbone of the initial trade network.

(1)ρ(x)dx = (k − 1)(1− x)k−2dx,
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Fig. 1  The trades network is depicted using a sample of all trades in 2011. Node sizes and edge thicknesses 
are proportional to degree and edge weight, respectively. The countries in the same community calculated 
using the Louvain algorithm are depicted using the same color
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Features

Nodal features

We used multiple features in our analysis, gathered from the World Bank2 and the CEPII 
public datasets.3 Data on global development for various countries are available free and 
openly through the World Bank. Similarly, the CEPII website provides the GeoDist data-
set, containing the country’s official language, details about the colonial history, and geo-
graphical variables, including continent, landlocked status, and area. The list of nodal 
features and their statistical properties for the year 2011 are provided in Tables 2 and 3.

Distance network

As an edge feature, we used the GeoDist distance network dataset (Mayer and Zignago 
2011) in our study. This complete graph consists of 224 countries and 24,976 pairwise 
dyadic distances. A summary of this network is provided in Table 4. The GeoDist data-
set provides two geographical distances: simple and weighted. The weighted distance is 
calculated using several principal cities in each country, and its primary usage is consist-
ently computing internal and international distances. We did not include internal trades 
in our study, so we used the simple geographic distance. The simple distance is calcu-
lated using the great circle formula utilizing the latitudes and longitudes of the most 
important city in each country in terms of population. The nodes and edges in the dis-
tance network are defined as countries and distances, respectively.

Table 2  Summary statistics of numerical node features for the global trade network

Node feature Count Mean STD Min Median Max

GDP (Current US$) 261 2.29e+12 7.94e+12 3.87e+07 4.19e+10 7.34e+13

Inflation, consumer prices 202 6.01 5.80 − 0.40 4.62 53.22

GDP growth 259 3.60 5.71 − 62.07 4.03 21.67

Foreign direct investment, net inflows 200 1.18e+10 3.98e+10 − 6.00e+09 9.99e+08 3.32e+11

Agriculture, forestry, and fishing, value 
added (% of GDP)

197 11.10 11.23 0.03 7.44 54.59

Industry (including construction), value 
added (% of GDP)

197 27.38 15.03 4.16 24.67 80.00

Merchandise trade (% of GDP) 198 72.73 49.42 14.46 62.02 435.21

Net barter terms of trade index (2000 = 
100)

201 127.50 56.07 49.61 104.89 447.02

Table 3  Summary statistics of categorical node features for the global trade network

Node feature Count Unique Top frequency value Top frequency

Is landlocked 208 2 False 170

Official language 208 64 English 60

2  https://​data.​world​bank.​org.
3  http://​www.​cepii.​fr.

https://data.worldbank.org
http://www.cepii.fr
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Using the dataset, we include the distance between countries. This is compatible with 
the gravity trade model suggestion of relation of trade and distance between countries 
(Leibenstein 1966).

Diplomatic exchange network

To consider the effect of political relations between countries, we used the Diplomatic 
Representation dataset (Moyer et al. 2016) from the PARDEE website4 which provides 
details about the country relations across time. We used this dataset to construct the 
diplomatic relations network between countries keeping countries as the nodes and 
directed edges representing the source country having an embassy in the target node. A 
summary of this network is provided in Table 5.

Table 4  Distance network summary

Statistic Value

Node count 224

Edge count 24,976

Graph density 1

Average degree 223

Average clustering coefficient 1

Average shortest path length 1

Table 5  Diplomatic exchange network summary

Statistic Value

Node count 201

Edge count 8959

Graph density 0.22

Average degree 89.14

Average clustering coefficient 0.73

Average shortest path length 1.70

Table 6  Colonial history network summary

Statistic Value

Node count 90

Edge count 107

Graph density 0.01

Average degree 2.37

Average shortest path length 0.01

4  http://​pardee.​du.​edu.

http://pardee.du.edu
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Colonial history network

We created a colonial history network using the dataset provided by Harvard Dataverse 
(Walter et  al.  2019). This network consists of 107 directed colonization relations such 
that the directed edge from node A to node B shows country A has been colonized by 
country B. A summary of this network is provided in Table 6.

ERGM

ERGMs also known as p-star models (Wasserman and Pattison 1996) allow analyzing 
tie creation in networks. One fundamental assumption that makes ERGMs different 
from regression models is that network ties aren’t independent, and multiple processes 
can operate simultaneously. The independence assumption is not realistic in most real-
world processes, and ERGMs provide more sensible models that capture the depend-
ence between network ties. They describe the local selection forces that shape the global 
structure of a network (Hunter et  al. 2008). ERGMs allow us to include and consider 
nodal features, structural configurations, and edge features.

The probability distribution used in ERGMs is provided in Eq. 2

where Y is the random graph variable, y is an instance of Y, θ is a vector of coefficients, 
and g(y) is a vector of graph statistics. k(θ) is the normalizing term and is defined in the 
Eq. 3.

where the sum is taken over the whole sample space of allowable networks y′ (Hunter 
et al. 2008). By exploiting this model and fitting it to the network at hand, we’re trying 
to find a set of parameters for our model to which, if we feed a network similar to our 
observed network in certain features, it will assign a higher likelihood of observing.

We used the statnet package (Hunter et  al. 2008) in order to fit our model using 
ERGMs. The model with dependant terms is fitted using the Markov Chain Monte Carlo 
algorithm to estimate θ , maximizing the likelihood of the observed edges configurations.

We used the 2011 trades for this analysis because it was the completest dataset among 
all collected datasets. Also, because the countries differ in different feature networks, 
this analysis utilizes countries at the intersection of the global trade network, the diplo-
matic exchange network, and the distance network.

ERGM terms

As mentioned in the  “ERGM” section, g(y) is a vector of graph statistics, and the fre-
quency of a specific configuration defines these graph statistics. Various terms can be 
defined to determine the network statistics in the g(y) vector. The definitions of these 
terms are described below.

Edges This term is defined as the total number of edges in our graph. We can control 
our graph’s density using this term.

(2)Pr(Y = y) =
exp(θ ′g(y))

k(θ)
,

(3)k(θ) =
∑

y′

exp(θ ′g(y′)),
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Mutual It is defined as the number of pairs i and j for which edges (i, j) and (j, i) both 
exist. This configuration is commonly known as reciprocity which means tending to 
exchange both ways.

Triangle It’s defined as the number of triangles in the network. For an undirected net-
work, a triangle is defined by any set of (i, j), (j, k), (k, i) of three edges. For a directed net-
work, a triangle is defined as any set of three edges (i, j) and (j, k) and either (k, i) or (i, k).

Nodecov It’s defined as the sum of attr(i)+ attr(j) for all edges (i,  j) existing in the 
graph. The attr can be any quantitative nodal feature present in the graph. This con-
figuration is useful for knowing how the sum of continuous node features affects tie 
formation.

Absdiff It’s defined as the sum of (abs(attr[i] − attr[j]))pow for all edges (i, j) existing in 
the graph; we used the first power in our analysis. Similar to the Nodecov term, attr can 
be any quantitative nodal feature. It is used as a homophily configuration for continuous 
variables. Homophily is the tendency for similar entities to be attracted to each other.

Nodematch It’s defined as the count of edges (i, j) for which attr(i) == attr(j) , where 
attr can be any categorical nodal feature. It captures homophily on categorical features.

Edgecov Other networks can be used as controlled network statistics using this term. 
It’s defined as the sum of edge features for each edge (i, j) present in the network.

STERGM

Although ERGMs allow for analyzing tie creation in networks, they cannot include the 
effects of network evolution over time. In order to take into account the network evolu-
tion over time, Discrete Temporal ERGMs (DTERGMs) were introduced (Hanneke et al. 
2018).

DTERGM is an exponential random graph model that defines the network at time t as 
a single draw from an ERGM conditional on the network at time t − 1 . The probability 
distribution for this model is formulated in Eq. 4.

Where c is the normalizing constant, the yt term represents the network at time t, and 
the η term shows a mapping from θ to natural parameters.

One disadvantage of DTERGMs is that they consider network formation and dissolu-
tion as a single process. However, processes and parameters which affect tie formation 
and dissolution are not the same. Considering this issue, Separable Temporal ERGMs 
(STERGMs) were introduced (Krivitsky and Handcock 2013).

STERGMs consider two different phases in network evolution: formation and dissolu-
tion. The formation process analyzes ties being created; the dissolution phase considers 
removed ties. This is a more realistic approach due to different processes in the forma-
tion and dissolution of ties in the network. In our work, we used STERGMs to analyze 
the global trade network’s evolution from 2011 until 2017.

Goodness of fit

To determine whether our model is a good fit for the global trade network, we use the 
goodness of fit test proposed by Hunter et  al. (2008). This approach generates sample 

(4)Pr(Y t = yt |Y t−1 = yt−1
, θ) =

exp(η(θ)g(yt , yt−1))

cη,g (θ , yt−1)
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networks. Then, the model configurations are calculated on both the observed network and 
the generated networks. Finally, the distribution of statistics in the samples are compared 
with the observed network. Multiple network statistics can be used. We included minimum 
geodesic distance, triad census, in degree, and out degree in our analysis. The statistics are 
explained below.

Minimum Geodesic Distance This statistic is a measure of the distance between two 
nodes. We calculate it as the number of edges in the shortest path between two nodes.

Dyad-wise Shared Partners We define this statistic as a function of s, where s is the num-
ber of shared partners. The statistic equals the number of edges in the network with s 
shared partners.

Degree The degree is calculated as the number of edges connected to a node. Similarly, in-
degree and out-degree are calculated as incoming and outgoing edges count, respectively.

Triad Census It is defined as the number of subgraphs with three vertices, regardless the 
direction of the edges between them.

Gravity model of trade

The gravity models are derived from Newton’s Law of Gravitation. These models are fre-
quently used De Benedictis and Tajoli (2011), Fagiolo (2010) and Dueñas and Fagiolo (2013) 
to analyze trade networks by economists and are fundamentally different from ERGMs. 
The gravity model of international trade states that the volume of trade between two coun-
tries is proportional to their economic mass and a measure of their relative trade frictions 
(Baier and Standaert 2020). The naive gravity model is formulated as Eq. 5.

Where Xij is bilateral trade between exporting country i and importing country j, Yi 
and Yj are the GDP in country i, j respectively and distij is the bilateral distance between 
country i and j. ǫij is a log-normaly distributed error term (Baier and Standaert 2020). 
The countries’ economic mass is represented by their GDP, and the trade frictions are 
represented by country distances. The gravity model suggests that distance has a neg-
ative effect on trade exchanges. It also proposes the fact that counties’ economic size 
attracts them to trade with each other.

Our study used gravity models of trade to compare ERGM findings with the commonly 
used gravity model of trade estimations in economics.

Community detection

We applied Louvain community detection (Blondel et al. 2008) to the global trade network. 
This algorithm is based on the idea of maximizing modularity. The modularity measures 
the community’s inner edges density compared to the other edges in the network. Louvain’s 
algorithm starts with small communities and iteratively merges them to find the communi-
ties with the maximum modularity. Without applying the backbone extraction method, the 
complete weighted network was used for community detection.

(5)Xij = GY
β1
i Y

β2
j dist

β3
ij ǫij ,
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Results and discussion
In this section, we provide the results of our analysis and their interpretations. First, we 
provide the ERGM and STERGM results and the significant features affecting the global 
trade network. Second, the results of the gravity model of trades are shown. Finally, we 
interpret the results of community detection using the colored world map.

ERGM

We found various significant features that may affect trade network relations forma-
tion through the ERGM model analysis in the year 2011. These results are shown in 
Table 7. Taking into account structural characteristics, we observe positive reciproc-
ity and transitivity effects. The positive reciprocity effect indicates that countries tend 
to trade in both directions rather than in one direction. This pattern indicates that if 
country A exports to country B, there is a high tendency for country B also to export 
goods to country A. The ERGM analysis on the wheat trades Gutiérrez-Moya et  al. 
(2020) also found this reciprocity effect significant on the formation of the edges in 
the network. The transitivity effect shows an interesting triangle formation effect in 
the trade network. It suggests triangle patterns occur more in the trade network than 
in random networks. In other words, two countries that have trade relations with a 
third partner have a tendency to start doing trade together. These structural findings 

Table 7  ERGM estimates and standard errors alongside their significance on edge formation

p < 0.1.; p < 0.05*; p < 0.01**; p < 0.001***

Configuration Estimate Standard error Significance

Edges − 4.545 0.292 ***

Mutual 0.212 0.067 **

Triangle 0.030 0.003 ***

GDP (Current US$) nodecov 0.185 0.020 ***

GDP (Current US$) absdiff 0.272 0.024 ***

Inflation, consumer prices nodecov − 0.040 0.022 .

Inflation, consumer prices absdiff 0.036 0.028

GDP growth nodecov − 0.010 0.017

GDP growth absdiff − 0.027 0.023

Is landlocked nodematch − 0.220 0.039 ***

Official language nodematch − 0.014 0.063

Diplomatic exchange network edgecov − 1.677 0.079 ***

Agriculture, forestry, and fishing, value added (% of GDP) nodecov − 0.052 0.022 *

Agriculture, forestry, and fishing, value added (% of GDP) absdiff 0.090 0.028 **

Industry (including construction), value added (% of GDP) nodecov 0.055 0.020 **

Industry (including construction), value added (% of GDP) absdiff − 0.114 0.026 ***

Merchandise trade (% of GDP) nodecov 0.046 0.017 **

Merchandise trade (% of GDP) absdiff − 0.031 0.026

Net barter terms of trade index (2000 = 100) nodecov 0.040 0.015 *

Net barter terms of trade index (2000 = 100) absdiff − 0.090 0.024 ***

Foreign direct investment, net inflows nodecov − 1.474 0.199 ***

Foreign direct investment, net inflows absdiff 1.352 0.200 ***

Colonial History network edgecov − 0.513 0.603

Distance network edgecov 0.190 0.030 ***
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are in alignment with the structure of the global trade network. We also considered 
other structural features, but there were problems with convergence, so we did not 
include them.

From the non-structural features perspective, we found several significant features. 
The results suggest a positive effect of trade partners’ combined GDP in the trade 
network, which means the sum of GDP in both countries affects the formation of ties 
between countries. Moreover, absolute GDP differences have a positive effect, indicat-
ing interesting homophily effects regarding countries’ GDP. In other words, the closer 
GDP values between countries, the more likely it is that the countries form trade rela-
tions. The GDP findings align with previous works such as Fagiolo (2010), and Due-
ñas and Fagiolo (2013). Also, our gravity model results, provided in Table 9, suggest 
a significant effect of GDP on the global trade network. Also, ERGM-based studies 
such as Gutiérrez-Moya et al. (2020) found GDP has a significant effect on trades. No 
effect of inflation and GDP growth is shown in the results, which we expected. These 
results are in alignment with our gravity model results. However, the absolute differ-
ence in GDP growth is significant in the gravity model results. We assume this is due 
to the gravity model not including structural features that affect the trade network 
formation.

Considering the geographical features, the results indicate a significant effect of land-
lockedness on edge formations. landlockedness is defined as being enclosed by land and 
having no route to the sea. This finding can be explained by the fact that most trades are 
transported through the ocean. We also find that geographical distances between coun-
tries affect trade formations. It agrees with the gravity model of trades, suggesting that 
trade volumes and distance affect trades.

One surprising result was the negative effect of diplomatic relations on trade 
exchanges, while we expected a positive impact of diplomatic relations on edge forma-
tions. The negative impact can be explained by the heterogeneous effect of diplomatic 
relations on trade, that according to Hinz and Leromain (2020), can vary within pairs of 
countries.

We also find other economic features related to the percentage of GDP significant. 
These results are consistent with the gravity model results of the trade. Another inter-
esting result is the “Net Barter Terms of Trade Index.” The “Net Barter Terms of Trade 
Index” is the ratio between the price of a country’s export goods and import goods. 
The results show a positive effect of the sum of the “Net Barter Terms of Trade Index” 
between countries on trade relations. However, we observe a negative effect of the abso-
lute difference of the “Net Barter Terms of Trade Index.” In other words, the closer the 
countries are together regarding the “Net Barter Terms of Trade Index,” it adversely 
affects edge formation in the network. Net Barter Terms of Trade Index results are con-
sistent with the gravity model of trades in both significance and positivity. We find no 
effect of colonial history relations on the trade formations. It is likely because the current 
country relations are independent of what colonization they have undergone. Today’s 
relations between countries are not based on former colonial relationships.
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STERGM

We analyzed the global trade network evolution using the STERGM method. The results 
are provided in Fig.  2 alongside the ERGM results. The STERGM formation and dis-
solution estimates are shown using the blue and green colors, respectively. Additionally, 
the formation and dissolution significant features of STERGM are shown together in 
Table 8.

Comparing formation and dissolution’s significant features show exciting insights. 
There is a significant effect of reciprocity on the formation and dissolution of edges 
through time. This means that mutual edges in the network affect the processes of 
forming and dissolving edges through the years. According to Fig. 2 reciprocity has 
different effects on the formation and dissolution of edges in the network. Edge for-
mation is positively impacted by reciprocity. When country A exports to country B, 
it’s highly probable that the trade will also take place from country B to country A. 
However, reciprocity negatively affects dissolution. It highlights how similar configu-
rations can affect the formation and dissolution of ties in a network differently. The 
reciprocity result shows that when mutual edges are formed, they prevent the dissolu-
tion of edges in the network. Another structural configuration included in the tempo-
ral network analysis was the occurrences of triangles. The results show a significant 

Fig. 2  ERGM and STERGM Results depicted using the Dot-and-Whisker plot. ERGM, STERGM formation, and 
STERGM dissolution are shown for each feature
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effect of triangles on the edge formation through time, but no such effect is seen on 
the dissolution of the edges in the global trade network. The estimates show a positive 
impact of triangles on forming the new edges in the network.

In terms of nonstructural features, similar to the ERGM results, the sum of GDP 
between countries and the absolute difference is significant in the STERGM results. 
One interesting difference between the ERGM and STERGM results is the effect of 
inflation on the trades. ERGM results show no significant impact of inflation, but 
STERGM results show that inflation significantly affects formation and dissolution 
processes in the network. The landlockedness STERGM results are also similar to 
the ERGM results. ERGM results show no significant correspondence between offi-
cial language similarities and official language differences. In contrast, STERGM 
considers similarities of official languages to have a negative impact on the for-
mation and dissolution of trade edges. The results were unexpected because we 
expected similarity in the official languages to indicate a tendency for trade. It might 
be the case that fewer countries face language barriers nowadays.

Table 8  STERGM features’ significances

p < 0.1.; p < 0.05*; p < 0.01**; p < 0.001***

Configuration Formation 
significance

Dissolution 
significance

Edges *** ***

Mutual *** ***

Triangle ***

GDP (Current US$) nodecov *** ***

GDP (Current US$) absdiff *** ***

Inflation, consumer prices nodecov *** ***

Inflation, consumer prices absdiff *** **

GDP growth nodecov ***

GDP growth absdiff

Is landlocked nodematch *** **

Official language nodematch *** *

Agriculture, forestry, and fishing, value added (% of GDP) nodecov ***

Agriculture, forestry, and fishing, value added (% of GDP) absdiff ** ***

Industry (including construction), value added (% of GDP) nodecov ***

Industry (including construction), value added (% of GDP) absdiff *

Merchandise trade (% of GDP) nodecov ***

Merchandise trade (% of GDP) absdiff

Net barter terms of trade index (2000 = 100) nodecov *** *

Net barter terms of trade index (2000 = 100) absdiff **

Foreign direct investment, net inflows nodecov ***

Foreign direct investment, net inflows absdiff
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Goodness of fit

The results of the goodness of fit analysis are provided in Fig. 3. Results indicate that 
the model accurately captures the minimum geodesic distances and triad census, as 
both simulated and observed results are similar. The in degree and out degree of 
countries are also shown in Fig.  3. Compared to minimum geodesic distances and 
triad censuses, these statistics are less well captured. The general pattern of these 
statistics is also captured, while the exact values for all degrees are not well captured 
by our model. The minimum geodesic distance, triad census, and core pattern of 
degrees are more relevant to our study due to our focus on general structural fea-
tures rather than specific degree values.

Gravity model of trade results

As discussed previously in the “ERGM” section, we found alignment between the 
ERGM and gravity model of trades results which the latter is commonly used in global 
trades network analysis (De Benedictis and Tajoli 2011; Fagiolo 2010; Dueñas and 
Fagiolo 2013). Our ERGM analysis uses gravity model results as the baseline results. 
The results for the gravity model analysis are provided in Table 9.

Fig. 3  The Goodness of Fit results in the simulated networks. The minimum geodesic distance, triad census, 
in degree, and out degree are captured. The blue points in the plot represent the mean of statistics in the 
simulated networks. The black line shows the observed statistics in the actual network
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Community detection

Figure  4 depicts the community detection results on the weighted global trade net-
work. The countries within the same community are shown with the same color on 
the world map. We found four communities:

•	 Green Community: It includes North America, South America, Côte d’Ivoire, and 
Nigeria.

•	 Blue Community: It contains European countries and several countries from 
North Africa.

Table 9  Gravity Model estimates and standard errors alongside their significance on edge formation

p < 0.1., p < 0.05*, p < 0.01**, p < 0.001***

Configuration Estimate Standard error Significance

Intercept − 2.985 0.144 ***

GDP (Current US$) nodecov − 0.054 0.019 **

GDP (Current US$) absdiff 0.301 0.025 ***

Inflation, consumer prices nodecov − 0.040 0.025

Inflation, consumer prices absdiff 0.013 0.031

GDP growth nodecov 0.015 0.020

GDP growth absdiff − 0.059 0.025 *

Is landlocked nodematch − 0.274 0.040 ***

Official language nodematch − 0.188 0.071 **

Agriculture, forestry, and fishing, value added (% of GDP) nodecov − 0.047 0.023 *

Agriculture, forestry, and fishing, value added (% of GDP) absdiff 0.078 0.028 **

Industry (including construction), value added (% of GDP) nodecov 0.091 0.023 ***

Industry (including construction), value added (% of GDP) absdiff − 0.146 0.028 ***

Merchandise trade (% of GDP) nodecov 0.063 0.019 **

Merchandise trade (% of GDP) absdiff − 0.016 0.026

Net barter terms of trade index (2000 = 100) nodecov 0.084 0.018 ***

Net barter terms of trade index (2000 = 100) absdiff − 0.103 0.025 ***

Foreign direct investment, net inflows nodecov − 2.195 0.228 ***

Foreign direct investment, net inflows absdiff 1.955 0.230 ***

Fig. 4  Community detection results depicted on the world map. The countries within each community are 
shown using the same color. Gray countries are not included in the analyses
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•	 Purple Community: It includes most Asian countries, several countries from 
Africa, and Australia.

•	 Yellow Community: It includes African countries.

Observing the community detection results, it seems that countries with lower dis-
tances tend to form a single community; This conclusion was also seen through the 
ERGM results provided in Table 7. This also matches the gravity model of trades state-
ment provided in “Gravity model of trade” section that suggests distance has a nega-
tive effect on trade exchanges volume. Analyzing the communities, we found Panama 
the only country not included in the North and South America continents’ com-
munity. Panama not belonging to the North and South America community can be 
explained through Panama’s geographic importance; Panama Canal connects Asian 
countries to the American countries and makes trade easier between these countries.

Conclusion
In our study, we analyzed the global trade network from different perspectives. We 
constructed the essential trades network by applying the network backbone extraction 
methods. We used the ERGM methods on the global trade network; this investigation 
found various structural, economic, geographical, and political factors influencing 
the trade structure. The ERGM results showed structural features such as reciprocity 
and triangles impacting the trades. Moreover, nodal and edge features such as GDP, 
being landlocked, having diplomatic exchanges, and GDP percentages and distances 
between countries were also significant. We also studied the evolution of the trade 
network through multiple years. This analysis found factors influencing the formation 
and dissolution of trades, including structural features such as reciprocity, triangles, 
and non-structural features such as GDP, inflation, being landlocked, and official lan-
guage affecting trades through time. Additionally, we applied community detection 
methods to analyze group structures in the global trade network. Furthermore, we 
studied the trade network using gravity models of trade which are frequently used in 
this context. We found our ERGM results consonant with the gravity model results. 
Our results could be insightful for policymakers helping them make better decisions. 
The ERGM results help policymakers understand better how the trades are formed 
in the network and act accordingly. STERGM can also help explain the effects of fea-
tures through time on the formation of trades and, in particular, their dissolution. We 
hope that researchers put more effort and investment into using ERGMs or other net-
work modeling methods to gain insights into complex networks in our social world, 
which some of them are as follows:

•	 How does Covid-19 affect the evolution of the global trade network?
•	 How do other statistical tests analyze the global trade network and its formation 

features?
•	 How can the global trade network be observed as a weighted network without 

applying backbone methods?
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•	 How do other more complex structural features affect network formation in the 
global trade graph?

Abbreviations
ERGM	� Exponential Random Graph Model
DTERGM	� Discrete Temporal Exponential Random Graph Model
STERGM	� Seperable Temporal Exponential Random Graph Model
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