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Introduction
The analysis of network motifs (Shen-Orr et al. 2002; Milo et al. 2004; Alon 2007) goes 
back to the early phase of network science (Strogatz 2001; Albert and Barabási 2002; 
Barabási 2016). In contrast to studying the large-scale topological features of complex 
networks (e.g., their broad degree distribution or their hierarchical organization) or the 
microscale of properties of individual nodes (e.g., the betweenness centrality or the local 
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clustering coefficient), network motifs have drawn the attention to a ’mesoscale’1 with 
the hope of explaining some of the functional properties of complex networks via the 
networks’ non-random features on this scale of organization.

In fact, motif signatures—patterns of non-random occurrences of certain few-node 
subgraphs—have been identified and associated to the networks’ functional categories 
(Milo et al. 2004) and have been, in subsequent studies, linked to the robustness of the 
networks’ dynamical function, e.g., for Boolean dynamics (Klemm and Bornholdt 2005) 
and flow networks evolved towards a robust performance under random deletion of 
links or nodes (Kaluza et al. 2007; Kaluza and Mikhailov 2007; Kaluza et al. 2008; Beber 
et al. 2013).

The question addressed in our investigation is whether the deep relationship between 
motif signatures and robust functioning identified in network science translates to sup-
ply networks as well.

Supply networks are shaped by a multitude of factors, including technological con-
straints, human preferences, available infrastructures and earlier relationships among 
suppliers and producers.

Modeling is often used to ask for the effect one of the influencing factors might have 
on supply networks, when considering this factor isolated from all other factors. Net-
work formation games (Bloch and Jackson 2006; Fiat et  al. 2006; Chekuri et  al. 2007; 
Anshelevich et  al. 2008), for example, focus on human preferences and decision pat-
terns and embed supply networks in a game-theoretical framework. The structural 
consequences of resilience (Li et  al. 2020) [see also the systematic literature review in 
Aldrighetti et al. (2021)] and ’network health’ (Basole and Bellamy 2012, 2014) are other 
topics often addressed via mathematical modeling of supply systems.

Other modeling approaches of supply networks include fuzzy programming (Fazlol-
lahtabar et al. 2013), partial differential equations (D’Apice et al. 2009) and agent-based 
modeling (Li et al. 2020).

Here we ask, what network structures emerge, if robustness of the network is an 
important criterion. Our model is in the long tradition of minimal models (or ’toy mod-
els’) often employed in econophysics and other application domains of statistical physics 
(Kutner et al. 2019), in contrast to parameter-rich computational models. Such minimal 
models have the goal of understanding the ‘stylized facts’ (Buchanan 2012) of such real-
world complex systems.

For supply networks robust functioning is of utmost importance. Key aspects in the 
infrastructure of our industrialized world depend on it. As a consequence, the topic of 
supply network robustness has received substantial scientific attention. Methods from 
nonlinear dynamics have been applied to study supply and distribution networks under 
fluctuations (e.g. Ritterskamp et al. 2018; Demirel et al. 2019). Using methods of nonlin-
ear dynamics, especially parameterizing fixed points together with a stochastic sampling 
of the unknown entries of the Jacobi matrix (generalized modeling, Gross and Feudel 

1  Note that the modular organization and community structure of complex networks is of course another mesoscale 
feature on a slightly larger level of organization, which revealed itself as highly relevant for the functional organization of 
complex networks (Newman 2006; Guimera and Amaral 2005; Hütt 2019). Note that one can also quantitatively study 
the interplay of these two mesoscales in complex networks (Fretter et al. 2012; Beber et al. 2012).
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2006) were analyzed in Ritterskamp et al. (2018) and Demirel et al. (2019) (see also Gross 
et al. 2018).

Typical approaches to quantify the robustness is to jointly consider functional and 
structural aspects (Dong 2006) or to view robustness as a function of declining service 
level under random or targeted attacks (Adenso-Díaz et al. 2018). Some works analyze 
real-world networks using the robustness metrics (Brintrup et al. 2016; Zhao et al. 2019). 
Only few investigations design or simulate networks based on a robustness criterion (see 
also the literature review on robustness, responsiveness and resilience provided by Klibi 
et al. (2010)). Exceptions include work on simplified supplier-retailer (Wei et al. 2015) 
or agent-based (Nair and Vidal 2011) models and simulate, design and optimize supply 
networks using the robustness criterion. Network motifs or similar topological features 
as indicators of robustness have not been discussed in the supply network literature.

At the same time, supply and distribution networks are high-dimensional systems with 
high demands on efficient organization and the fulfillment of logistic target values. The 
design and operation of such networks are usually performed based on both local and 
global information (Blunck et al. 2018) and under the influence of other supply networks 
(Matous and Todo 2017). These aspects are often addressed by optimization methods 
(e.g. Hendriks et al. 2012; Garcia and You 2015). In Hendriks et al. (2012); Armbruster 
et al. (2011), an abstract formulation of logistic networks (supply and distribution net-
works) has been formulated as an optimization problem.

Methods from network science have been particularly employed to supply systems to 
analyze the impact of disruptions, such as transportation failure or supply shortages, 
and hence the robustness and resilience of such systems (e.g. Helbing et al. 2004; Sun 
and Wu 2005; Atalay et al. 2011; Brintrup and Ledwoch 2018; Arora and Ventresca 2018; 
Perera et al. 2017). In Atalay et al. (2011), the value of network representations of supply 
networks for an understanding of economic processes was elaborated, with an applica-
tion focus on the automotive industry.

The resilience and vulnerability of supply chains and supply networks to disruption 
were analyzed—particularly in light of the COVID-19 pandemic—in Ivanov and Dolgui 
(2020) and Ivanov (2020). An overview of the important field of mathematical modeling 
of sustainable supply chains is provided by Seuring (2013).

The embedding of supply networks in real geographical space, the often multi-modal 
nature of supply networks (distributing not a single good or material, but rather a whole 
range of goods and materials, which are often interdependent), as well as the weighted 
nature of supply networks (where suitable weights of edges are the total volume shipped 
along this edge in a certain time window, or the total value or the average cost per ship-
ment, which in turn is partly related to geographical distance) all make formal network 
representations suitable for the analysis, e.g., of network motifs, challenging.

In order to account for these incompatibilities between abstract network representa-
tions and real-world features of these systems, we introduce a stylized supply network 
model, which retains the spatial embedding and the overall ’source-to-target’ organiza-
tion of supply networks, but is generic enough to allow for a motif analysis of the result-
ing networks.
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Methods
Supply network model

Our supply network model consists of N nodes that are spatially distributed on a 2D 
plane (Fig. 1). Each node can have one of three roles: producers (green in Fig. 1) that 
are generating a product, demanders (red) that require the product to be delivered, and 
intermediate nodes (gray) that neither produce, nor demand the product, but can be 
used to deliver the product efficiently (warehouses). A model setup is a set of N nodes, 
each with (x, y) coordinates and an assigned role. All setups used in the experiments in 
this paper have only one producing node and Nd = N/2 demanders. In the scenario of 
a single-product systems, adding more producers results in much simpler networks that 
have little variation in network structures. In the current research, we focus on single-
product single-producer systems. The coordinates of nodes for a single setup are sam-
pled from a random uniform distribution.

A supply network is a set of M directed edges that represent transportation routes in 
the system. Edges can start and end at any type of node: Cases, where an edge goes to 
producer or warehouse, represent resupply of delivery vehicles. Cases, where an edge 
goes from a demander node, represent parts of subsequent delivery routes. Each net-
work has the following parameters: number of edges M, network cost c , and robustness 
r . Network cost c is the sum of the Euclidean distances of all edges in the network. It 
reflects how optimal the product paths in the network are with respect to edge length. 
Robustness is a metric that shows how susceptible the network is to a random loss of 
edges. It is computed by finding the subset of edges Er such that any edge from Er can 
be safely removed from the initial network and the resulting network will still have paths 
from a producer to every demander. The robustness r , in this case, is r = |Er |/M . All 
networks in this research were required to have a full demand satisfaction.

A focus of our investigation is the analysis of these supply networks from the per-
spective of few-node subgraphs. To this end, we follow the concept of a motif signa-
ture proposed by Milo et  al. (2004). A motif analysis shows how over- or 
underrepresented certain 3-node subgraphs are in the investigated network. The 
analysis is done by comparing the frequency of each of 13 possible subgraphs (see 
Additional file  1: Fig.  S1) in the original network to its randomized versions via a 
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Fig. 1  Examples of model setup and possible networks with a low (a) and high (b) robustness. Values of r  
are indicated below each network. In (a), Er = (1, 4), (5, 4) , M=6. In (b), any edge can be removed without 
reducing the demand stisfaction, |Er | = M = 10
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normalized vector of z-scores. In other words, we count every 3-node subgraph in the 
original network ( xi ), perform multiple randomizations of the network by switch-
reconnecting the edges, count the subgraphs in the randomized networks, and com-
pare the count in the original network to the count distributions of the randomized 
networks (mean µi , standard deviation σi ). Components of the resulting vector are: 
zi = (xi − µi)/(σiS) , i = 1, . . . , 13 , where S =

√

∑13
n=1((xi − µi)/σi)2 . High z-scores of 

certain subgraphs—feedforward loop and bidirectional feedforward loop (7 and 9 in 
Additional file  1: Fig.  S1) are associated with high robustness because they provide 
alternate routes using few links. Simpler subgraphs (1–5 in Additional file 1: Fig. S1) 
are usually associated with low robustness but high responsiveness of the network, as 
they allow to distribute materials or information quickly, but lack alternative routes. 
Another notable subgraph is the feedback loop (8 in Additional file 1: Fig. S1).

Randomized networks in motif analysis can be generated using different versions 
of the null model. Here we have used the default setup used in the original research 
(Milo et al. 2004), the version that does not preserve the mutual edges, and our cus-
tom null model that generates networks with the same level of demand satisfaction 
as the original network. To make the results more comparable, the default null model 
that preserves mutual edges has been used in the main part of our investigation, while 
the examples of results for the other null model variants are shown as Additional 
information. In general, the association of robustness with a non-random subgraph 
composition is observed in all null model variants. Motif calculations were performed 
using the mfinder software developed by Alon et al. (2002).

Numerical simulations

To solve a given setup of the model, it is necessary to find a network that connects 
producers and demanders in a robust and cost-efficient way. The problem of gener-
ating robust networks is computationally complex and has no analytical solution or 
simple yet efficient heuristic. It can be formulated as a multi-objective optimization 
problem with objective functions min(c) , max(r) , and additional constraints, e.g. the 
number of edges M or constraints on the edge lengths. The optimization problem is 
solved using genetic algorithms (Deb et al. 2002) with a small modification that allows 

Fig. 2  An example of a typical Pareto front of an ( c , r  ) optimization
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simultaneous maximization and minimization of a target objective. This modification 
might be necessary in optimization problems where the allowed number of edges in 
a network has a lower boundary M0 ≤ M . The shape of the Pareto front in this case 
might have two parts: below and above the minimal network cost (see example in 
Fig. 2). In this case, for the networks that have robustness lower than the robustness 
of the network with the best c ( r < 0.44 in the figure), the problem of minimizing the 
robustness is solved. For the networks above, the robustness is maximized. The criti-
cal robustness is re-evaluated after each generation, as the front evolves.

During the optimization loop starts with picking the best networks from the previ-
ous generation Gi−1 based on their rank (number of networks that are better at least by 
1 optimization criterion). Then, new networks are created by mutating and recombin-
ing random best networks. There are three possible mutation procedures—removing, 
adding, or replacing random edges. The recombination procedure takes two networks, 
selects a random subset of edges from each, and outputs the network with the union 
of the selected edges. The new generation Gi is finally created by combining the best 
networks from the previous generation, mutations and recombinations of randomly 
selected best networks, and purely random networks that satisfy the optimization con-
straints. The first generation G0 is created as random networks that satisfy the optimi-
zation constraints (M, edge length, etc.). The process is repeated for GN generations 
without an explicit convergence stop. A schematic diagram of the optimization proce-
dure is given in Fig. 3. Each optimization starts with its own random networks, ensuring 
that optimization runs for different model setups (different N, M, or node locations) do 
not affect the results of each other.

Gi

0.05·K random
networks

0.15·K recombined
best networks

0.5·K mutated
best networks

Gi-1
0.3·K best networks

from

Gi-1

G0 K random networks that
satisfy optimization constraints

Fig. 3  Scheme of the optimization process. First, G0 is created as random networks that satisfy the 
optimization constraints (M, edge length, etc.). Then, to create the new generation, the algorithm picks the 
best networks from the previous generation and creates new networks by mutating and recombining the 
best networks. The new generation is finally created by combining the best networks from the previous 
generation, mutations and recombinations of randomly selected best networks, and purely random networks 
that satisfy the optimization constraints. Then, the procedure is applied to the new generation. The process is 
repeated for GN generations
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Results
Robust supply networks

In the first set of numerical experiments, we investigated how the robustness shapes sup-
ply networks on a structural level. To do so, we optimize robustness r and network cost c 
for 50 setups with the different spatial distribution of nodes while keeping the node roles 
fixed. For each network setup, the optimization algorithm starts with its own random 
networks and runs independently. In the result, for each single setup there is a Pareto 
front of several networks, each with its own c and r . Then, from each front we take one 
network with a corresponding r and analyze them together. During the whole process, 
different setups do not interact with each other, networks are formed independently and 
cannot affect or bias the networks in other runs.

It is clear that the allowed number of edges in a network M has a direct impact on the 
robustness. It is much easier to install robustness with more edges, as the number of 
alternative paths increases rapidly with higher connectivity, e.g. by having direct edges 
from the producing node and duplicating them through one intermediate node. On the 
other hand, when M is close to the minimal number of edges required for full demand 
satisfaction, no edges can be used as alternative paths. To make networks in both cases 
more specific, we have defined the minimum Mmin and the maximum Mmax number of 
edges allowed in the optimal networks and varied these boundaries, solving 50 different 
setups for each pair ( Mmin , Mmax).

The first series of optimizations are performed for N = 20 nodes with 
(Mmin,Mmax) ∈ [(10, 16), (13, 19), . . . , (40, 46)] . Inspecting the optimization results in 
form of Pareto fronts (Fig. 4) it can be seen that depending on the allowed number of 
edges high or low robustness areas become less populated. To analyze the structures of 
robust and vulnerable networks, we are sampling one network with low and one net-
work with high robustness from each of the 50 optimizations. The low and high robust-
ness, in this case, are defined as 10 and 90 percentiles of the r values for each edge limit.

Figures  5 and  6 show motif patterns of low and high robustness networks from 50 
different setups. The analysis of different M boundaries shows that the range between 
(16, 22) and (19, 25) yields the clearest signal for both vulnerable and robust networks. 
The vulnerable networks have a pattern similar to the superfamily associated with words 
sequences in languages from Milo et al. (2004) or the node-robust networks in Kaluza 

M ∈ [10, 16] M ∈ [16, 22] M ∈ [28, 34]

Fig. 4  Pareto fronts in a series of (c, r) optimizations with N = 20 and varying M boundaries. Each figure 
combines the results of 50 model setup runs that have different spatial distribution of nodes
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et al. (2007). Simpler subgraphs (1–5) in such networks are overrepresented, while the 
more complex subgraphs that contribute more to the robustness (7, 8, 9, 11) are under-
represented. The main difference with the languages superfamily in the vulnerable net-
works is the role of the feedforward and feedback loops. The lack of feedforward loops is 
much less significant, while the underrepresentation of the feedback loops is the feature 
that distinguishes the vulnerable supply networks from the null model. As can be seen in 
Fig. 5, the signal of vulnerable networks disappears fast with the growth of M, as the low 
robustness becomes hard to achieve with more edges.

The robust networks have an over- and underrepresentation pattern of three-node 
subgraphs similar to the second superfamily from Milo et al. (2004). This superfamily 
is associated with biological networks (signaling network of living organisms, gene 
regulatory networks, neuronal networks). Important features of this motif signature 
are the neutrality of z-scores for subgraphs 3, 6, 8, the importance of the feedforward 
loop and its bi-directional version (7, 9). This pattern is also present across a wider 
range of M compared to the signature of vulnerable networks. The signal, however, 
becomes less informative at the higher M values, as installing robustness becomes 

M ∈ [16, 22], r = 0.19 M ∈ [22, 28], r = 0.32

Fig. 5  We generate 50 different network setups with N = 20 and for each setup perform a (c, r) optimization 
with restriction on the allowed number of edges M (shown below each figure). From the resulting Pareto 
fronts, we take 50 vulnerable networks with given r  and compute their motifs. For a single network, the result 
of motif computations are 13 z-scores that indicate how over- or underrepresented each subgraph is in the 
original network, compared to its randomized versions. This gives 50 z-score values for each of the subgraphs 
that form a distribution drawn with shaded vertical violin plots. Blue circles in the figures are the mean values 
and vertical lines with ticks are the standard deviations of these distributions

M ∈ [16, 22], r = 0.95 M ∈ [19, 25], r = 0.96

Fig. 6  Motif patterns of robust networks in c , r  optimization with N = 20 . Similarly to Fig. 5 we take 50 
networks with high r  from the Pareto fronts
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easier with the help of any of the subgraphs. This appearance and decay of both high 
and low robustness signals can be observed in Additional file  1: Fig.  S2, where the 
pattern strength is plotted as the function of robustness r . Around M ∈ [16, 22] and 
[19, 25] the signal is the strongest, showing the biggest difference between high and 
low robustness networks. Networks with the lowest M ∈ [10, 16] and [13,  19] have 
too few edges to reach the peak of signal: on the one hand, the highest robustness of 
r > 0.8 is hard to achieve, on the other hand, vulnerable networks produce degenerate 
motif patterns with only few subgraphs present.

Similar experiments on smaller ( N = 10 , Additional file 1: Fig. S3) and larger ( N = 30 , 
Additional file 1: Fig. S4) networks show the same motif signatures for both robust and 
vulnerable networks. The peak strength of the pattern signal appears when M ≈ N  , indi-
cating that for the investigated setup the signal strength depends on the network’s aver-
age degree, rather than on the connectivity.

In order to further investigate the similarity of the motif signature obtained here with 
the corresponding superfamily from Milo et al. (2004), we compute the Pearson corre-
lation coefficient of motif signature in our model with the representation of the super-
family signature shown in Fig.  7. We denote this correlation coefficient the signature 
strength σ and the superfamily signature as target z-score vector. This quantity will be 
analyzed in detail in the following section. The resulting network parameter σ shows 
how close the motif pattern of the network is to the target pattern. The value of σ can 
vary between −1 and 1.

Motifs as a way to generate robust networks

In the first part of our investigation, we have seen how the robust networks tend to 
have a rather precise set of local topological features. In other words, the majority of 
the robust networks lie in the set of networks with a particular motif signature which, 
in fact, has already been associated with robustness in previous studies, in the context 
of regulatory systems (Milo et  al. 2004) and layered flow systems (Kaluza et  al. 2007). 
As a next step we will now address the opposite direction of this statistical association 
between robustness and motif signatures: If we generate a network with the required 
pattern, will it necessarily be more robust than the others? Or will such a network have 
the same high level of robustness but at a lower network cost? In the existing literature, 
an approach of installing robustness via generating a certain motif pattern is not well 
investigated, perhaps related to the computational complexity of computing network 
motifs, which is O(M4) , as compared to the O(M2) for the robustness. This is a relevant 
question, as in principle it could be that the set of networks with the pattern is bigger 

Fig. 7  The target network motif pattern typical to the robust biological systems, reproduced from Milo et al. 
(2004). X axis represents different subgraphs, Y axis shows normalized z-score of the corresponding subgraph
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than the set of the robust networks and it is possible to generate a vulnerable network 
with the given pattern.

In order to address this question, we perform a full optimization for the given motif 
pattern. Furthermore, we suggest a heuristic that indirectly installs the pattern, but does 
that with a smaller computational complexity.

Full motif pattern optimization

Similar to the robustness optimization, we solve an optimization problem for 50 dif-
ferent setups with the random spatial distribution of nodes. The objective functions 
in this case are the network cost c and the signature strength σ , i.e. the correlation 
of the network’s z-score vector with the target vector given in Fig. 7. Due to the time 
complexity of optimizing σ , this experiment has been performed for a single set of 
edge boundaries (Mmin,Mmax) = (16, 22) and N = 20 , i.e. the edge range for which 
the low and the high robustness signals were the strongest. This optimization had 
one additional constraint, namely that only edges not longer than a certain length l 
were allowed to form networks. The allowed length l is defined as 120% of the length 
that makes the network connected. Our numerical simulations have shown that 
this length constraint greatly enhances the association of the motif signature with 
robustness. Regarding the impact of edge length, and thus spatial locality of the net-
work, on the motif patterns one can refer to Artzy-Randrup et al. (2004).

From the Pareto front of this optimization (Additional file 1: Fig. S5) it can be seen 
that, although the generated networks have reached both extremely high and low σ 
values, the robustness range is not entirely covered, as opposed to the c , r optimiza-
tion (Fig. 4). Even more striking, networks with the opposite motif pattern (negative 
σ values in Additional file  1: Fig.  S5) reach robustness values that are comparable 
to those with target pattern. This observation indicates that not all networks with 
the given motif pattern will necessarily be robust. On the other hand, looking at 
the robustness as the function of motif patterns (Fig.  8), it can be seen that high 

Fig. 8  Distribution of r  values as a function of σ for the results of (c, σ) optimization. Sets of networks that 
correspond to given robustness are plotted as violin plots to demonstrate their distributions, while the solid 
line shows the behavior of their means
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robustness networks have almost exclusively the target motif pattern. Looking at the 
motif z-scores of high and low robustness networks in this optimization (Additional 
file 1: Fig. S6), we find patterns similar to those from c , r optimization. For higher 
robustness, there is an overrepresentation of subgraphs 7, 9 and 10 with underrepre-
sentation of subgraphs 1–5. For lower robustness, there is an overrepresentation of 
the first 5 subgraphs and underrepresentation of subgraphs 7–11.

Heuristic motif pattern enhancement

The approach with direct motif pattern optimization has proven to be both computa-
tionally complex and inefficient in generating robust networks. Here we try to address 
these problems by testing a heuristic that follows simple rules based on motif patterns. 
In this approach, we consider a more practical setup, with a randomly given network 
that has a full demand satisfaction. The goal is to insert one edge into the network such 
that the insertion brings the existing motif signature closer towards the target signature, 
increasing the robustness in the process.

We investigate this problem by taking 500 different random networks with 
N = 20,M ∈ [16, 22] and inserting every edge that did not exist in the original network. 
The extended networks are then compared with the basic one by three parameters: count 
of feedforward loops (c07), z-score of the feedforward loop (z07), and overall correlation 
with the target z-score pattern ( σ ). After that, we split all the possible networks into two 
groups: high—those that give the maximum increase in c07, z07, and σ and low—the 
remaining networks. In the case of c07, the high group is composed of networks with 
positive change in the 7th subgraph counts. In the case of z07 and σ , the top 10% of the 
networks are taken (see more details in the additional file information, Additional file 1: 
Fig. S7). Then we compare the increase in robustness in these two groups taking their 
mean values. This process is then repeated 500 times for different base networks and the 
histogram of high and low means is finally plotted (Fig. 9).

(a) FFL counts (b) FFL z-scores (c) σ
Fig. 9  Histograms of the average increase in robustness for high and low changes in one topological 
metric. We take 500 random networks that have full demand satisfaction and some robustness. For each 
combination of a network and an edge that is not in the network, we compute r, motif signature, and 
three-node subgraph counts. Then, for each network, we separate combinations into two groups: the ones 
that yield the highest increase in a simple metric (counts of feedforward loop (a), z-score of feedforward loop 
(b), and σ (c))—denoted as high, and the remaining combinations—denoted as low. After this we compare 
the average increase in r in these two groups
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The resulting figure tells us that all three parameters work equally well for edge inser-
tion. Selecting the edges with the highest values of c07, z07, or σ leads to a higher 
increase in robustness. To our knowledge, these two investigation steps—the full motif 
pattern optimization and the heuristic motif pattern enhancement—are the first exam-
ples indicating that indeed this motif signature implies robustness. However, in both 
numerical experiments, the observed effect is weak. Furthermore, even the heuristic is 
still more computationally complex than the direct robustness computations, even using 
the simplest c07 approach. These observations show that the results, though of relevance 
for the theoretical understanding of supply network robustness, will most likely not be 
of immediate practical relevance. One possible application of such a heuristic might be 
in the case when computing or defining robustness is hard.

Application to industrial data

Next, we apply the concept of the model to a real-world supply network. As an example, 
we explore the transportation network of all European facilities of a global automotive 
supplier. These facilities both produce and demand products and the whole network is 
an overlay of a large product portfolio. The company organizes internal deliveries on its 
own meaning there is no competition among facilities and products. However, for most 
of the product categories, there is more than one producer and transportation links 
might be used to deliver several product categories. To bring this aspect closer to the 
scenario investigated in the model, we consider each of the 627 product categories inde-
pendently and extract subnetworks that are used to deliver only the selected product. 
We also consider only one producer for each product category—the one that has the 
largest produced volume.

With these assumptions, the resulting data contains multiple single-producer trans-
portation subnetworks that are used to distribute one product category. Such networks 
predominantly consist of direct routes from the producer to demanders and have zero 
robustness because every route is vital for the demand satisfaction. In reality, as the 
whole transportation network consists of multiple products and deliveries are combined 
together, the actual transportation network for a single product includes additional 
routes. To model this behavior, we introduce an additional local neighborhood size 
parameter t. This parameter represents the number of additional routes from the whole 
transportation network data that are included in the transportation network of a single 
product. When t = 0 , the transportation network consists purely of direct links from the 
producer to demanders. With highest t, the network turns into the full transportation 
network from the data. For the intermediate values, the network includes the direct sin-
gle-product routes plus those indirect routes that do not exceed the length of the direct 
route times t (see an example of a product subnetwork in Fig. 10a).

The the result, we vary the parameter t thus getting product subnetworks of different 
size and analyze the parameters r , σ of the resulting networks. As expected, for higher 
values of t the robustness also increases. More interesting is whether for a given t there 
is a connection between r and σ . A Spearman correlation analysis of these two quanti-
ties in Fig. 10b, shows a strong (> 0.5) and significant (p− value << 0.05) correlation 
of these two quantities. Analysis of the Pearson correlation coefficient confirms these 
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observations (see Additional file  1: Fig.  S8) but is less reliable due to the non-Gauss-
ian distributions of the quantities investigated. As we are going to the region of bigger 
neighborhood sizes, product sub-networks include more and more edges and become 
closer to one another, making any analysis meaningless.

Overall, the positive correlation between r and σ indicates that, although the real sys-
tems are not constructed based on the subgraphs or more complex network structures, 
these systems show a solid dependency between the robustness and such structures. 
This indicates that the mechanisms that provide the robustness in biological systems 
might be similar to those in industrial systems, but the foundation of this mechanism is 
yet to be understood.

Although the process of creating product subnetworks required several assumptions 
to apply the model, this experiment is encouraging as it shows that it is possible to view 
the real-world networks through the prism of the model. However, to gain a more mean-
ingful insight on an operational level about the explored systems the model needs to be 
further developed, simulating setups closer to the practical networks.

Conclusion
Here we have presented a minimal model of supply networks. Although the model is 
based on one simple mechanism of matching the demand and supply, it proves to be 
powerful in describing the concepts of robustness and efficiency in supply networks. 
The optimal networks generated in this framework show structural patterns that are 
also typical to biological systems. This finding unites the nature of two network worlds—
those found in natural systems that have been developed under evolutionary processes 

(a) (b)
Fig. 10  Application of the model to industrial data. a shows a subnetwork of the full European supply 
network of an automotive company. The subnetwork is generated by selecting the routes used for 
transporting one product category and taking a neigborhood of these routes with size parameter 
t = 0.6 . In b all product subnetworks are analysed together using Spearman correlation (upper panel) 
and the corresponding p-value (represented as − log (p) ; lower panel) of their r  and σ values for different 
neighborhood sizes t. The dashed lines indicate zero correlation (upper panel) and − log (0.05) (lower panel), 
respectively
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and industrial systems that are artificially created with the main goal of being cost-effi-
cient. Having this evidence of similarity, it is possible to explore both systems from the 
perspective of another and potentially transfer the knowledge between them.

One of the questions addressed in our investigation is whether one can use motif 
patterns as a building recipe for robust networks. This approach turns out to be much 
more complex on the computational side, while also showing only a weak benefit in 
comparison to a random pattern. This numerical observation indicates that the fam-
ily of networks with the given motif pattern is wider and includes not only the robust 
networks. An important finding, however, is that requiring a spatial locality of the 
network edges forces robust networks to adhere to the given motif signature. The dis-
cussed motif pattern thus should not be associated with robustness in isolation but 
should be augmented by some additional factors such as spatial aggregation.

Finally, while the suggested supply network model is minimal, it has substantial poten-
tial for further investigations. The most obvious approach is to go beyond the single-
product dimension. In the explored setups there was only one producing node which, 
as can be seen from the industrial data, is usually not the case in reality. Also, the spa-
tial distribution of the nodes is not uniform, especially in the case of worldwide sup-
ply networks. Another modification that might bring the model closer to the reality is 
a setup that has an overlay of different products, each with its own demanders and pro-
ducers. In this setup, some transportation routes will be used to deliver multiple prod-
ucts, thus reducing the networks costs but imply a higher influence on the robustness. 
Alternatively, one can explore systems where the robustness has a tolerance margin. For 
example, networks that have at least 90% demand satisfaction after damaging edges are 
still considered robust. In the single-product setup, reducing the demand satisfaction 
threshold results in simpler networks. However, combined with multi-product modifica-
tion that should increase the complexity of the system the reduced demand satisfaction 
requirement would balance the system to be informative. Another possible approach is 
to apply different distance measures to compute network cost c . For example, instead of 
the standard Euclidean distance edges that are shorter than some threshold distance x 
can have a length of 1, while the longer edges can have an infinite length. This will model 
the situation when the delivery vehicles can travel no longer than x per one go.

With this minimal model, we hope to provide an interface between the multidiscipli-
nary field of network science and research questions in supply network management.
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