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Introduction
Identifying the association of genes to functions is key to gain insight into how genomes 
serve as blueprints for life, e.g., to develop treatments for specific conditions or enhance 
tolerance to environmental stresses (Rust et al. 2002; Vandepoele et al. 2009; Yandell and 
Ence 2012). Numerous studies have used co-expression data to predict specific biologi-
cal functions and processes (Oti et al. 2008; Romero et al. 2020; Stuart 2003; van Dam 
et al. 2017). Intuitively, genes are reported to co-express whenever they are simultane-
ously active, which suggests that they are associated to one or more common biological 
processes.

Under this hypothesis, characterizing gene interactions as a gene co-expression net-
work (GCN) may assist to identify unknown functional annotations in a genome. Co-
expression networks are generally represented as undirected weighted graphs, where 
vertices denote genes and weighted edges indicate the strength of the co-expression 
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between two genes. A detailed analysis of the structure and distribution of gene relation-
ships in GCNs provides additional clues that facilitate the prediction of gene functions 
(Valentini  2009).

However, the cost and time requirements to annotate genes using in  vivo biological 
experimentation remains prohibitively high (Cho et al. 2015; Zhou et al. 2005). To over-
come this limitation, hybrid approaches that integrate existing knowledge of gene-func-
tion associations and in silico methods have been proposed (Cho et al. 2016; Deng et al. 
2003; Luo et al. 2007; Romero et al. 2022). While they have shown great promise, given 
the extreme combinatorial nature of the problem, annotating genes in an efficient man-
ner remains an open challenge.

Functional annotations are defined by the Gene Ontology (GO), which contains three 
main types of annotations: biological processes, molecular functions, and cellular com-
ponent (Gene Ontology Consortium  2019). These annotations, commonly known as 
GO terms, are structured in a hierarchy and defined as a directed acyclic graph (DAG). 
Gene annotation approaches generally ignore the relationships among biological pro-
cesses, even though these relationships are key to improve the accuracy and avoid incon-
sistency in predictions. A prediction is said to be inconsistent w.r.t. the GO hierarchy 
when a gene is inferred to have a particular function a, but it is not inferred to have all 
ancestor of a. In other words, an inconsistent prediction states that the prediction does 
not satisfy the ancestral relations between GO terms. Satisfying ancestral constraints is 
often referred to as the true-path rule in GO (Valentini  2009; Ashburner et al. 2000) and 
as the hierarchical constraint in HMC (Vens et al. 2008).

This paper presents a feature extraction approach for in silico annotation of genes. 
It follows a network-based approximation that uses cluster analysis and hierarchical 
multi-label classification (HMC) for building a predictor that assigns functions to genes 
satisfying the true-path rule. Cluster analysis plays the role of enriching the informa-
tion available for predicting gene-function associations by extracting new features that 
represent structural properties of the GCN. That is, co-expression relations are used to 
identify gene clusters that ultimately help in associating functions to genes (i.e., guilt 
by association, see Petsko (2009)). It has been shown in Romero et al. (2022) that new 
features built from the GCN and associations between genes and functions with the 
spectral clustering algorithm are key to improve the prediction performance in the gene 
annotation problem. The results in Romero et al. (2022) show that using other features 
associated to structural properties of the GCN and gene functional information lead to 
lower performance.

Furthermore, the extracted features are filtered (using SHAP) based on their impact in 
the prediction task and HMC is used to predict gene-function associations that take into 
account the relations between biological functions. The proposed approach illustrates 
how the performance of gene annotation is improved by combining: (1) new informa-
tion extracted from the GCN; and (2) classification methods that consider the relation 
between gene functions.

This approach is applied to a case study on Zea mays, one of the most dominant and 
productive crops. Zea mays serves a variety of purposes, including animal feed and 
derivatives for human consumption and ethanol (Zhou et al. 2020). The co-expression 
information used in the study is imported from the ATTED-II database (Obayashi et al. 
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2018). The resulting GCN, modeled as a weighted graph, comprises 26,131 vertices (i.e., 
genes) and 44,621,533 edges. The functional information (i.e., known gene-function 
associations) is taken from DAVID Bioinformatics Resources (Huang et al. 2009). It con-
tains a total of 255,865 annotations of biological processes for maize, i.e., pathways to 
which a gene contributes. The results highlight the importance of extracted features that 
represent structural properties of the GCN and the hierarchical structure of biological 
processes with HMC to improve prediction performance. Ultimately, the results provide 
experimental (in silico) evidence that the proposed approach is a viable and promising 
approximation to gene function prediction.

This paper is a significant extended version of Romero et al. (2022) that:

•	 Addresses the gene function prediction as a hierarchical multi-label classification 
problem by considering the structure of gene functions. That is ancestral relation-
ships are represented as a DAG (Gene Ontology Consortium  2019).

•	 Analyzes a larger functional database for the case study of maize. The number of 
genes associated to at least one function increased from 5361 to 10,049. The new 
dataset consists of 255 865 associations between genes and functions, and 7021 rela-
tions between functions.

•	 Concludes that the ancestral relations between functions and the features extracted 
from the GCN improve the prediction performance in the gene function prediction 
task when addressed as a hierarchical multi-label classification problem.

The remainder of the paper is organized as follows. “Preliminaries” section reviews some 
preliminaries.  “Clustering-based feature extraction” section introduces the approach to 
extract features from the gene co-expression network using cluster analysis. The pro-
posed approach to predict gene functions, based on hierarchical multi-label classifica-
tion is presented in  “Hierarchical multi‑label classification for gene function prediction” 
section. “Case study: Zea mays” section presents the case study for the Zea mays species. 
Finally,  “Related work and concluding remarks” section draws some concluding remarks 
and future research directions.

Preliminaries
This section presents preliminaries on spectral clustering, gene co-expression networks, 
gene function prediction, hierarchical multi-label classification, and SHAP feature 
contribution.

Spectral clustering

The aim of applying cluster analysis on a network is to identify groups of vertices sharing 
a (parametric) notion of similarity (Yu  2003; Rodriguez et al. 2019). Usually, distance or 
centrality metrics are used for clustering. Spectral clustering is a clustering method with 
foundations in algebraic graph theory (Jia et al. 2014). It has been shown that spectral 
clustering has better overall performance across different areas of applications (Muru-
gesan et al. 2021). Given a graph G, the spectral clustering decomposition of G can be 
represented by the equation L = D− A , where L is the Laplacian, D is the degree (i.e., a 
diagonal matrix with the number of edges incident to each node), and A the adjacency 
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matrices of G. Spectral clustering uses, say, the n eigenvectors associated to the n small-
est nonzero eigenvalues of L . In this way, each node of the graph gets a coordinate in 
R
n . The resulting collection of eigenvectors serve as input to a clustering algorithm (e.g., 

k-means) that groups the nodes in n clusters.

Gene co‑expression network

A gene co-expression network (GCN) is represented as an undirected graph where each 
vertex represents a gene and each edge the level of co-expression between two genes.

Definition 1  Let V be a set of genes, E a set of edges that connect pairs of genes, and 
w : E → R≥0 a weight function. A (weighted) gene co-expression network is a weighted 
graph G = (V ,E,w).

The set of genes V in a co-expression network is particular to the genome under study. 
The correlation of expression profiles between each pair of genes is measured, com-
monly, using the Pearson correlation coefficient. Every pair of genes is assigned and 
ranked according to a relationship measure, and a threshold is used as a cut-off value to 
determine E. The weight function w denotes the strength of the co-expression between 
each pair of genes in V. For example, in the ATTED-II database, the co-expression rela-
tion between any pair of genes is measured as a z-score expressed as a function of the co-
expression index LS (Logit Score) (Obayashi et al. 2018; Obayashi and Kinoshita 2011).

Gene function prediction

In an annotated gene co-expression network, each gene is associated with the collection 
of biological functions to which it is related (e.g., through in vivo experiments).

Definition 2  Let A be a set of biological functions. An annotated gene co-expression 
network is a gene co-expression network G = (V ,E,w) complemented with an annota-
tion function φ : V → 2A.

The problem of predicting gene functions can be explained as follows. Given an anno-
tated co-expression network G = (V ,E,w) with annotation function φ , the goal is to use 
the information represented by φ , together with additional information (e.g., features 
of G), to obtain a function ψ : V → 2A that extends φ . Associations between genes and 
functions not present in φ have either not been found through in vivo experiments, or 
do not exist in a biological sense. The new associations identified by ψ are a suggestion 
of functions that need to be verified through in vivo experiments. The function ψ can be 
built from a predictor of gene functions, e.g., based on a supervised machine learning 
model.

Hierarchical multi‑label classification

Node classification refers to the task of predicting a node class for an input data based 
on the information of other nodes in the network (Bhagat et  al. 2011). In general, 
node classification problems can be categorize into three different types: binary 
classification refers to predict one attribute (target) with two classes (for example, 
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positive and negative) (Khan and Madden  2010); multi-class classification refers to 
the case where the attribute to be predicted has more than two classes and are mutu-
ally exclusive (for example, the brand of a car) (Mills  2021); and multi-label classifi-
cation refers to predicting an attribute with at least two classes, but where an instance 
could be associated to more than one class (for example, the gene function prediction 
problem) (Xu et al. 2020).

Although the aforementioned prediction methods are frequently used, they do 
not consider hierarchical relations between classes. For such scenarios, hierarchi-
cal multi-label classification (HMC) addresses the task of structured output predic-
tion where the classes are organized into a hierarchy and an instance may belong to 
multiple classes. In many problems, such as gene function prediction, classes inher-
ently satisfy these conditions (Levatić et al. 2015). Authors in Silla and Freitas (2011) 
expose that there are two types of methods to explore the hierarchical structure. First, 
top-down or local classifiers refer to partially predict the classes in the hierarchy from 
the top to the bottom. Second, big-bang or global classifiers refer to use a single classi-
fier that considers the entire hierarchy at once.

Classifiers that ignore the class relationships, by predicting only the leaf classes in 
the hierarchy or predicting each class independently, often lead to inconsistent predic-
tions. This refers to the fact that a node is inferred to have a particular class a, but the 
outcome of the classifier fails to infer the node’s association to all ancestor classes of 
a in the hierarchy. In other words, an inconsistent prediction states that the predic-
tion does not satisfy the hierarchy for some class a. Satisfying ancestral constraints is 
often referred to as the true-path rule in GO (Valentini  2009; Ashburner et al. 2000) 
and as the hierarchical constraint in HMC (Vens et al. 2008).

Figure  1 illustrates the four HMC methods used in this work: Local classifier per 
node (lcn) consists of training one binary classifier for each class in the hierarchy 
except the root. Local classifier per parent node (lcpn) consists of training a multi-
label classifier for each parent node in the hierarchy to distinguish between its child 
classes. Local classifier per level (lcl) consists of training one multi-label classifier for 
each level of the class hierarchy except for the root. Global classifier consists of build-
ing a single multi-label classifier taking into account the hierarchy as a whole during 
a single run. The global classifier can assign classes at potentially every level of the 
hierarchy to an instance.

r
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c d e f

Local Classifier 
per Node (lcn)

Local Classifier 
per Parent Node (lcpn)

Local Classifier 
per Level (lcl) Global Classifier
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Fig. 1  Example of global and local methods for hierarchical multi-label classification. Given a hierarchy of 
classes (r, a, b, c, d, e, and f), the dashed boxes show the number of classifiers required for each method. Note 
that the lcn, lcpn, lcl, and global classifiers require 6, 4, 3, and 1 predictors, respectively
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SHAP feature contribution

The performance of classification algorithms is partly determined by the features used 
to train a particular predictor. SHAP (SHapley Additive exPlanation) is a framework that 
computes the importance values for each feature in a dataset using concepts from game 
theory (Lundberg and Lee  2017; Lundberg et al. 2020). SHAP assigns Shapely values to 
explain which features in the model are the most important for prediction by calculat-
ing the changes in the prediction when features are conditioned. Given a predictor and a 
training set, SHAP computes a matrix with the same dimensions of the predictor’s out-
put containing the Shapely values for each instance and class. For example, in a binary 
classification problem and a training set of n instances, the output of SHAP is a matrix of 
dimension n× 2 (there are two classes, positive and negative). In multi-label classifica-
tion problems, the output is a matrix of dimension n× 2 for each class, since classes are 
not mutually exclusive and the outcome is either positive or negative for each class.

Clustering‑based feature extraction
The approach for extracting features from the GCN using a clustering algorithm and 
Gene Ontology term enrichment is presented. It combines information from the 
GCN, and the associations between genes and functions to create features capturing 
topological properties of the GCN.

The inputs of the approach are a GCN, denoted by G = (V ,E,w) , a set of (biologi-
cal) functions A, an annotation function φ : V → 2A , and a set K = {k0, . . . , km−1} for 
sampling the number of clusters. The annotation function φ must satisfy true-path 
rule for the GO hierarchy (Ashburner et al. 2000; Valentini  2009). That is, if a gene is 
associated to a function, then it must also be associated to every ancestor of the func-
tion in the hierarchy, and if a gene is not associated to a function, then it must not be 
associated to any of its descendants.

The outputs are two feature matrices JG and JF  , of dimension V × A · K → [0, 1] , 
specifying the likelihood of the genes V to be associated to the functions in A when 
the graph is decomposed in m clusters. Matrices JG and JF  correspond to the GCN 
(that is the graph G) and an affinity graph defined the next subsection.

The feature extraction approach consists of three stages, which are depicted in 
Fig. 2. First, an affinity graph F with information in φ is created from G. Second, the 
spectral clustering algorithm is applied to both G and its enriched version F for the 
m different number of clusters specified in K. Third, the Gene Ontology term enrich-
ment technique is used to create m features for each function a ∈ A , corresponding to 
the number of clusters in K.

Affinity graph creation

An affinity graph F = (V ,E,wF ) between G and φ is built. Its weight function is 
defined as the mean between the co-expression weight specified by w and the propor-
tion of shared functions between genes specified by φ.

Definition 3  The weight function wF : V × V → [0, 1] is defined for any u, v ∈ V  as
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where max(w) denotes the maximum value in the range of w (which exists because w is 
finite).

Under the assumption that at least one element in the range of w is greater than 1, it 
is guaranteed that the range of wF is [0, 1] (because w : V × V → [1,∞) ). This is indeed 
the case, in practice, because the co-expression between two genes in the GCN is quan-
tified in terms of the z-score, which is highly unlikely to be 1 for all pairs of genes.

Gene clustering

The spectral clustering algorithm is applied independently to each graph X ∈ {G, F} 
to decompose X (i.e., group the genes V) using the number of clusters specified 
by K = {k0, . . . , km−1} . The decomposition of X is performed m times, once per k 
in K. The adjacency matrices of the weighted and undirected graphs G and F are 
used as the precomputed affinity matrices required for the spectral clustering algo-
rithm. The outcome of the clustering algorithm is an assignment from nodes to clus-
ters of size k, for each k ∈ K  . More precisely, the outputs of this stage are the matrices 

wF (u, v) =
1

2

(

w(u, v)− 1

max(w)− 1
+

|φ(u) ∪ φ(v)|

|φ(u) ∩ φ(v)|

)

,

Fig. 2  The clustering-based feature extraction approach consists of three stages. Namely, creation of affinity 
graph, clustering computation, and Gene Ontology term enrichment. Its inputs are a GCN, denoted by 
G = (V , E ,w) , a set of functions A, an annotation function φ : V → 2A , and a set K = {k0, . . . , km−1} . Its output 
are two feature matrices (for both G and its enriched version F) of dimension V × A · K → [0, 1] that specify 
how likely it is for the genes to be associated to the functions in A when the graph is decomposed m clusters, 
each of size ki , for 0 ≤ i ≤ m
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IX : V × K → [0, 1] , where each column 0 ≤ i < m represents the decomposition of X 
in ki clusters.

Gene enrichment

The goal of this stage is to produce a matrix JX : V × A · K → [0, 1] for each X ∈ {G, F} , 
specifying how likely it is for the genes to be associated to every function a ∈ A when X 
is decomposed in the given number of clusters.

For each decomposition from the previous stage (i.e., each column of the matrices 
IX ) and function a ∈ A , the resulting clusters are used to compute whether a significant 
number of members associated to function a is (locally) present. Intuitively, if genes that 
are grouped together have a strong co-expression relation and most of the group are 
associated to gene function a, then the remaining genes are also likely to be associated 
to a (i.e., guilt by association, see Petsko (2009)). In this way, for each v ∈ V  , a ∈ A , and 
k ∈ K  , the entry JX (v, a · k) is a p-value indicating if the function a is over-represented in 
the decomposition of k clusters of X. This process is commonly known as Gene Ontol-
ogy term enrichment and may use different statistical tests, such as, Fisher’s exact test 
(Yon Rhee et al. 2008).

Hierarchical multi‑label classification for gene function prediction
This section presents the approach for gene function prediction using HMC to create 
a predictor, enriched with the information of the features created in “Clustering-based 
feature extraction” section.

The GO hierarchy is defined as a directed acyclic graph (DAG) containing three main 
types of annotations: biological processes, molecular functions, and cellular component 
(Gene Ontology Consortium  2019). This work focuses on biological processes, i.e., a 
subgraph of the GO hierarchy that contains 28 roots (i.e., functions in the GO hierar-
chy with null indegree). This subgraph is denoted as H = (A,R) , where A is the set of 
biological processes and R the binary relation representing ancestral relations between 
pairs of biological processes (i.e., (a, b) ∈ R means that function b is ancestor of func-
tion a in the GO hierarchy). The topological-sorting traversal algorithm presented in 
Romero et al. (2022) is used to transform the GO hierarchy of biological processes into a 
tree. As a result, the hierarchy is split into several components, i.e., subtrees of H called 
sub-hierarchies. Each sub-hierarchy, H ′ = (A′,R′) with A′ ⊆ A , R′ ⊆ R , and r ∈ A′ the 
root, is associated to a subgraph G′ = (V ′,E′,w) containing all genes v ∈ V  associated to 
r, i.e., V ′ = φ−1(r) . Note that, the proposed approach is independently applied to each 
sub-hierarchy.

The inputs of the approach are a sub-hierarchy H ′ = (A′,R′) , a subgraph of the 
GCN, denoted by G′ = (V ′,E′,w) , where V ′ ⊆ V  and E′ ⊆ E , an annotation function 
φ : V → 2A

′ , the matrices JG and JF resulting from “Clustering-based feature extraction” 
section, and a constant value c ∈ [0, 1] for feature selection. The output is a function 
ψ : V ′ × A′ → [0, 1] , specifying, for each gene v ∈ V ′ , the probability ψ(v, a) of v being 
associated to function a ∈ A′.

First, sub-matrices J ′G and J ′F are created from JG and JF , by respectively considering 
only the genes V ′ ⊆ V  and functions A′ ⊆ A . These sub-matrices represent structural 
properties of the GCN subgraph G′ , and associations between genes and functions based 
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on multiple partitions of each graph. Figure 3 illustrates the prediction approach. The 
reminder of this section is devoted to detailing the prediction approach.

SHAP filters the extracted features with more impact in the prediction task, and HMC 
is used to predict associations between genes and functions without inconsistencies (i.e., 
complying the true-path rule). Since local HMC methods use more than one predictor 
per hierarchy, the feature selection is executed for each predictor independently, consid-
ering only the features related to the functions being predicted, denoted by A′′ ⊆ A′ . For 
example, consider the function hierarchy and a local classifier per level method depicted 
in Fig. 4. The predictor for level 1 predicts functions a and b, so only the features associ-
ated to functions a and b are considered for the feature selection.

Feature selection

The aim of feature selection is to produce a matrix J : V ′ ×�(c) → [0, 1] by selecting a 
reduced number of significant features from J ′G and J ′F . The number of selected features 
is denoted by 0 ≤ �(c) ≤ 2m · |A′′| , where m · |A′′| is the number of features in each 
matrix J ′G and J ′F , denoted as q (that is q = m · |A′′|).

Feature selection is conveyed from J ′G and J ′F to J using SHAP. Let J ′G+F denote the 
matrix resulting from extending J ′G with the q features of J ′F . That is, for each v ∈ V ′ , the 

Fig. 3  The prediction approach mainly consists of two stages, feature selection with SHAP and hierarchical 
multi-label classification. Its inputs are a sub-hierarchy H′ = (A′ , R′) , a subgraph of the GCN G′ = (V ′ , E ′ ,w) , 
an annotation function φ : V → 2A

′
 that satisfy the sub-hierarchy H′ , the sub-matrices of JG and JF containing 

only the functions A′ and genes V ′ , and a constant value c ∈ [0, 1] for feature selection. Its output is a function 
ψ : V ′ × A

′ → [0, 1] , which indicates for each gene v ∈ V
′ , the probabilities ψ(v , a) of v being associated to 

function a ∈ A
′
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expression J ′G+F (v, _) denotes a function with domain [0, 2q) and range [0, 1], where the 
values in [0, q) denote the p-values associated to v in G and the values in [q, 2q) the ones 
associated to v in the enriched version of G. For each entry J ′G+F (v, j) , with v ∈ V ′ and 
0 ≤ j < 2q , the mean absolute SHAP value s(v,j) is computed after a large enough num-
ber of Shapely values are computed (executions of SHAP). Features are selected based 
on the cutoff

i.e., on the sum of mean absolute values by a factor of the input constant c. The first 
�(c) features, sorted from greater to lower mean absolute SHAP value, are selected as to 
reach the given cutoff.

Note that the input constant c is key for selecting the number of significant features. 
The idea is to set c so as to find a balance between prediction efficiency and the compu-
tational cost of building the predictor.

Training and prediction

This stage comprises a process that combines two supervised machine learning tech-
niques/tools to build the predictor ψ . In particular, stratified k-fold cross-validation and 
hierarchical multi-label classification are used sequentially in a pipeline.

The pipeline takes as input the matrix J, which specifies the significant features of J ′G 
and J ′F , the sub-hierarchy H ′ and the annotation function φ . First, k-fold is applied to 
split the dataset into k different folds for cross validation (note that k is not related to the 
input K). That is, each fold is used as a test set, while the remaining k − 1 folds are used 
for training. Recall that k-fold cross validation aims to overcome overfitting in training. 
Furthermore, one or multiple random forest classifiers are build and used for prediction, 
the number of classifiers depends on the HMC method. Randoms forest is selected for 
this approach since it is a tree-based and multi-label classification algorithm, which is 
interpretable (SHAP can be applied). The parameter values used for random forest clas-
sifiers, differently from the default scikit-learn values, are: 200 estimators (n_estimators) 
and minimum number of samples of 5 (min_samples_split).

Additionally, some HMC methods require an extra step to keep prediction consistent 
w.r.t. the sub-hierarchy H ′ (i.e., comply the true-path rule). The probability of association 

c ·

2q−1
∑

j=0

s(v,j),

root

ba

c d e f

Le
ve

l 1
Le

ve
l 2

Fig. 4  Gene function prediction considering the function hierarchy and using a local classifier per level 
method. The predictor for the level 1 predicts functions a and b, so only the features from J′

G
 and J′

F
 

associated to functions a and b are considered for the feature selection
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between a function v ∈ V ′ and a function a ∈ A′ must be lower than the probability of 
association between the same gene and the ancestor of a in H ′ . To satisfy this constraint 
cumulative probabilities are computed throughout the paths in H ′ . That is, for each gene 
v ∈ V  and functions (a, b) ∈ R , the predicted probability of the association between v and a 
is multiplied by the predicted probability of association between v and b (its ancestor). This 
process is repeated for every path in the hierarchy from the root to the leaves.

The output of this stage is the predictor ψ , i.e., the probabilities of associations between 
the genes in V ′ and functions A′ . Note that the predictor ψ satisfies the true-path rule.

Performance evaluation

It is often the case in HMC datasets that individual classes have few positive instances. In 
genome annotation, typically only a few genes are associated to specific functions. This 
implies that for most classes (deeper in the hierarchy), the number of negative instances 
by far exceeds the number of positive instances. Hence, the real focus is recognizing the 
positive instances (predict associations between genes and functions), rather than cor-
rectly predicting the negative ones (predict that a function is not associated to a given 
gene). Although ROC curves are better known, their area under the curve is higher if a 
model correctly predicts negative instances, which is not suitable for HMC problems.

For this reasons, the measures (based on the precision-recall (PR) curve) introduced 
by Vens et al. (2008) are used for evaluation.

Area under the average PR curve

The first metric transforms the multi-label problem into a binary one by computing the 
precision and recall for all functions A′ together. This corresponds to micro-averaging 
the precision and recall.

The output of the prediction stage are the probabilities of associations between genes 
V ′ and functions A′ . Thereby, instead of selecting a single threshold to compute preci-
sion and recall, multiple thresholds are used to create a PR curve. In the PR curve each 
point represent the precision and recall for a give threshold that can be computed as:

Note that i ranges over all functions A′ , i.e., precision and recall are computed for all 
functions together. The area under this curve is denoted as AU(PRC).

Average area under the PR curves

The second metric corresponds to the (weighted) average of the areas under the PR 
curves for all functions A′ . This metric, referred as macro-average of precision and 
recall, can be computed as follows:

If the weights of all functions are the same (i.e., 1/|A′| ) the metric is denoted as AUPRC . 
In addition, weights can also be defined based on the number of genes associated 
to functions in φ , i.e., wa = |φ−1(a)|/

∑

i |φ
−1(i)| for a ∈ A . In the later case, denoted 

Prec =

∑

i TPi
∑

i TPi +
∑

i FPi
, and Rec =

∑

i TPi
∑

i TPi +
∑

i FNi
.

AUPRCw1,w2,...,w|A′ |
=

∑

i

wi · AUPRCi.
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as AUPRCw  , more frequent functions get higher weight. Note that one point in the 
weighted PR curve corresponds to the (weighted) average of the AUPRC of all functions 
A′ given a threshold.

Case study: Zea mays
Next section describes a case study on applying the feature extraction and predic-
tion approach presented in “Clustering-based feature extraction” and  “Hierarchical 
multi‑label classification for gene function prediction” sections to maize (Zea mays). 
First, the maize data used for the case study is described. Second, the proposed approach 
is applied to the maize data. Lastly, the performance of the proposed approach is com-
pared to two models trained using each set of features JG and JF , independently.

Data description and feature extraction

The co-expression information used in the study is imported from the ATTED-II data-
base (Obayashi et  al. 2018). The gene co-expression network G = (V ,E,w) comprises 
26  131 vertices (genes) and 44  621  533 edges. In this case, a z-score threshold of 1 is 
used as the cut-off measure for G, i.e., E contains edges e that satisfy w(e) ≥ 1 (most of 
them satisfying w(e) > 1 ). Note that the highest value is assigned to the strongest con-
nections. The functional information for this network is taken from DAVID Bioinfor-
matics Resources (Huang et al. 2009) (2021 update); it contains annotations of biological 
processes, i.e., pathways to which a gene contributes. It is important to note that genes 
may be associated to several biological processes, and biological processes may be asso-
ciated to multiple genes. The database comprises 3 924 biological processes A and 7 021 
ancestral relations R between these functions, that represent the hierarchy H = (A,R) 
of the GO (Gene Ontology Consortium  2019). A total of 255 865 association between 
genes and functions are considered, these associations represent the annotation func-
tion φ : V → 2A.

The feature extraction approach is applied with the inputs G, A, φ and 
K = {10, 20, . . . , 100} (values are incremented in steps of 10 up to 100). The outputs are 
the feature matrices JG and JF that specify how likely it is for the maize genes V to be 
associated to the biological processes A when the graph is decomposed in the number of 
clusters in K.

Moreover, only functions associated to more than 200 genes have been considered, 
so the number of functions in the resulting sub-hierarchies is tractable regarding the 
dimension of the output of SHAP (see “Preliminaries” section). Recall that the Gene 
Ontology hierarchy splits into 28 sub-hierarchies when considering only biological pro-
cesses. Additionally, all sub-hierarchies with less than 10 functions are discarded and 
the topological-sorting algorithm introduced in Romero et  al. (2022) is used to trans-
form the sub-hierarchies, represented as DAGs, into trees. For each ancestral relation 
(a, b) ∈ R (b is ancestor of a), the algorithm assigns a weight as the ratio of the number of 
genes associated to the a to the number of genes associated to b. Then, for each function 
a ∈ A′ with more than one parent, only the one with the higher weight remains (ties are 
broken arbitrarily).

As result, there are 5 sub-hierarchies of biological processes. Table  1 describes 
each sub-hierarchy H ′ , starting by the root term r and its description, following the 
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number of functions A′ and the number of genes V ′ in the associated GCN subgraph 
G′ . The prediction approach is applied to each sub-hierarchy H ′ independently. The 
remaining input parameter for the prediction approach is c = 0.9 (recall that this 
parameter is used to filter the most relevant features according to their mean SHAP 
value). Figure 5 depicts the number of classifiers trained per HMC method and sub-
hierarchy. Note that the global method requires one classifier per hierarchy, while the 
lcn requires |A′| − 1 classifiers.

Summary of results

Figure  6 presents the prediction performance of the proposed approach measured 
with the AU(PRC ) (denoted as micro) for four HMC methods, namely, local classifier 
per node (lcn), local classifier per parent node (lcpn), local classifier per level (lcl), and 
global classifier. In general, it can be seen that all methods get a high area under the 
average PR curve, but the global classifier outperforms the local methods for all sub-
hierarchies. The proposed approach identifies the associations between genes and 
functions by using the features extracted from the GCN G and the affinity graph F, 
and considering the ancestral relations of the biological processes. The global method 

Table 1  Resulting sub-hierarchies H′ of biological processes for maize

The identifier and description of each root function r is presented in the first and second columns, respectively. The third 
column shows the number of functions A′ within each sub-hierarchy and the fourth column shows the number maize 
genes in the GCN subgraph G′ associated to H′ . The last column shows the number of functions per level, e.g., the first sub-
hierarchy has 3 levels and there are 5, 5, and 2 functions on each level

Root Description Functions Genes Functions per level

GO:0050896 Response to stimulus 13 1733 5/5/2

GO:0051179 Localization 25 1497 3/5/9/6/1

GO:0065007 Biological regulation 37 2647 2/5/11/10/4/2/2

GO:0008152 Metabolic process 92 6596 8/18/38/12/7/6/2

GO:0009987 Cellular process 92 8005 13/19/19/17/13/8/2
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Fig. 5  Number of classifiers trained per HMC method and sub-hierarchy. The lcn requires |A′| − 1 classifiers. 
The lcpn requires as many classifiers as functions with children in H′ . The lcl requires as many classifiers as the 
number of levels in H′ . At last, the global method requires one classifier per hierarchy
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obtains the best performance, followed by the lcpn and the lcl. Using multi-label clas-
sifiers is better than using a binary classifier for each function, i.e., lcn method.

The micro score measures the overall performance of all functions within a sub-
hierarchy without distinguishing between them. Figure 7 presents the prediction per-
formance measured with the AUPRC , denoted as macro. The macro score measure 
the prediction performance for each function individually and then takes the average. 
The conclusion is similar, the global method outperforms the local ones.

Finally, Fig. 8 illustrates the prediction performance measured with the AUPRCw  , 
denoted as macro weighted. This score weights the individual performance of each 
function according to the number of genes associated to it. Thereby, the leaves and 
deeper functions in a sub-hierarchy always get lower weight than the others. Note 
that the deeper a functions is in a sub-hierarchy, the lower the predicted probabilities 
becomes. The global method outperforms the locals again. The conclusion is consist-
ent with the three metrics, using clustering techniques to extract features from the 
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Fig. 6  Prediction performance of the proposed approach measured with the area under the average PR 
curve, i.e., AU(PRC ). The performance is measured independently per sub-hierarchy
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Fig. 7  Prediction performance of the proposed approach measured with the average area under the PR 
curve, i.e., AUPRC . The performance is measured independently per sub-hierarchy
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GCN and considering the hierarchical structure of the biological processes seems to 
be key for the gene function production task.

It has been shown in Romero et al. (2022) that the new features built from the GCN, 
and the associations between genes and functions with the spectral clustering algo-
rithm are key to improve the prediction performance in the gene annotation problem 
(w.r.t. other features of the GCN and gene functional information). However, the feature 
extraction approach presented in “Clustering-based feature extraction” section produces 
two different sets of features, namely, JG and JF , that are combined and used for predic-
tion. The individual relevance of each set of features for the gene annotation problem is 
analyzed by (i) looking at the distribution of the filtered features for the global method 
and (ii) comparing the performance of the prediction task using each set of features 
independently. Table 2 presents the number of extracted and filtered features used for 
the global method per sub-hierarchy. Recall that the features are filtered using the mean 
SHAP values to select the more important ones with a cutoff defined by the input con-
stant c.

Figure 9 illustrates the distribution of the filtered features for the global method per 
sub-hierarchy. Note that, even though the features from the affinity graph F (i.e., JF  ) 
are more important, features from the GCN G (i.e., JG ) are also selected for all sub-
hierarchies. Figure 10 shows the prediction performance of the global HMC method 
trained using the features JG and JF  independently, and the proposed approach (i.e., 
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Fig. 8  Prediction performance of the proposed approach measured with the average area under the PR 
curve, i.e., AUPRCw  . The performance is measured independently per sub-hierarchy

Table 2  Number of extracted and filtered features used for the global method per sub-hierarchy

Recall that the extracted features are filtered using the mean SHAP values to select the more important with a cutoff defined 
by the input constant c

Root Total Filtered

GO:0050896 239 124

GO:0051179 479 263

GO:0065007 713 402

GO:0008152 1812 796

GO:0009987 1813 853
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their combination) measured with AU(PRC ) and AUPRC . The combination of both 
sets of features, extracted from the GCN and the affinity graph is key to improve the 
performance of the proposed approach for all sub-hierarchies.
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Fig. 9  Distribution of the filtered features from JG and JF for the global method per sub-hierarchy
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Related work and concluding remarks
Related work

Zhou et al. (2020) presented an approach to predict functions of maize proteins using 
graph convolutional networks. In particular, an amino acid sequence of proteins and the 
GO hierarchy were used to predict functions of proteins with a deep graph convolu-
tional network model (DeepGOA). Their results showed that DeepGOA is a powerful 
tool to integrate amino acid data and the GO structure to accurately annotate proteins. 
Similarly, the work presented in Cruz et al. (2020) aims to predict the phenotypes and 
functions associated to maize genes using: (i) hierarchical clustering based on datasets 
of transcriptome (set of molecules produced in transcription) and metabolome (set of 
metabolites found within an organism); and (ii) GO enrichment analyses. Their results 
showed that profiling individual plants is a promising experimental design for narrow-
ing down the lab-field gap. Gligorijević et al. (2018) proposed a network fusion method 
based on multimodal deep autoencoders to extract high-level features of proteins from 
multiple interaction networks. This method, called deepNF, relied on a deep learning 
technique that captures relevant protein features from different complex, non-linear 
interaction networks. Their results showed that extracting new features from biological 
networks is key to annotate gene with functions. The work in Zhao et al. (2019) is also 
closely related. They presented Gene Ontology hierarchy preserving hashing (HPHash), 
a gene function prediction method that retains the hierarchical order between GO 
terms. It used a hierarchy preserving hashing technique based on the taxonomic similar-
ity between terms to capture the GO hierarchy. Hashing functions were used to com-
press the gene-term association matrix, where the semantic similarity between genes 
was used to predict the functions of the genes. Their results showed that HPHash pre-
serves the GO hierarchy and improves prediction performance.

In addition, the authors in Chen et  al. (2018) presented iFeature, a Python-based 
toolkit for generating numerical feature representation schemes from protein sequences. 
It integrated algorithms for feature clustering, selection, and dimensionality reduction to 
facilitate training, analysis, and benchmarking of machine-learning models. In a related 
way, Mu et al. (2021) showed that feature extraction of protein sequences is helpful for 
prediction of protein functions or interactions. They introduced FEGS (Feature Extrac-
tion based on Graphical and Statistical features), a novel feature extraction model for 
protein sequences that combines graphical and statistical features. Their results showed 
that similarity analysis of protein sequences has applications in the study of gene annota-
tion, gene function prediction, identification and construction of gene families, and gene 
discovery.

Concluding remarks and future work

By combining network-based modeling, cluster analysis, interpretable machine learning, 
and hierarchical multi-label classification, the approach presented in this paper intro-
duces a novel method to address the gene function prediction problem. It aims to predict 
the association probability between each gene and function by taking advantage of the 
GCN spectral decomposition, the information available of associations between genes 
and functions, and the ancestral relations between the functions (i.e., the GO hierarchy).
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A case study on Zea mayz (maize) is presented. Using the structural information 
of the gene co-expression network (extracted by a spectral clustering algorithm) 
and considering the hierarchical structure of the biological processes (using HMC) 
seems to be the key for the improved performance of the proposed approach. More 
precisely, the global HMC method, which considers all features available for a sub-
hierarchy to build a single classifier, outperforms the other methods in relation to the 
three metrics that were used (namely, AU(PRC ) , AUPRC , and AUPRCw).

The results presented in Romero et al. (2022) show that the features extracted from 
the GCN using spectral clustering lead to better prediction performance in the gene 
function prediction task (addressed as an independent binary classification problem 
per function). In this work, it has been shown that considering the ancestral relations 
between functions to produce an outcome that satisfies its hierarchical structure 
(i.e., complies the true-path rule or hierarchical constraint), based on the features 
extracted from the GCN, improves the performance in the gene function prediction 
task (addressed as a hierarchical multi-label classification problem).

Two main lines of work can be considered for future work. First, applying the pro-
posed approach to identify genes associated to specific stresses (e.g., low temperature, 
salinity) can help to reduce the set of candidate genes that respond to treatments for 
in vivo validation. Second, exploring transfer learning techniques (especially, domain 
adaptation) to enrich the building of the classifiers using information from other 
organisms (datasets), not only can lead to higher prediction performance, but also 
can enable the proposed approach on organisms without a wealth of significant func-
tional information.
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classifier per parent node.
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