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Introduction
It is challenging to derive the collective behavior from knowing the system’s components 
in complex systems, such as proteins and disease networks. We will never fully com-
prehend the complex systems unless we understand the networks that underpin them 
(Barabasi 2016). The network often conceptualizes system interactions, expressed as ver-
tices (nodes) and edges (links) between pairs of nodes (Loe and Jensen 2015). The nodes 
represent the elements that make up the system, and the links describe their interac-
tions. In a disease network, the nodes represent disease, and the links represent disease 
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similarities between the corresponding illnesses, constructed via Disease Ontology 
(DO). DO, an authoritative disease curation service, established curation to coordinate 
disease representation across biomedical resource (Schriml and Mitraka 2015). DO ena-
bles researchers to analyze the disease similarity through semantic similarity measures, 
expanding our understanding of the relationships between various diseases and classify-
ing them (Li et al. 2011).

Network analysis reveals the network’s core features, allowing complex relationships 
and network structure to be estimated (Hevey 2018). The network analysis also identifies 
groups of nodes strongly connected to the rest of the network. These interrelated groups 
characterize communities (Yang et al. 2016). A community is a local subgraph densely 
connected in a network. The community detection aims to expose the community struc-
ture attached to the network. Most of the techniques do not specify the number and size 
of communities (Barabasi 2016).

The community is essential in the medical field, with diseases as complex as cancer 
and several comorbidities.Comorbidity refers to the existence of a long-term health con-
dition in the presence of a primary disease of interest. Having comorbidities may influ-
ence the patient’s prognosis for primary diseases such as cancer (Fowler et  al. 2020). 
According to the World Health Organization, cancer was the first or second cause 
of death before the age of 70 in 112 of 183 countries worldwide in 2019. Lung cancer 
remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%) 
(Sung et al. 2021). Various studies, revealed that many cancer patients have comorbidi-
ties. Chronic obstructive pulmonary and cardiovascular disorders are the most common 
comorbidities among patient with lung cancer (Pavia et al. 2007). Other comorbid dis-
eases are immune system (Jacob et al. 2020), bone diseases (Kuchuk et al. 2013), pancre-
atic disease (Bang et al. 2014), metabolic disease (Feng et al. 2020), atrial cardiac septal 
defect (Inafuku et al. 2016), interstitial lung disease (Margaritopoulos et al. 2017), famil-
ial atrial fibrillation (Bandyopadhyay et al. 2019), respiratory system disease (Leduc et al. 
2017), diabetes mellitus (Hatlen et  al. 2011), and hyperlipidemia (Huang et  al. 2016). 
It is also possible for patient with lung cancer to have multiple overlapping conditions 
(Sigel et al. 2017). Comorbidities can affect the stage of cancer. Patients with comorbidi-
ties face a poorer quality of life and require higher healthcare costs, resulting in shorter 
patient survival (Sarfati et al. 2016). Thus, understanding the comorbidities that coexist 
with lung cancer is necessary for screening and disease management.

Disease comorbidity is a complex system because it involves various components in 
the body. Behind this complex system there is a network that defines the interactions 
between components. With the network representation, the structure of the relationship 
among diseases can be known and can be analyzed. Exploring the network structure is an 
efficient approach to identifying the complex disease networks by identifying the highly 
connected individual nodes and the specific node communities (Barabási et al. 2011; Mu 
et al. 2020). Chen and Xu (Chen et al. 2015) explored and analyzed the comorbidities 
pattern in colorectal cancer. There is also relationship between hepatocellular carcinoma 
and medical comorbidities based on community detection in a comorbid network (Mu 
et al. 2020). Comorbid networks were grouped using a community detection algorithm 
and evaluated using disease-gene associations. The disease comorbidity network shows 
a genetic link between colorectal cancer and metabolic disorders. Community detection 
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from a network determines the cancer subtypes using multi-omics data (Nguyen et al. 
2020). Human diseases frequently arise from protein dysfunction and can be expressed 
in the community. Tripathi (Tripathi et al. 2019) comprehensively assessed many classi-
cal community detection algorithms for biological networks to recognize non-overlap-
ping communities and proposed a heuristic algorithm to identify structurally small and 
well-defined communities.The network and tree approach is a tool for inference in deci-
sion support systems related to comorbidities because it involves uncertainty in diagno-
sis and treatment (Capobianco and Liò  2015).

There are many community algorithms, however, not every algorithm is suitable for 
performing community clustering in all fields. An efficient approach to measuring a 
community quality is known as modularity (Newman 2006). Some algorithms give opti-
mum results in one area but are less than optimum if applied to other problem areas. 
This paper investigates which community detection algorithm is more suitable for the 
health sector, especially for comorbidities determination. The network community is 
evaluated based on the value of modularity. In network community, besides modularity, 
it is essential to evaluate various characteristics reflected in the fitness function of the set 
of communities.

This study consists of five stages (1) data preprocessing, (2) develop a network based 
on the calculation of similarity between diseases, (3) determine communities using vari-
ous algorithms and measure modularity, (4) determine significant comorbidities based 
on communities, and (5) determine various fitness functions that correlate with cluster 
formation. The contribution of our findings is to provide an alternative use of networks 
in biomedical problems, especially in determining comorbid lung cancer. We hope that 
this study will aid in the better understanding and management of diseases in the clinical 
context.

Materials and methods
Materials

Data acquisition

We searched the list of diseases through text mining of manuscripts in PubMed via Pub-
tator Central (PTC) https://​www.​ncbi.​nlm.​nih.​gov/​resea​rch/​pubta​tor/. PTC performs 
automatic annotations to provide six bioconcepts: disease, gene, species, mutation, 
chemical, and cell line (Wei et  al. 2019). We focus on the disease since our goal is to 
obtain lung cancer comorbidities.

Data preprocessing

We cleaned the data and identified the comorbidities. The first cleaning was to remove 
the words death, mortality, lung cancer, considering that they are not comorbid diseases 
of lung cancer. Furthermore, for each disease found in the text mining stage, a disease 
ontology search was conducted through https://​disea​se-​ontol​ogy.​org/ to find the DOID. 
Disease Ontology (DO) is a framework for describing gene products from a disease per-
spective. It is critical for supporting functional genomics in disease contexts. Accurate 
disease descriptions can lead to the discovery of novel links between genes and disease, 
as well as new functions for previously unknown genes and alleles. DO is structured as 
a directed acyclic graph, which lays the groundwork for quantitative disease knowledge 

https://www.ncbi.nlm.nih.gov/research/pubtator/
https://disease-ontology.org/
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computing. For instance, pneumonia is a disease with DOID:552, which also has syno-
nyms with acute pneumonia (Table 1). The aim was to determine the disease term. We 
also investigated for names based on their synonyms. Finally, we eliminated diseases that 
cannot be traced through disease ontologies ended up with 395 lung cancer comorbid 
diseases identified using DOID.

Methods

Develop a network based on the calculation of similarity between diseases

We calculated the similarity on the basis of the DO generated from the previous stage. 
Afterward, we created a similarity matrix using the R program, mainly the doSim func-
tion in the DOSE library downloaded from Bioconductor (Yu et  al. 2015). There are 
five calculation algorithms in the doSim function as developed by Wang (Wang et  al. 
2007), Jiang (Jiang and Conrath 1997) , Lin (Lin 1998), Resnik (Grabowski 1995) and 
Rel (Schlicker et  al. 2006). Wang computes the semantic similarity of two DO terms 
based on their positions in the DO directed acyclic graph and their relationships to 
their ancestor terms. Four other methods based on information content are based on 
the frequencies of two DO terms and their closest common ancestor term in a corpus of 
DO annotations. The negative log likelihood of a DO term occuring in the DO corpus is 
used to calculate the information content of the term. The weight/value of this similar-
ity shows that these two comorbid disease terms have semantic relationship, phenotype 
characteristics, relationships between genes and disease, and related medical vocabu-
lary disease concepts. The result of this stage was the comorbidity similarity matrix. The 
matrix elements ranged from 0 to 1, with 0 indicating that the two comorbidities were 
not identical and 1 indicating that they were. Then, the matrix was analyzed using the 
applied threshold. Finally, we constructed a network based on the similarity of the dis-
ease matrices, followed by building network formation using the Cytoscape application 
(Shannon et al. 2003).

Determine communities using various algorithms and measure modularity

Various algorithms determine the network community using the cdlib library (Ros-
setti et  al. 2019). Among the 42 crisp discovery community algorithms, we used 20 
of them, namely fluid (Parés et  al. 2018), belief community (Zhang and Moore 2014), 
constant Potts model (CPM) (Traag et  al. 2011), Chinese Whispers (Biemann 2006), 
diffusion entropy reducer (DER) (Kozdoba and Mannor 2015), Eigenvector (Newman 
2006), expectation-maximization (EM) (Newman and Leicht 2007), genetic algorithm 
(GA) (Pizzuti 2008), Girvan Newman (Girvan and Newman 2002), greedy modularity 

Table 1  Disease ontology data on pneumonia

It has one main DOID and three alternates DOID. All of them refer to same disease

Metadata Data

ID DOID:552

Name Pneumonia

Alternates DOID:10509 DOID:11742 DOID:5871

Synonym Acute pneumonia [EXACT]
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(Clauset et  al. 2004), Kcut (Ruan and Zhang 2007), label propagation (Raghavan et  al. 
2007), Leiden (Traag et  al. 2019), Louvain (Blondel et  al. 2008), Markov clustering 
(Enright et al. 2002), RBER Pots (Reichardt and Bornholdt 2006), RB Pots (Leicht and 
Newman 2008), significance (Traag et  al. 2013), spinglass (Reichardt and Bornholdt 
2006), surprise (Traag et al. 2015), and walktrap (Pons and Latapy 2006). We use these 
21 algorithms to investigate various algorithm approaches, i.e., propagation based, sta-
tistical inference, modularity maximation, minimum cut method and Girvan Newman 
approach. A description of each algorithmsm, type approach and limitation is found in 
Additional file 1.

We calculated and compared the modularity of the community outcomes formed by 
each algorithm. The higher the modularity, the better and optimal the community struc-
ture. There were five modularity algorithms: Newman Girvan (Newman and Girvan 
2004), Erdos Renyi modularity (Erdos and Rényi 2011), link modularity (Nicosia et  al. 
2009), modularity density (Zhang et al. 2010), and Z modularity (Miyauchi and Kawase 
2016). Then, we performed principal component analysis (PCA) to calculate the eigen-
values, which will be the weight of each modularity in calculating the overall modularity 
(Ramadhani et al. 2021). Nevertheless, PCA is usually used for dimensional reduction 
(Ahmadi et  al. 2021). We sorted and selected the five best algorithms, each of which 
compared the results. At this stage, we prepared a clustering heatmap.

where m is the number of graph edges, ms is the number of community edges, ls is the 
number of edges from nodes in S to nodes outside S, nc is the number of nodes in C, 
Kint
iC  is the degree of node i within C, Kout

iC  are the degree of node i outside C, and � is a 
parameter that allows for tuning of the measure resolution.

Determine significant comorbidities based on communities

The list of significant comorbid lung cancer in each community was calculated on the 
basis of centrality in each community formed, betweenness, degree, closeness, and 
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eigenvector centrality. The diseases found were relatively consistent in each community 
formed by algorithms such as label propagation, spinglass, Chinese whisper, Louvain, 
and RB POTS.

Determine various fitness functions that correlate with cluster formation

We compared the proximity level of the five algorithms by calculating fitness scores, 
such as average internal degree, internal edge density, edges inside, expansion (Radicchi 
et al. 2004), conductance (Shi and Malik 2000), cut ratio (Fortunato 2010), a fraction over 
median degree, triangle participation ratio, (Yang and Leskovec 2015), normalized cut 
(Shi and Malik 2000), max ODF, avg ODF, flake ODF (Flake et al. 2000), average embed-
dedness, average transitivity, scaled density, and size (Rossetti et al. 2019). Information 
regarding each fitness function can be found in Additional file 2. Additionally, we used 
PCA to determine the eigenvector (Gan and Djauhari 2012), representing the weight 
assigned to each fitness function when computing the overall fitness functions, and pick 
several fitness functions strongly related to the findings of the community algorithm.

Results
Data acquisition

We compiled the list of diseases by performing text mining on PubMed publications 
using Pubtator Central (PTC) https://​www.​ncbi.​nlm.​nih.​gov/​resea​rch/​pubta​tor/. Text 
mining of manuscripts in PubMed search using the keywords “comorbid lung cancer” 
from PTC yielded 150 manuscripts (filter the full text) and 551 manuscripts (abstract). 
There is the name of lung cancer and other diseases that accompany each of these man-
uscripts; we take the comorbid disease from 551 manuscript. We found a list of 7183 
disease names, with 1151 unique disease data. One of the manuscripts with PMID 
34439135 obtained three disease names from the PTC automatic annotation results 
(Table 2).

Network based on the calculation of similarity between diseases

Following the 395 comorbid disease data with known DOID, the doSim function in the 
DOSE library calculated the matrix (Yu et al. 2015) to determine DO similarity. There are 
five calculation algorithms in the doSim: Wang, Jiang, Lin, Resnik, and Rel. According 

Table 2  Automatic bioconcept annotation from Pubtator

We are concerned about pneumonia disease, which is a comorbid lung cancer, not lung cancer

Metadata Data

PMID 34439135

Title Current Treatment Strategies for Non-Small-Cell Lung Cancer with Comor-
bid Interstitial Pneumonia

Bioconcept

Gene –

Disease Non-Small Cell Lung Cancer (4 occurrences), pneumonia (2), lung cancer (1)

Chemical Carboplatin (1), paclitaxel (1)

Mutation –

Species Patients (4), honeycomb (1)

Cell line –

https://www.ncbi.nlm.nih.gov/research/pubtator/


Page 7 of 23Rustamaji et al. Applied Network Science            (2022) 7:30 	

to the number of diseases, the calculation gives a symmetrical matrix size 395× 395 . 
Each matrix element has a value range between 0 and 1, indicating a similarity level. The 
higher the value, the more each pair of diseases has a high similarity, and vice versa. At 
the time of the matrix calculation, 41 diseases did not have a matrix value. Hence, they 
are removed. A pair of identical illnesses should have a similarity value of 1. The results 
of calculations using Wang, Jiang, and Lin show that the diagonal of the matrix is worth 
1. Table 3 presents an example of the data pieces for the Wang method.

Nevertheless, this is not the case with the Rel and Resnik methods. Neither method 
assigns a value of 1 to a pair of identical diseases. In the Rel method, diagonals con-
tain values close to 1; e.g., in DOID 14667 (the value is 0.951) and 50117 (0.911). Even 
the Resnik method gives far from accurate results, for instance, on DOID 14667 (0.312), 
50117 (0.250), 50127 (0.656), 50156 (0.886), and 9970 (0.799). Based on these considera-
tions, the Rel and Resnik methods are removed for further calculations.

A graph/network was created on the basis of the the threshold value of the similarity 
matrix. The threshold value displays the connectivity of two nodes in a network from 0 
to 1. If the matrix element value is above the threshold, the two nodes are connected, 
and vice versa. The threshold 0 indicates that all nodes connect to other nodes, with as 
many links as n(n− 1)/2 where n represents the number of nodes. Threshold 1 causes all 
nodes to be disconnected and form a null graph. Figure 1 compares the number of links 
between calculations using the Jiang, Lin, and Wang methods. Among three approaches, 
the Wang’s method seems more feasible because it forms a smooth and unbroken curve, 
where for a small threshold, there are many pairs of nodes connected to a link. Mean-
while, in the Jiang and Lin methods, the number of links suddenly drops drastically and 
breaks with a slight increase in the threshold.

Measuring disease similarity is based on functional associations between genes, and 
it is a disease data source for the building of biomedical databases. In the terminol-
ogy graph, the similarity of the two diseases is represented by a link that connects 
the nodes of the two diseases. An edge connects two nodes because they have dis-
ease similarities calculated from the disease ontology. The more significant similarity 
between two diseases means that the more closely related they are, the more common 
information they have (Su et al. 2019). On the other hand, the smaller the similarity 
value, the less similarity between the two diseases. Moreover, a threshold value deter-
mines the link. The lower the threshold will result in a denser network. However, a 

Table 3  Snippet of the matrix calculated using the Wang method

Rows and columns show the disease represented by DOID. The value in the matrix cell is the level of similarity. The higher 
the more similar

DOID 14667 50073 50117 50127 50152 50156 9970

14667 1 0 0 0 0 0 . . . 0.562

50073 0 1 0.401 0 0 0 . . . 0

50117 0 0.401 1 0 0 0 . . . 0

50127 0 0 0 1 0.448 0.46 . . . 0

50152 0 0 0 0.448 1 0.628 . . . 0

50156 0 0 0 0.46 0.628 1 . . . 0
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

9970 0.562 0 0 0 0 0 . . . 1
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low threshold allows two diseases with low similarity to form a link (false positive). 
On the other hand, a high threshold will form fewer nodes clusters and give lower 
modularity. With these considerations, the moderate threshold used is 0.5 (Additional 
file 3). The following is a distribution of degrees with a threshold of 0.5, used in con-
structing the community networks (Fig. 2). Threshold minimizing the proportions of 
false-positive and false-negative (Bettembourg et al. 2015). A similarity threshold set 
to 0.5 filters low diseases similarities that do not well represent a link on a network 
(Zhao and Wang 2018). This threshold will change the network structure significantly. 
For example, if the threshold is 0 then the network will be a complete graph, whereas 
if the threshold is 1 then it will be a null graph.

Fig. 1  Comparison of three similar Disease Methods based on the number of links, x-axis indicates the 
threshold and y-axis indicates the number link

Fig. 2  Degree distribution threshold = 0.5 on Wang method. In this figure, the x-axis shows the degree of 
a node in the network, and the y-axis shows the frequency of nodes that have a particular degree (blue bar 
chart) and their cumulative frequency (orange line)
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A network was developed based on matrix similarity between diseases calculated 
using the Wang method. In the network, there are 338 nodes and 1609 edges; the 
average number of neighbors is 13,639, and the clustering coefficient is 0.796. The 
number of connected components, The subgraph in which every pair of nodes has 
a path connecting them, is 23, each of which contains 144, 35, 29, 25, 11, 11, 11, 8, 
8, 7, 6, 6, 6, 5, 5, 5, 4, 2, 2, 2, 2, 2, and 2 nodes (Fig. 3). In this study, we selected the 
highest connected component, containing 144 nodes. The graph’s largest connected 
components have a distinct community structure, as opposed to the second or third. 
This is accomplished by grouping nodes belonging to the largest components into 
nonoverlapping cohesive subgroups. Most identified groups are strong because each 
node collaborates with nodes from their group more frequently than with nodes from 
other groups (Savić et  al. 2015). The highest modularity is the first most significant 
component, and the smaller the number of nodes, the lower the modularity value 
(Additional file 4). The disease group obtained in the first most significant component 
is heterogeneous, and the second and third largest components have clustered like a 
group of cancers other than lung and psychological disorders.

Fig. 3  Network formation using Cytoscape. Each node represents a disease, and the link represents a similar 
relationship between diseases. There is a giant component, with the number of nodes = 144
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Network community and modularity

Communities were determined using the cdlib library (Rossetti et  al. 2019). Algo-
rithms include fluid (Parés et  al. 2018), belief community (Zhang and Moore 2014), 
constant Potts model (CPM) (Traag et  al. 2011), Chinese whispers (Biemann 2020), 
diffusion entropy reducer (DER) (Kozdoba and Mannor 2015), eigenvector (Newman 
2006), expectation-maximization (EM) (Newman and Leicht 2007), genetic algorithm 
(GA) (Pizzuti 2008), Girvan Newman (Girvan and Newman 2002), greedy modular-
ity (Clauset et  al. 2004), Kcut (Ruan and Zhang 2007), label propagation (Raghavan 
et  al. 2007), Leiden (Traag et  al. 2019), Louvain (Blondel et  al. 2008), Markov cluster-
ing (Enright et  al. 2002), RBER Pots (Reichardt and Bornholdt 2006), RB Pots (Leicht 
and Newman 2008), significance (Traag et al. 2013), spinglass (Reichardt and Bornholdt 
2006), surprise (Traag et al. 2015), and walktrap (Pons and Latapy 2006). Each algorithm 
generates a different community. For each community, we measured modularity using 
several modularity algorithms. A higher modularity measurement for a particular net-
work indicates a better community structure. There are five modularity algorithms used, 
namely Newman Girvan (Newman and Girvan 2004), Erdos Renyi Modularity (Erdos 
and Rényi 2011), Link Modularity (Nicosia et al. 2009), Modularity density (Zhang et al. 
2010), and Z Modularity (Miyauchi and Kawase 2016) (Table 4). The modularity calcula-
tion formula is expressed in Eqs. (1)–(5).

The calculations and sorting based on each modularity formula produced a sequence 
of 20 different community algorithms and overall modularity calculated by PCA. The 
calculation gives an eigenvalue of 4.322 and eigenvector for each analysis of modular-
ity Newman Girvan, Erdos Renyi, link modularity, modularity density, and Z modularity 

Table 4  Modularity measurement

Algorithm Newman Girvan Erdos Renyi Link Density Z

Fluid 0.548 0.510 0.121 24.106 1.207

Belief 0.701 0.760 0.140 59.499 1.580

CPM − 0.010 0.000 0.000 − 1964 − 0.098

Chinese whispers 0.711 0.773 0.135 70.804 1.715

DER 0.417 0.491 0.143 26.175 0.844

Eigenvector 0.707 0.779 0.140 65.678 1.601

EM 0.549 0.591 0.136 34.864 1.126

ga 0.649 0.723 0.124 54.424 1.587

Girvan Newman 0.703 0.762 0.142 59.117 1.571

Greedy modularity 0.678 0.711 0.132 61.066 1.593

Kcut 0.000 0.007 0.144 6.587 0.000

Label propagation 0.710 0.781 0.134 73.272 1.716

Leiden 0.707 0.757 0.135 66.314 1.683

Louvain 0.711 0.773 0.135 70.804 1.715

Markov Clustering 0.707 0.786 0.140 68.667 1.603

RBER Pots 0.702 0.790 0.139 63.449 1.597

RB Pots 0.711 0.773 0.135 70.804 1.715

Significance 0.622 0.719 0.118 5.528 1.567

Spinglass 0.710 0.781 0.134 73.272 1.716

Surprise 0.697 0.780 0.132 59.834 1.691

Walktrap 0.707 0.786 0.140 68.667 1.603
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0.4681, −0.4669 , −0.4025 , −0.42912 , and −0.46538 , respectively. We select the best five 
out of the 20 community algorithms from these: Label Propagation, Spinglass, Chinese 
whisper, Louvain, and RB Pots. The five algorithms form different communities. Each 
algorithm clusters seven or nine groups. In Fig. 4, the left side expresses the complete 
nodes in each community, and the right side illustrates the relationship between each 
cluster. The best five algorithms is found in Additional file 5.

The label propagation algorithm divides the community into nine clusters associated 
with respiratory system disease, vascular disease, immune system disease, bone disease, 
metabolism disease, atrial heart septal defect, pancreatic disease, familial atrial fibrilla-
tion, and persistent generalized lymphadenopathy. The spinglass divides the community 
into eight clusters associated with interstitial lung disease, vascular disease, immune 
system disease, metabolism disease, bone disease, atrial heart septal defect, pancreatic 
disease, and familial atrial fibrillation. The Louvin and RB Pots algorithms also produced 
seven similar clusters associated with interstitial lung disease, vascular disease, immune 
system disease, bone disease, metabolism disease, atrial heart septal defect, and pancre-
atic disease. The essential diseases are diabetes mellitus, vascular disease, respiratory 
system disease, immune system disease, bone disease, diabetes mellitus, pancreatic dis-
ease, and familial hyperlipidemia. Cluster 2 relates to vascular becomes central in lung 
cancer comorbid diseases in every community algorithm applied.

List of comorbid diseases in each community

Our intention is to find diseases that is considered significant among existing diseases 
that has the greatest centrality in each community. The list of significant comorbid lung 
cancer in each community is calculated on the basis of centrality in each community 
formed based on betweenness, degree, closeness, and eigenvector centrality. The dis-
eases found were relatively consistent in each community formed from community algo-
rithms such as label propagation, spinglass, Chinese whisper, Louvain, and RB POTS. 
Conversely, vascular , immune system, disease, and pancreatic disease are commonly 
encountered based on differences in community algorithms and centrality (Table  5). 
These five algorithms can find community patterns that are relatively similar in finding 
significant comorbid diseases. Diseases that occur in a community, have similarities with 
each other. For example, in communities with respiratory/interstitial system diseases 
primary lung disease associated respiratory disease, emphysema and pneumonia (Fig. 5). 
Disease groups formed in each cluster can be further investigated for their relationship, 
especially on the similarity of symptoms, anatomy, cells, genes, phenotypes, and poten-
tial for treatment. It is important in relation to precision medicine for cancer comorbid 
patients, especially to improve diagnosis and safe therapy.

Determine various fitness functions

We calculated the fitness score, consisting of average embeddedness, average internal 
degree, average transitivity, conductance, cut ratio, edges inside, expansion, a fraction 
over median degree, internal edge density, normalized cut, max ODF, avg ODF, Flake 
ODF, scaled density, size, and triangle participation ratio (Table 6). The higher the fitness 
score, the better the results. Several fitness functions chosen are those with a signifi-
cant relationship to the community. The calculation using PCA gives eigenvalue of 5.333 
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with each eigenvector of 0.447169; 0.447227; 0.447224; 0.447224; and 0.447224. Based 
on these results, the most significant fitness sequences that correlate with community 
formation are average internal degree, size and edges inside.

Fig. 4  Community formed with label propagation, spinglass, Chinese whispers, Louvain, and RB Pot 
algorithm (left). Connection between community on every algorithm (right). Different communities are 
expressed in different colors
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Table 5  List of significant diseases in each community, ordered according to nodes obtained from 
various centralities

No Betweenness 
centrality

Degree centrality Closeness Eigenvector

Label Respiratory syst Respiratory syst Respiratory syst Respiratory syst

Propagation Vascular disease Vascular disease Vascular disease Vascular disease

N = 9 Severe combined 
immunodef.

Immune system Immune system Immune system

Bone disease Bone disease Bone disease Bone disease

Disease of metabolism Disease of metabolism Disease of metabolism Disease of metabolism

Atrial heart septal 
defect

Atrial heart septal 
defect

Atrial heart septal 
defect

Atrial heart septal 
defect

Pancreas disease Pancreas disease Pancreas disease Pancreas disease

Familial atrial fibril-
lation

Familial atrial fibril-
lation

Familial atrial fibril-
lation

Familial atrial fibrillation

p gnrl. lymphadenopa-
thy

p gnrl. lymphad-
enopathy

p gnrl. lymphad-
enopathy

p gnrl. lymphadenopa-
thy

Spinglass Interstitial lung disease Interstitial lung disease Interstitial lung disease Interstitial lung disease

N = 8 Vascular disease Vascular disease Vascular disease Vascular disease

Immune system Immune system Immune system Immune system

Disease of metabolism Disease of metabolism Disease of metabolism Disease of metabolism

Bone disease Bone disease Bone disease Bone disease

Atrial heart septal 
defect

Atrial heart septal 
defect

Atrial heart septal 
defect

Atrial heart septal 
defect

Pancreas disease Pancreas disease Pancreas disease Pancreas disease

Familial atrial fibril-
lation

Familial atrial fibril-
lation

Familial atrial fibril-
lation

Familial atrial fibrillation

Chinese Cardiovascular system Vascular disease Vascular disease Vascular disease

Whisper Respiratory system Respiratory system Respiratory system Respiratory system

N = 7 Immune system 
disease

Immune system 
disease

Immune system 
disease

Immune system disease

Bone disease Bone disease Bone disease Bone disease

Diabetes mellitus Diabetes mellitus Diabetes mellitus Diabetes mellitus

Pancreas disease Pancreas disease Pancreas disease Pancreas disease

Familial hyperlipidemia Familial hyperlipi-
demia

Familial hyperlipi-
demia

Familial hyperlipidemia

Louvain Interstitial lung disease Interstitial lung disease Interstitial lung disease Interstitial lung disease

N = 7 Cardiovascular system Vascular disease Vascular disease Vascular disease

Immune system Immune system Immune system Immune system

Bone disease Bone disease Bone disease Bone disease

Disease of metabolism Disease of metabolism Disease of metabolism Disease of metabolism

Atrial heart septal 
defect

Atrial heart septal 
defect

Atrial heart septal 
defect

Atrial heart septal 
defect

Pancreas disease Pancreas disease Pancreas disease Pancreas disease

RB POTS Interstitial lung disease Interstitial lung disease Interstitial lung disease Interstitial lung disease

N = 7 Cardiovascular system Vascular disease Vascular disease Vascular disease

Immune system Immune system Immune system Immune system

Bone disease Bone disease Bone disease Bone disease

Disease of metabolism Disease of metabolism Disease of metabolism Disease of metabolism

Atrial heart septal 
defect

Atrial heart septal 
defect

Atrial heart septal 
defect

Atrial heart septal 
defect

Pancreas disease Pancreas disease Pancreas disease Pancreas disease
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Discussion
Community algorithms comparison

Community algorithms heatmap reveals the closeness between algorithms (Fig.  6). In 

Fig. 5  Respiratory system community diseases. Blue nodes indicates comorbid significant diseases

Table 6  Fitness score obtained from various fitness functions using each algorithm

The higher the fitness score, the better the results

Fitness score Label propagation Spinglass Chinese whispers Louvain RB Pots

Average embeddedness 0.888 0.721 0.929 0.929 0.929

Average internal degree 9.125 8.113 11.198 11.198 11.198

Average transitivity 0.667 0.601 0.838 0.838 0.838

Conductance 0.148 0.3 0.094 0.094 0.094

Cut ratio 0.008 0.008 0.009 0.009 0.009

Edges inside 101.333 91.1 130.571 130.571 130.571

Expansion 0.984 1.04 1.083 1.083 1.083

Fraction over median dgr 0.27 0.243 0.364 0.364 0.364

Internal edge density 0.709 0.538 0.603 0.603 0.603

Normalized cut 0.157 0.308 0.105 0.105 0.105

Max ODF 6.333 5.8 7.857 7.857 7.857

AVG ODF 0.984 1.04 1.083 1.083 1.083

Flake ODF 0.009 0.208 0.011 0.011 0.011

Scaled density 7.437 5.645 6.322 6.322 6.322

Size 16 14.4 20.571 20.571 20.571

Triangle participation ratio 0.772 0.695 0.971 0.971 0.971
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this case, the label propagation algorithm has similarities with the spinglass, and the RB 
Post algorithm is similar to the results of the Louvain algorithm. The most different is 
the Chinese whisper algorithm.

Intersection result of comorbid disease among algorithms

A summary is visualized by Venn diagram using InteractiVenn (Heberle et  al. 2015) 
based on the list of comorbidities, using the ensemble vote majority method. The num-
bers in this Venn diagram are the number of comorbid diseases produced by each com-
munity algorithm. The results are shown in Fig. 7, and the disease details are presented 
in Table 7. Every row shows the diseases identified by a particular algorithm in this table. 
For example, in the first row, all of the community algorithms found that vascular dis-
ease, immune system disease, bone disease, pancreas disease is significant comorbid 
lung cancer.

According to the existing references, these algorithms have succeeded in detecting 
various significant comorbid. Based on the DOID hierarchical structure, the results 
can be seen based on the DOID structure that have group/upper-level organization of 
diseases as in Additional file 6. The major comorbidity in patients with lung cancer is 
cardiovascular, approximately 23% (Pavia et  al. 2007). The immune system dysregula-
tion associated with autoimmune diseases increases the risk of cancer. Standardized 
incidence, standardized mortality, and hazard ratios indicated an increased risk of lung 
cancer (Hemminki et al. 2012). Bone metastases diseases are common in patient with 
lung cancer and have shorter overall survival (Kuchuk et al. 2013). Pancreatic metastases 
are found in advanced small cell lung cancer. In autopsy studies, pancreatic metastasis 
occurs between 1.6 and 10.6%. The primary tumor is usually in the left lung, and 15% of 

Fig. 6  Figure 7 Similarity matrix among five algorithms denoted via heatmap. The lighter the color, the more 
similar. All of the method have high similarity (more than 0.900)
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patients have pancreatic metastasis (Gonlugur et al. 2014). There is a lipid metabolism 
disorder in lung cancer (Merino Salvador et al. 2017). When patient with lung cancer 
have comorbid interstitial lung disease, the average survival at diagnosis is worse than 
without comorbidities (Margaritopoulos et al. 2017). Among 159,615 patients diagnosed 
with lung cancer in 2016, 10,050 (6.29%) patients had a concurrent diagnosis of atrial 
fibrillation (Bandyopadhyay et al. 2019). These patients frequently have tobacco-related 
illnesses (e.g., respiratory diseases) due to the much higher incidence of lung cancer in 
smokers and ex-smokers. (Leduc et al. 2017).

Conversely, patients with diabetes mellitus who have lung cancer have a higher 
survival rate than those without (Hatlen et  al. 2011). Additionally, comorbid 

Fig. 7  Venn diagram among the five algorithms. The numbers indicates how many comorbid diseases there 
are

Table 7  Algorithm and significant disease

There are various lists of the same disease found in different algorithms

Algorithm Disease

Label Propagation and Spinglass and Chinese whisper and 
Louvain and RB POTS

Vascular disease, immune system disease, bone 
disease, pancreas disease

Label Propagation and Spinglass and Louvain and RB POTS Disease of metabolism, atrial heart septal defect

Spinglass and Louvain and RB POTS Interstitial lung disease

Label Propagation and Spinglass Familial atrial fibrillation

Label Propagation and Chinese whisper Respiratory system disease

Chinese whisper Diabetes mellitus, familial hyperlipidemia

Label Propagation Persistent generalized lymphadenopathy
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hyperlipidemia is associated with a significant reduction in mortality in patients with 
lung cancer (Lazzarini et  al. 2016). Specifically, COPD is a disease often found in 
comorbid cancer in the respiratory system disease group. Nevertheless, the commu-
nity system limitations used that do not involve the prevalence of comorbid disease 
occurrence and its severity can be attached to the weight of nodes in the network. 
Structure of Directed Acyclic Graph in vascular, immune system , bone , pancreas 
disease, and Lung cancer can be described in terms of its relationship to the disease 
ontology as shown in the Fig. 8. All these diseases are a group of disease of anatomical 
entities.

Finally, the fitness functions in average internal degree, size, and edges inside cor-
relate with the grouping between community algorithms by justifying the results. By 
a swarm plot, the Louvain and RB Pots algorithms have similar results in compar-
ing the size of the edges inside, while label propagation and spinglass have identical 
results (Fig.  9). The size comparison of the five algorithms shows that the Chinese 

Fig. 8  Diseases ontology on vascular disease immune system disease, bone disease, pancreas disease, and 
lung cancer

Fig. 9  Comparison of the size of the edges inside the five algorithms
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whisper algorithm has significant differences from the results of the other algorithms 
(Fig. 10). Nevertheless, the Chinese whisper algorithm is close to the Louvain and RB 
Pots algorithms (Fig. 11).

Network Analysis has been used by Folino et al. (2010), to predict the risk of comor-
bid diseases suffered by patients and use association rules. reveal the comorbid network 
of occurrence of comorbidity. Ljubic et al. (2020) also conducted a network analysis to 
obtain genes that are associated with colorectal cancer and its comorbidities. Chmiel 
et  al. (2014) conducted a research on Spreading of diseases through comorbidity net-
works across life and gender. However, the three studies used network analysis, but did 
not use community so that they could not reveal groups of diseases that have closeness 
which is the hallmark of this study. Table 8 provides a comparison among the research.

Fig. 10  Size comparison on the five algorithms

Fig. 11  Comparison of the average internal degrees of the five algorithms

Table 8  Comparison of comorbidity network studies

Author Data Disease Network 
constructed

Analysis

Folino et al. (2010) Medical records of 
1462 patients

Common Occurrence in 
patient and relative 
risk

Association rule

Ljubic et al. (2020) SID California inpa-
tient database (ICD-9)

Colorectal cancer ϕ-correlation and 
Relative Risk (RR)

Centrality measure-
ment

Chmiel et al. (2014) Database of the Main 
Association of Aus-
trian Social Security 
Institutions and Text 
Mining Pubmed

Common Statistical multiplex 
network

Evolution disease 
network

Renteria-ramos et al. 
(2018)

Three independ-
ent administrative 
databases Risaralda 
province (2011–2016)

 Common k-Communities  Intensity analysis and 
motif coherence

Moratalla-Navarro 
et al. (2020)

285,342 patients 
in Catalonia, Spain, 
(period: 2006–2017)

 Hypo thyroidism Comorbidity net-
works using logistic 
regression models

Multivariate logistic 
regression with LASSO

Our research Pubtator text mining Lung Cancer Disease Similarity Community Network 
and Centrality meas-
urement
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The contribution of this study is that we can grouping diseases in communities and 
investigate community algorithms. While the limitations of this study are that it has 
not considered the background factors of the patient, the frequency of occurrence and 
severity of comorbidities as well as gene/protein interactions of each cancer comorbid 
disease.

Conclusions and suggestions
In this study, a disease network has been developed on the basis of the similarity of dis-
ease ontologies. In determining DO similarity, Wang algorithm performs better than 
Jiang, Lin, Resnik, and Rel algorithms, with a degree distribution threshold of 0.5. Mod-
ularity relevant in grouping comorbid lung cancer is label propagation, spinglass, Chi-
nese whisper, Louvain, RB Pots, marked from five modularity measurements: Newman 
& and Girvan, Erdos & Renyi, link modularity, modularity density, and Z Modularity. 
The calculation of the fitness score related to the modularity algorithm is the average 
internal degree, size, and edges inside. As determined, the significant comorbidities are 
vascular disease, immune system disease, bone disease, pancreatic disease (based on 
four algorithms); disease of metabolism and atrial heart septal defect (3); familial atrial 
fibrillation respiratory system disease and interstitial lung disease (2); diabetes mellitus, 
familial hyperlipidemia, and persistent generalized lymphadenopathy (1).

The investigation should be continued by searching disease-related genes that have 
been determined, represented in a multilayer community network, and looking for over-
lapping communities based on these genes and the diseases affecting them. For example, 
it is possible to look for candidate drugs, especially herbal drugs, for various significant 
comorbid diseases in lung cancer from the corresponding genes. This series of work will 
support the Sustainable Development Goals, especially for good health and well-being.
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