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Introduction
The ability to capture the location of individuals using GPS-enabled devices has allowed 
researchers to analyze human mobility with unprecedented precision. Beyond individual 
mobility trajectories, data on spatially delimited groups of individuals has provided the 
opportunity to estimate bipartite, co-location networks where users and locations are 
treated as nodes, and location visits are treated as edges. These co-location networks, 
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Human mobility analysis plays a crucial role in urban analysis, city planning, epidemic 
modeling, and even understanding neighborhood effects on individuals’ health. Often, 
these studies model human mobility in the form of co-location networks. We have 
recently seen the tremendous success of network representation learning models 
on several machine learning tasks on graphs. To the best of our knowledge, limited 
attention has been paid to identifying communities using network representation 
learning methods specifically for co-location networks. We attempt to address this 
problem and study user mobility behavior through the communities identified with 
latent node representations. Specifically, we select several diverse network representa-
tion learning models to identify communities from a real-world co-location network. 
We include both general-purpose representation models that make no assumptions 
on network modality as well as approaches designed specifically for human mobil-
ity analysis. We evaluate these different methods on data collected in the Adolescent 
Health and Development in Context study. Our experimental analysis reveals that a 
recently proposed method (LocationTrails) offers a competitive advantage over other 
methods with respect to its ability to represent and reflect community assignment that 
is consistent with extant findings regarding neighborhood racial and socio-economic 
differences in mobility patterns. We also compare the learned activity profiles of indi-
viduals by factoring in their residential neighborhoods. Our analysis reveals a significant 
contrast in the activity profiles of individuals residing in white-dominated versus black-
dominated neighborhoods and advantaged versus disadvantaged neighborhoods in 
a major metropolitan city of United States. We provide a clear rationale for this contras-
tive pattern through insights from the sociological literature.
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however, do not necessarily indicate direct contact between individuals at specific geo-
graphic locations; instead, they capture the potential for shared experiences and expo-
sures. Co-location networks uncover the structure of shared exposure in a collective 
sense, illuminating the potential for contagion (social or viral), cohesion, and related 
outcomes such as health and crime (Xi et al. 2020; Sampson et al. 1997).

Recent and emerging research suggests that the extraction of communities (consisting 
of individuals) from such co-location networks that model human activity spaces can 
provide important information about the functioning of a city and its neighborhoods 
(Zhong et al. 2014; He et al. 2020; Fujishima et al. 2020). For instance, understanding the 
community structure of co-location networks can shed light on systematic patterns of 
urban racial and socioeconomic segregation in everyday routines beyond those identi-
fied by an exclusive focus on residential sorting (Xi et al. 2020). Estimating communities 
based on shared routines also helps identify indirect or higher-order location expo-
sures that may be relevant for contagion processes (but not necessarily rooted in spatial 
proximity).

The numerous applications of co-location networks warrant careful consideration of 
appropriate methods for their construction. One could adopt a structured data collec-
tion approach, followed by the Los Angeles Family and Neighborhood Study (Sastry et al. 
2006), in which one first samples individuals/households from a region/city and then 
prompt subjects for the location of typical routine activity destinations such as work-
places, schools, or grocery stores; the co-location network is then constructed based on 
the locations provided from survey-style instrumentation. An alternative method is to 
adopt an unstructured approach in which one could provide GPS-enabled devices to 
the sampled individuals/households from a region/city, record the spatial location of the 
individual at a short interval, find the stationary locations where the individuals spend a 
significant time and then construct a co-location network between individuals and sta-
tionary locations.

The Adolescent Health and Development in Context (AHDC) study [7] follows both 
structured and unstructured data collection approaches to capture individuals’ mobil-
ity in Franklin County, Ohio. To collect structured data on mobility, the AHDC study 
surveys caregivers of adolescents about their location visits and then forms a co-location 
network (one can denote this network as a coarser-grained co-location network). The 
unstructured approach is based on the spatial coordinates of adolescents over regular 
intervals and then forms a co-location network (one can denote this network as a finer-
grained co-location network).

In this study, we focus on extracting community structure from the fine-grained 
co-location network. Since there is no ground truth available, we assess the extent 
to which alternative approaches to community detection align with previous find-
ings on neighborhood racial and socioeconomic differences in mobility patterns (Xi 
et  al. 2020; Browning et  al. 2021b). Our approach for extracting communities relies 
on computing a meaningful vector representation of each node in the co-location 
network (for all location and user nodes). These vectors can then be utilized by any 
off-the-shelf clustering algorithms [such as K-means (Bishop 2006) or Gaussian Mix-
ture Models (Reynolds 2009)] to identify meaningful communities of users and their 
shared exposure locations. We evaluate the use of several state-of-the-art approaches 
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for computing the representation of each node within the fine-grained AHDC co-
location network. These include:

•	 A previous effort by, Xi et  al. (2020), that focused on identifying communities 
from the coarser-grained AHDC co-location network.

•	 Several neural network based models that have recently shown to be highly effec-
tive for the learning of node representations from such network data. These 
include efforts such as DeepWalk (Perozzi et  al. 2014), and LINE (Tang et  al. 
2015b).

•	 A recently proposed low-resource (efficient) neural approach called LocationTrails 
(Gurukar et al. 2021). Unlike other neural methods, LocationTrails explicitly lev-
erages the sequential ordering of a user’s visits to specific locations that is avail-
able in such fine-grained co-location networks.

We present a toy example in Fig.  1 that defines the terminology we use to explain 
our findings. A neighborhood is dominated by a given race if its percent population 
is higher than 70% (Quillian 2002; DeLuca and Rosenbaum 2003). In Fig. 1, note the 
presence of residentially proximate communities in the white-dominated neighbor-
hoods and the lack of residentially proximate communities in the black-dominated 
neighborhoods.

Our key findings can be summarized as follows. First, a qualitative examination of 
the communities extracted by different methods suggests that the community struc-
tures extracted by LocationTrails identify patterns that are consistent with our under-
standing of urban racial and socioeconomic segregation in everyday routines. Second, 
among the other neural approaches [DeepWalk (Perozzi et al. 2014) and LINE (Tang 
et  al. 2015b)] appear to offer the strongest performance, although these meth-
ods do appear to be biased towards residentially proximate community structures, 

Fig. 1  Toy example showing an example city (outlined by a box) and its neighborhoods (outlined by 
sub-boxes). Individuals are shown by cross marks. Individuals are placed at their illustrative home locations 
in an neighborhood. Individuals shown in same color belong to same community. Residentially proximate 
community refers to group of individuals who reside in the same neighborhood and share same community
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potentially mischaracterizing the routine activity patterns of more segregated and 
socioeconomically disadvantaged neighborhoods (Browning et  al. 2021b). Third, 
several important patterns identified by LocationTrails and the other neural models 
largely agree with the results Xi et al. observed from the coarse-grained AHDC co-
location network analysis study (Xi et al. 2020). However, our qualitative analysis sug-
gests that Xi et al. (2020) was less effective on the fine-grained co-location network 
data, when compared to LocationTrails. Fourth, a quantitative examination of the 
activity profiles of the individuals residing in neighborhoods with different character-
istics (white-dominated vs. black-dominated, advantaged vs. disadvantaged) reveals 
that individuals who reside in white-dominated neighborhoods are more likely to 
share the same cluster than their black counterparts. While individuals who reside in 
black-dominated neighborhoods often do not share the same cluster as they seem to 
have dissimilar activity profiles.

The rest of the paper is organized as follows. The next section describes the data col-
lection, data cleaning, and formation of the fine-grained co-location network from the 
AHDC study—an important contribution of this study. The Methods section overviews 
related work and summarizes the selected methods utilized for our evaluation. The 
Results section presents the analysis of the selected methods on the AHDC fine-grained 
co-location network dataset. We present the conclusions and contributions of our work 
in the Conclusions section.

AHDC activity pattern data
Overview

The Adolescent Health and Development in Context (AHDC) study [7] is an ongoing 
longitudinal data collection study. The goal of the AHDC study is to explore the rela-
tionship between aspects of the social and spatial contexts of everyday routines and 
the health and wellbeing of urban youth. To that end, the AHDC study collects data on 
multiple contexts of youth development from a representative sample of 1,347 adoles-
cents (age 11-17 years old) residing within Franklin County (contains the city of Colum-
bus—Ohio’s largest city) using a prospective cohort design. Franklin County is racially 
and ethnically diverse—White (Non-Hispanic) (62%), Black or African American (Non-
Hispanic) (22.9%), Asian (Non-Hispanic) (5.38%), and White (Hispanic) (3.25%) [16]. In 
terms of social and economic characteristics, the Columbus metropolitan area is rep-
resentative of the average US metropolitan area [17]. The data collection from youth 
and their caregivers occurs in two waves (Wave 1 and 2) separated over one year period. 
In this work, we focus on data collected in Wave 1. Wave 1 data collection took place 
between April 2014 and July 2016. The data collection design is as follows. The AHDC 
study first performs an Entrance Survey—the structured data collection approach—with 
the adolescents and their caregivers. The survey covers a broad range of topics related to 
demographic and socioeconomic background, household composition, family structure 
and marital status, employment and income, health, social support, and alcohol/sub-
stance use. The entrance survey included a “location generator” (Browning et al. 2021a) 
in which caregivers and adolescents provided information about the locations of the 
youth’s everyday routine activities (e.g., school, work, grocery shopping, etc.).
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Xi et al. (2020) construct a co-location network from the above mentioned Entrance 
survey where the reported locations are aggregated to the census block group. The 
authors (Xi et al. 2020) perform data cleaning based on the missing data and the den-
sity of caregivers in a block group. The resultant coarser-grained co-location network 
consists of 1307 caregivers (out of 1405 caregivers) and has 883 block groups. Census 
block groups are statistical divisions of census tracts and are generally defined to contain 
between 600 and 3,000 people (Brown and Barram 1994).

The Entrance Survey of the AHDC study was followed by geographically explicit eco-
logical momentary assessment (GEMA) (Kirchner and Shiffman 2016) for a period of 
seven days—the unstructured data collection approach. During this period, adolescents 
carried a study provided GPS-enabled smartphone that collected real-time assessments 
of locations, activities, and experiences as well as near-continuous Global Positioning 
System (GPS) coordinate data. The spatial coordinate data were collected through GPS 
satellites every 30 seconds. However, if no GPS satellite coordinates were collected for a 
period of 10 minutes or more, location coordinates were recorded from the cell network 
tower connection every minute to obtain an approximate location.

Next, we describe the data cleaning and construction of the finer-grained co-location 
network from the unstructured data collection approach.

Deriving finer‑grained co‑location network from the unstructured activity data

The collected GPS data are subject to error and contain noise (Modsching et al. 2006). 
We process the collected GPS using the convex hull-based binning algorithm (Shareck 
et al. 2013) to capture an accurate estimate of the location. The algorithm gives us the 
stationary and travel periods of the adolescents (Boettner et  al. 2019) and the convex 
hull centroid over the stationary periods GPS coordinates is estimated as the visited 
locations. The visited locations are then presented to the adolescents on a map using a 
recall-aided interactive space-time budget application (Boettner et al. 2019). The appli-
cation has a graphical user interface (GUI) showing Google Maps and has several other 
data collection functionalities. Using the application, the adolescents in the AHDC study 
corroborate the estimated visited location and also provide the labels of the location. 
The collected latitude and longitude values of stationary locations need to be converted 
to a location id so that we could form a co-location graph between user-ids and location-
ids. This conversion process is known as reverse geocoding, and we utilize the Open-
StreetMap API1 for this purpose.

The visualization of the constructed co-location network is shown in Fig. 2. In Fig. 2, 
we observe that there exist several locations (such as schools) commonly visited by most 
adolescents. We also observe that at the periphery there are few locations (such as a 
relative’s house) that are visited by a small number of adolescents. The statistics of the 
constructed fine-grained co-location network are shared in Table  1. We also share the 
location visits statistics in the table. A trail represents the number of locations visited by 
adolescents in a day. The mean and mode of the trails are 4.33 and 4, while the histogram 
of trail lengths is shown in Fig. 3. From the visualization, one can observe that there are 

1  https://photon.komoot.io/.
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certain locations (shown in blue) that were only visited by few adolescents. These loca-
tions could be the home of the adolescents, their relative’s house, or local stores that 
were not visited by other adolescents in the study. We also observe a significant number 
of locations (such as schools, shopping malls) that were visited by multiple adolescents. 
The anonymized home locations and activity locations of the adolescents are shown in 
Fig. 4. Here, the locations are anonymized as follows: given the latitude and longitude of 
the location, we first identify the block group of the location and then set the home loca-
tion of the adolescent to be a random point in the block group.

Fig. 2  Visualization of the AHDC co-location network. Adolescents are shown in red color nodes while the 
locations are shown in blue color nodes. An edge represents a location visit by an adolescent. Here, edge is 
considered to be unweighted. We use ForceAtlas2 algorithm (Jacomy et al. 2014) to visualize the co-location 
network

Table 1  The statistics of the trails on the AHDC dataset

Mode and mean are computed on the distribution of length of all the trails

# Adolescents # Locations # Edges Mode length Mean length # of Trails

1347 1347 (home) + 4225 (activity) 10,057 4 4.33 6483
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Methodology
The extent to which activity spaces–the collection of an individual’s routine activity loca-
tions–overlap with those of their neighbors or those with similar backgrounds provides 
important information about the functioning of a city and its neighborhoods. The iden-
tification of communities from the co-location network can provide additional insight 
into the structure of shared urban routines. In this work, we evaluate both network 

Fig. 3  Histogram of trail lengths. A trail corresponds to the sequence of locations visited by an individual in 
a day
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Fig. 4  The activity and home locations of the adolescents. The locations are anonymized (anonymization 
process is explained below (see figure reference in main text))
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representation learning (NRL) methods (Perozzi et  al. 2014; Tang et  al. 2015b; Guru-
kar et al. 2021; Xi et al. 2020; Gao et al. 2018) and standard network science methods 
(Karypis et al. 1997; Dhillon et al. 2007; Satuluri and Parthasarathy 2009; Barber 2007) 
to identify such communities. In the case of NRL methods, the first step is to identify 
a meaningful representation of individuals (adolescents in our co-location networks) 
as well as that of the routine areas they visit (locations in our co-location network). To 
compute the representation of nodes within a two-mode co-location network, we draw 
on exemplars from general-purpose network representation learning and human-mobil-
ity network representation learning. In the case of standard network science methods, 
we select two popular methods that rely on pre-defined metrics to identify communities. 
We discuss both NRL and network science methods in the next sections.

Network representation learning

The network representation learning (NRL) models aim to learn a representation of 
nodes such that the similarity of nodes in graph space is approximated by the closeness 
of nodes in the representation space. One of the initial network representation learn-
ing models is Laplacian Eigenmaps (Belkin and Niyogi 2003) which learns node repre-
sentations by preserving the first-order proximity between the nodes—connected nodes 
should have node representations with low L2 distance. Inspired by the effectiveness 
of neural networks, Perozzi et  al. (2014) proposed Deepwalk that performs truncated 
random-walk on the graphs and then applies skip-gram (Mikolov et  al. 2013b) objec-
tive function on the random-walks to learn the node representations. Node2vec (Grover 
and Leskovec 2016) proposed an approach to bias the random-walks and then adopt the 
Deepwalk strategy to learn the node representations. LINE (Tang et al. 2015b) proposes 
two objective functions that preserve both first-order and second-order proximity—
nodes with similar neighbors should have node representations with low L2 distance—
for learning the node embeddings. NetMF (Qiu et al. 2018) argues that the skip-gram 
based models with negative sampling optimization such as Deepwalk (Perozzi et  al. 
2014), Node2vec (Grover and Leskovec 2016), LINE (Tang et al. 2015b) and PTE (Tang 
et al. 2015a) are implicitly factorizing matrices formed with graph laplacians. Recently, 
Huang et  al. (2021) provided an analytical framework for random-walk based graph 
embedding methods and categorizes several existing random-walk based methods.

Given the plethora of network representation learning methods, Gurukar et al. (2019) 
performed an experimental analysis of the popular network representation learning 
methods to understand the scientific progress in this field. They found that if one tunes 
the parameter of the Deepwalk method (Perozzi et al. 2014) it performs in a competi-
tive manner on both node classification and link prediction tasks. Given the competitive 
nature of Deepwalk, we select it as one of the approaches to learn meaningful represen-
tation of individuals and locations. We also select LINE (Tang et al. 2015b) as one of the 
approaches for representation learning, as it was found to be both efficient (in terms 
of running time) and effective (in terms of predictive tasks) (Gurukar et al. 2019). We 
also performed experiments with BiNE method (Gao et al. 2018), a network represen-
tation learning method designed for bipartite networks. These results are presented in 
the Additional file 1 (see section “Cluster Analysis: BiNE”) along with a rationale for its 
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relatively poor performance. The summaries of the selected methods are also presented 
in the Additional file 1 (see section “Methods summary”).

Human mobility network representation learning

The human mobility network representation learning model focuses on a form of co-
location network constructed from the human mobility dataset. These models learn rep-
resentations such that one can efficiently perform human mobility-related downstream 
tasks such as location prediction (Yang et al. 2019), location recommendation (Yan et al. 
2017), and travel time estimation (Derrow-Pinion et  al. 2021). LBSN2vec (Yang et  al. 
2019) focuses on Location-Based Social Networks to study user mobility and their social 
relationships using a hypergraph-based random walk approach to learn user and loca-
tion embeddings. However, such an approach requires the social network of users, which 
is not always available. Location2vec (Shoji et al. 2018) collects the Geo-tagged tweets to 
learn the location representation and employ skip-gram model (Mikolov et  al. 2013a) 
on the collected corpus. The representations of Point of Interest (POI) are learned by 
Yan et al. (Yan et al. 2017) by proposing a novel method of training corpus generation 
based on augmented spatial contexts for word2vec model (Mikolov et al. 2013a). Note 
that both Location2vec (Shoji et al. 2018) and the approach by Yan et al. (Yan et al. 2017) 
focus on only learning representations of locations and not individuals. Hence, we focus 
on the following two approaches—one based on Latent Dirichlet Allocation (Blei et al. 
2003) and another based on the sequence of location visits (LocationTrails)—to learn 
representations of both individuals and locations. The summaries of these selected 
approaches are present in the Additional file 1 (see section “Methods summary”).

Clustering representations for community assignment

The learned representations of adolescents can be clustered with any off-the-shelf clus-
tering algorithm. The adolescents belonging to the same cluster are then assigned to the 
same community. In this work, we present the results with Gaussian Mixture Models 
(GMMs) (Reynolds 2009) clustering method. However, we have also experimented with 
other clustering methods such as K-means (Bishop 2006), and Bisecting K-means (Stein-
bach et al. 2000) and found the results obtained to be consistent with GMMs. GMMs are 
probabilistic models that assume the data is generated from a mixture of Gaussians with 
unknown parameters where the parameters are identified with the Expectation-Maximi-
zation (EM) algorithm. The output of GMMs is the community-membership probability 
matrix2 that contains the probability of an adolescent i belonging to a cluster (commu-
nity) k. The adolescent is assigned the community that has the highest probability in the 
community-membership matrix. We utilize GMMs on the representations learned by 
Deepwalk, LINE, and LocationTrails. Xi et al. (2020), on the other hand, directly learn 
the community-membership affiliation probabilities via the Latent Dirichlet process.

2  The clustering output from GMMs is a probability vector—similar to the approach utilized by Xi et al. (2020)—another 
reason for using GMMs to cluster users in our study.
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Network science methods for community identification

The network science methods for identifying communities in both homogeneous and 
bipartite networks rely on pre-defined community metrics such as normalized cuts (Shi 
and Malik 2000; Zha et  al. 2001) or ratio cuts (Chan et  al. 1994; Billionnet 2010). We 
consider two popular community identification methods: Metis (Karypis et al. 1997) and 
Graclus (Dhillon et al. 2007). These methods are multi-level algorithms and consist of 
three phases: i) coarsening phase in which graph is repeatedly transformed into smaller 
graphs by combining set of nodes and their corresponding edges, ii) base-clustering 
phase in which clustering is performed on the coarsest graph. Here, clustering is effi-
cient due to the small size of the coarsest graph and the ability of the coarsest graph to 
capture the global structure of the graph (Liang et al. 2018), and iii) refinement phase in 
which identified clusters are propagated to the larger graphs till the clusters are identi-
fied for the input graph. We also performed experiments with a network science method 
BRIM (Barber 2007) that is designed for bipartite networks. However, we found that 
BRIM performs poorly (like BINE) on our dataset. Hence, we do not include BRIM in 
our analysis. The readers are encouraged to refer to the papers for the detailed algo-
rithm. We apply these methods to our undirected co-location network and analyze the 
identified adolescents clusters.

Method’s hyperparameters

For all the experiments, we tune the parameters of the methods Deepwalk (walk length 
= [10, 20, 40], number of walks = [40, 80], context window = [3, 5, 10]), LINE (negative 
samples = [3, 10], number of samples = [5 billion, 10 billion]), LDA (Gibbs: number 
of iterations = [10,000, 100,000]), Metis (cut objectives=[‘normalized cut’, ‘volume’]), 
and Graclus (cut objectives=[‘normalized cut’, ‘ratio association’]), and report the best 
observed results. Note that the mobility pattern related inferences drawn for the meth-
ods are consistent across hyper-parameters (more details in the Additional file 1: section 
“Cluster Analysis: Hyper-parameter results”). We have also included a map of Colum-
bus, Ohio and map of frequently mentioned regions in the Additional file 1 (see Figure 1 
and Figure 2) to help the reader locate the neighborhoods referenced in the analysis.

Ground truth

Precise ground truth for our study is not available. We note that the lack of ground truth 
is a common problem in community discovery literature (see Hennig 2015 for a detailed 
discussion). Often, the ground truth is ill-defined. Hennig echos this point as “In most 
cluster analysis literature, however, explanations of what ‘true’ or ‘real’ clusters are, 
are rather hand-waving”. The deficiencies in the current clustering evaluation are also 
pointed out by Von Luxburg et al. (2012). They point out that “whether a clustering of a 
particular data set is good or bad cannot be evaluated without taking into account what 
we want to do with the clustering once we have it.”. In this work, we want to study human 
mobility with the help of clustering, hence we rely on existing studies on human mobil-
ity (Xi et  al. 2020; Browning et  al. 2021b) as well as the sociological studies to assess 
clustering quality (Basta et al. 2010; Sastry et al. 2004; Small and McDermott 2006). We 
describe the sociological studies in the next section.
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Sociological studies on the activity profiles

To access the quality of clustering, we would like to bring forth two sets of sociological 
findings. The first set of findings is from the “activity space” literature in which individu-
als’ activity locations (within and beyond the neighborhood) are the focus of measure-
ment. Studies in this literature have found that many activity locations lie outside of 
the individual’s residential neighborhood unit. For instance, Basta et  al. (2010) found 
that the adolescents spent 70% of the non-home time outside their residential neigh-
borhood. Sastry et al. (2004) found that only 16% of individuals’ routine grocery stores 
and only 12% of individuals’ places of worship lie in their residential neighborhood. Our 
own findings from the AHDC study suggest that youth spend about 6% of their waking-
time in their neighborhood but not at home, 60% at home, and 34% outside their home 
neighborhood (Browning et al. 2021b). These studies offer evidence that the clusters of 
adolescents identified based on their activity locations should not always be residentially 
proximate—it is not necessary that adolescents who reside in the same neighborhood 
will share the same cluster, provided they are clustered based on their activity locations.

The second set of findings is drawn from research examining mobility for the pur-
pose of accessing organizational resources.3Small and McDermott (2006) found that as 
the proportion of blacks in the neighborhood increases, the number of establishments 
decreases. In analyses of the AHDC data, Browning et al. (2021b) find that segregated, 
higher poverty neighborhoods had fewer schools present within the neighborhood, indi-
cating that youth from these neighborhoods are more likely to be regularly traveling out-
side the neighborhood to reach school locations. AHDC data indicate that black youth 
residing in high proportion black neighborhoods encountered more heterogeneous 
exposures to neighborhood racial composition than other youth and spend a nontrivial 
proportion of their time in low proportion black neighborhoods, largely in the context 
of organizational resource seeking (Browning et al. 2021b). Therefore, we expect that for 
adolescents residing in black-dominated neighborhoods, the probability of falling in res-
identially proximate clusters will be lower. Moreover, adolescents who reside in the same 
black-dominated neighborhood will have a higher probability of not sharing the same 
cluster, provided they are clustered based on their activity profiles.

Neighborhood nomenclature: We collect demographic information on neighbor-
hoods from 2009-2013 American Community Survey data. A neighborhood is con-
sidered to be dominated by ethnicity if its percent population is higher than 70%. A 
neighborhood is considered advantaged if the poverty index is lower than 20% and is 
considered disadvantaged if the poverty index is greater than 40% (Jargowsky 2013).

Results
In this section, we evaluate the efficacy of the methods to identify communities4 on the 
finer-grained co-location network. Next, we perform experiments to study if the identi-
fied communities can help in understanding the neighborhood’s functioning.

3  Organizational resources refers to the establishments which have a physical location and offer services or sells goods 
essential to day-to-day living.
4  We use the term community and cluster interchangeably.
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Community analysis

In this section, we perform the community analysis of the adolescent representations 
learned by all the selected representation learning methods. We render the identified 
adolescent communities on the Columbus map, where each adolescent is represented 
through their approximate home location. We select the number of communities to be 
18—similar to the one reported in Xi et al. (2020)—and also observe the perplexity met-
ric (Blei et al. 2003) value with 18 number of communities to be one of the lowest. The 
identified communities for Deepwalk, LINE, LocationTrails, LDA (Xi et al. 2020), Metis 
and Graclus are shown in Figs. 5a, b, 6a, b, 7a, b respectively. Next, we analyze the iden-
tified communities from a sociological lens.

Qualitative holistic analysis of results

We observe that in white-dominated neighborhoods the evaluated methods often iden-
tify residentially proximate communities (refer Fig. 1). For instance, we observe that all 
methods identify a community present at Bexley, Ohio (community number: 10, color: 
blue). Bexley is a white-dominated area (86.5% of its population is white). The median 
household income of its residents is double than that of residents living in Columbus 
city. Bexley is also rich in organizational resources and was historically considered a 
relatively insular community given its spatial embeddedness in a largely lower-income 
context. The emergence of the Bexley community shows that many of its residents share 
the same activity profiles, and this might be due to the abundance of organizational 
resources (an advantaged neighborhood). Moreover, a few white-dominated neighbor-
hoods such as Upper Arlington, Grandview Heights, and Worthington are commonly 
identified by Deepwalk, LINE, LocationTrails, Metis, and Graclus.

A few of the methods (Deepwalk, LINE, Metis, and Graclus) that rely solely on the 
graph structure place adolescents in the same community if they reside in the same 
black-dominated neighborhoods (such as Near East Side (Census Tract 29 and 36, 
Franklin, OH) and Milo Grogan (Census Tract 15 and 23, Franklin, OH)). This result 
does not align well with existing sociological studies (Basta et  al. 2010; Sastry et  al. 
2004; Browning et al. 2021b; Small and McDermott 2006). These studies mention that 
the lack of organizational resources (grocery stores, schools) in black-dominated neigh-
borhoods result in adolescents spending a nontrivial proportion of their time outside 
of their residential neighborhoods and they encounter more heterogeneous exposure 
to neighborhood racial composition than other adolescent [8]. This often results in dis-
similar activity profiles among adolescents residing in these disadvantaged neighbor-
hoods. Hence, it is surprising that few methods (Deepwalk, LINE, Metis, and Graclus) 
identify residentially proximate communities in black-dominated neighborhoods. Loca-
tionTrails, which relies on the sequence of locations visited by the adolescents, does not 
identify residentially proximate communities in black-dominated neighborhoods. We 
present a detailed community analysis of each method in the next few sections.

Community analysis: LocationTrails

The communities identified by LocationTrails on the finer-grained co-location network 
are consistent with the ones identified by the peer reviewed study done by Xi et  al. 
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(2020) on the AHDC coarser-grained co-location network constructed using a structured 
data collection approach. Specifically, we observe that LocationTrails places adolescents 
in the same clusters who reside in Grandview Heights (cluster number: 8, color: light 
green), Upper Arlington (cluster number: 2, color: black), and Worthington (cluster 
number: 7, color: green). All these regions have more than 90% white residents, and the 
median household income of the residents in these regions is double that of residents 
living in Columbus. These communities share similar characteristics as that of Bexley, 
however, Deepwalk, LINE, and LDA methods are unable to find these communities. 
For the adolescents living in the black-dominated neighborhoods, LocationTrails place 
them in different communities. Specifically, the adolescents who reside in Near East Side 
(Census Tract 29 and 36, Franklin, OH), Milo Grogan (Census Tract 15 and 23, Franklin, 
OH) are placed in different communities. The median household income of residents in 
these regions is less than that of residents living in Columbus. The adolescents in these 
disadvantaged neighborhoods need to travel further, on average, to access organizational 
resources and have few common activity profiles. Therefore, LocationTrails assigned 
them to different communities.

Community analysis: Deepwalk and LINE

From Fig. 5a, we observe that Deepwalk and LINE identify communities that are often 
residentially proximate—adolescents who reside in the same neighborhood often share 
the same communities. The identified residentially proximate communities are pre-
sent for most of the neighborhoods (both white-dominated and black-dominated). This 
result runs counter to expectations in that residentially proximate communities are less 
likely to occur in high poverty neighborhoods. As mentioned previously, youth from 
high poverty neighborhoods often spend a nontrivial proportion of their time outside 
of their residential neighborhoods and encounter more heterogeneous exposure to 
neighborhood racial composition than other youth (in order to seek organizationally-
based resources) (Browning et al. 2021b). This often results in dissimilar activity profiles 
among youth residing in these disadvantaged neighborhoods. Drilling down on the raw 
activity profiles of individuals in this community, we find that they do indeed have activ-
ity profiles that differ and are quite heterogeneous. The results observed here suggest 
that LINE and Deepwalk are pre-disposed (biased) to identifying residentially proximate 
neighborhoods.

The reason both Deepwalk and LINE identify residentially proximate communities 
even for the segregated high poverty neighborhoods can be explained as follows. Both 
these methods rely solely on the structure of the graph to learn the node representations. 
Deepwalk relies on the random walks on the co-location network, while LINE relies on 
both explicit (first-order proximity) and implicit (second-order proximity) connectiv-
ity between nodes to learn the node representations. Hence, if two adolescents residing 
in the same neighborhood visit few common locations (e.g. local stores) present in that 
neighborhood, these methods would put a high constraint on learning similar represen-
tations of those adolescents, as there exists an implicit link between those adolescents. 
The clustering method would then assign these two adolescents in the same cluster as 
they would have similar representations.
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Fig. 5  Number of clusters = 18 (home location anonymized)
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Fig. 6  Number of clusters = 18 (home location anonymized)
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Fig. 7  Number of clusters = 18 (home location anonymized)
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Community analysis: LDA

From Fig.  6a, we observe that LDA identifies clusters at Bexley ( cluster number: 10, 
color: blue ) and Upper Arlington (cluster number: 2, color: black). However, it failed to 
identify clusters in white-dominated, advantaged neighborhoods that were identified by 
LocationTrails.

Community analysis: Metis and Graclus

The communities identified by standard network science algorithms Metis (Karypis 
et  al. 1997) and Graclus (Dhillon et  al. 2007) are shown in Fig. 7a and b, respectively. 
We observe that Metis and Graclus identifies clusters that are residentially proximate 
for both white-dominated and black-dominated neighborhoods. Metis and Graclus clus-
tered adolescents residing in black-dominated neighborhoods such as South Columbus, 
south of Grandview Heights in the same communities. As mentioned earlier, these clus-
ters are not aligned with the sociological findings mentioned in the section “Sociological 
studies on the activity profiles”.

To summarize, the above analysis of the identified communities suggests that a 
method that is cognizant to the sequence of locations visited by the adolescents while 
learning node representations (LocationTrails Gurukar et al. 2021) is effective in identi-
fying higher-quality communities from the co-location networks.

Quantitative analysis of the communities

We measure the overlap between the identified communities by the methods using Nor-
malized Mutual Information (NMI) (Estévez et al. 2009). From the qualitative analysis, 
we observe that adolescents who reside in white-dominated neighborhoods, often share 
the same cluster. This clustering pattern is observed across different methods. In our 
quantitative analysis, we focus on the adolescents who reside in white-dominated neigh-
borhoods. We then identify their clusters with different methods and present the NMI 
between the identified clusters in Table 2. A similar analysis for adolescents residing in 
black-dominated neighborhoods are shown in Table  3. We observe the NMI between 
clusters identified Deepwalk, LINE, LocationTrails, Metis, and Graclus in the white-
dominated neighborhood is relatively high. The relatively high NMI coupled with visual 
analysis of identified clusters suggest that adolescents who reside in white-dominated 
neighborhoods often share the same cluster. In black-dominated neighborhoods, the 
NMI value between clusters identified by Deepwalk, LINE, Metis, and Graclus is rela-
tively higher than NMI between these methods and LocationTrails. The relatively high 
NMI of Deepwalk, LINE, Metis, and Graclus in black-dominated neighborhoods cou-
pled with visual analysis of identified clusters suggest that these methods are identifying 
clusters even in black-dominated neighborhoods. As mentioned earlier, this suggestion 
does not align well with existing sociological studies. We will shortly discuss in the con-
text of neighborhood affinity that further amplifies this point. Note that NMI of LDA 
is relatively lower in both Tables 2 and 3. The NMI between identified clusters of ado-
lescents residing in all the neighborhoods is shared in the Additional file 1 (see section 
“Quantitative analysis”).
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Quantitative analysis: neighborhood affinity

In this section, we quantitatively analyze the communities present in the neighbor-
hoods. Following the literature (Xi et al. 2020), we consider the census tract as a proxy 
for neighborhood and compute the percentage of adolescents who reside in a cen-
sus tract and share the same cluster. The neighborhood affinity of a neighborhood is 
the probability that two randomly selected adolescents who reside in the same census 
tract also share the same cluster. Since there are multiple neighborhoods, we report 
the average neighborhood affinity over all the neighborhoods. While computing the 
average neighborhood affinity, we filter out the neighborhoods that have fewer than 
five residents. The average neighborhood affinity scores of different methods are 
shown in Fig. 8. We also report the average neighborhood affinity scores of the Ran-
domization method to know the expected average neighborhood affinity score under 
uniform community assignment. In Randomization method, we assign adolescents to 
communities at random in a uniform manner over 1000 times and then compute the 
average of average neighborhood affinity score.

From Fig. 8, we observe that the average neighborhood affinity score of the Deep-
walk method is the highest, irrespective of the number of communities. LINE also 
identifies residentially proximate clusters and has the second highest average neigh-
borhood affinity score, irrespective of the number of communities. The high-affinity 
score of Deepwalk and LINE quantitatively show that they find residentially proxi-
mate clusters. LocationTrails affinity score is lower than Deepwalk as LocationTrails 
places adolescents who reside in black-dominated disadvantaged neighborhoods 
in different communities. On the other hand, LocationTrails affinity score is higher 
than LDA, as LocationTrails identifies more clusters with similar characteristics 
(white-dominated, advantaged neighborhoods). The difference between the average 
neighborhood affinity score of LDA and Randomization is statistically significant at 
significance level 0.01 (Z-score ≥ 26.0 for all clusters).

Next, we compare the average neighborhood affinity score across white vs. black dom-
inated neighborhoods and advantage vs. disadvantaged neighborhoods. The results are 
shown in Figs. 9 and 10. The average neighborhood affinity score is multiplied by 100. 
We observe that the average neighborhood affinity score of the adolescents living in the 
white-dominated neighborhood is higher than that of i) black-dominated neighborhoods 
and ii) all the neighborhoods, for the four representation learning methods (Deepwalk, 
LINE, LocationTrails, and LDA). We also observe that the average neighborhood affin-
ity score of the adolescents living in the advantaged neighborhood is higher than that of 
i) disadvantaged neighborhoods and ii) all the neighborhoods, for the same four repre-
sentation learning methods. This analysis suggests that white adolescents or adolescents 
residing in advantaged neighborhoods tend to share more similar activity profiles than 
their black or disadvantaged neighborhood counterparts. The average neighborhood 
affinity score of black-dominated/disadvantaged neighborhoods is lower than that of all 
the neighborhoods. This is because adolescents who reside in these neighborhoods are 
less likely to have common activity patterns, and this non-commonality in activity pat-
terns might be due to a lack of organizational resources in the black-dominated/disad-
vantaged neighborhoods.
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Drilldown analysis of communities: LocationTrails

In this section, we present a drilldown analysis of communities identified by Location-
Trails and provide commentary on the activity profiles of adolescents placed in a com-
munity. We do not disclose the name of the locations that adolescents visit to preserve 
their privacy. The information about the types of public and private schools in the 
United States are provided in these articles [56,57]. The population statistics, economic 
and political information of Franklin county and the below-mentioned neighborhoods 
can be found on several web portals [58,59].

We observe that several communities identified by LocationTrails are residentially 
proximate. Specifically, Communities 0 and 3 (Upper Arlington), 2 and 17 (Clintonville), 
6 (Hillard), 7 (Whitehall), 10 and 15 (Bexley), 13 (East of German village), 14 (Worthing-
ton), and 16 (Grandview Heights). Communities 0, 3, 6, 10, 14, 15, and 16 are present 
in white-dominated neighborhoods with rich organizational resources. Whitehall has a 
more diverse racial composition (43% white and 39% black residents) and is moderately 
affluent. Adolescents in residentially proximate Community 13 commonly visit one pub-
lic magnet high school in East of German village and two public parks within 6 miles 
from East of German village.

We see that Community 0 and 3 both fall in Upper Arlington, but the adolescents in 
Community 0 are middle school students and commonly visit two middle schools in 
Upper Arlington while the adolescents in Community 3 are high school students and 
commonly visit one high school in Upper Arlington. Essentially, LocationTrails is able to 
distinguish the middle vs. high school adolescents based on their activity profiles even 
though their home locations lie in the same neighborhood. We also note that commu-
nity 10 is extremely cohesive and centered in Bexley (students attending the local high 

Table 2  Normalized mutual information between communities identified by methods on white-
dominated neighborhoods

Deepwalk LINE LocationTrails LDA Metis Graclus

Deepwalk 1.00 0.53 0.47 0.27 0.49 0.51

LINE 0.53 1.00 0.48 0.25 0.44 0.44

LocationTrails 0.47 0.48 1.00 0.25 0.38 0.40

LDA 0.27 0.25 0.25 1.00 0.24 0.21

Metis 0.49 0.44 0.38 0.24 1.00 0.46

Graclus 0.51 0.44 0.40 0.21 0.46 1.00

Table 3  Normalized mutual information between communities identified by methods on black-
dominated neighborhoods

Deepwalk LINE LocationTrails LDA Metis Graclus

Deepwalk 1.00 0.37 0.24 0.18 0.42 0.35

LINE 0.37 1.00 0.33 0.20 0.36 0.27

LocationTrails 0.24 0.33 1.00 0.18 0.26 0.23

LDA 0.18 0.20 0.18 1.00 0.19 0.15

Metis 0.42 0.36 0.26 0.19 1.00 0.36

Graclus 0.35 0.27 0.23 0.15 0.36 1.00
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school) whereas community 15 is also largely centered in the Bexley area, but it does 
have a spread of adolescents with neighborhood homes from largely advantaged neigh-
borhoods in the rest of Franklin county. Drilling down, we observe that the rationale for 
this is largely driven by the fact that many of the students with shared activity profiles in 
this cluster attend one of several expensive private schools situated in Bexley. We point 
both of these out (two distinct clusters in Upper Arlington and Bexley) as this type of fine-
grained analysis is not immediately visible when examining communities identified by 
the other methods in our study. Next, we observe that there are a few communities such 
as Community 5, 8, 11, and 12 in which the home locations of adolescents are spread 
out over Columbus city. We observe that in these communities, the adolescents often 
visit schools that have an open enrollment policy and often serve as magnet schools (for 
STEM, STEAM, and the Arts) or alternative high schools—the policy allows adolescents 
residing in one school district area to attend schools in another district area. Specifically,

•	 Adolescents in Community 5 commonly visit one arts middle school near Down-
town and a public magnet school near Downtown.

•	 Adolescents in Community 8 commonly visit three public magnet high schools (one 
near Clintonville, one north of North Linden and one in Marion-Franklin).

•	 Adolescents in Community 11 commonly visit one stem school in South Linden and 
a public-magnet alternative high school in North Linden.

•	 Adolescents in Community 12 commonly visit two public magnet high schools (one 
between Worthington and Easton and another near downtown) and one public-
magnet alternative high school (with intensive arts curriculum).

Finally, we note that community 4 is spread out over Columbus city as the adolescents in 
those communities share non-school activities such as a popular swimming club, visit-
ing community centers, malls and church.

Fig. 8  Average neighborhood affinity scores
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Conclusion
We focus on the problem of identifying communities in the co-location networks by 
using latent representation learning models and community detection methods. Our 
analysis revealed that the network representation learning model, LocationTrails (Guru-
kar et al. 2021), which relies on the sequence of location visits of adolescents, can iden-
tify high-quality communities that are consistent with extant knowledge regarding 
urban racial and socio-economic differences in neighborhood functioning and activity 
spaces. We observe that other neural approaches such as Deepwalk (Perozzi et al. 2014) 
and LINE (Tang et al. 2015b) identify residentially proximate clusters—if the adolescents 
reside in the same or nearby neighborhoods, these methods would often assign them to 
the same community.

To study the neighborhood functioning of the city, we compare the activity profiles 
of individuals through an average neighborhood affinity score—the probability of two 
adolescents sharing the same cluster given that they reside in the same neighborhood. 
We then compare the average neighborhood affinity score across neighborhoods with 
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different characteristics. Our analysis reveals that the individuals residing in the white-
dominated and advantaged neighborhoods have similar activity profiles. Hence, they are 
assigned to the same clusters by most of the models. In contrast, individuals residing in 
black-dominated and disadvantaged neighborhoods are often assigned to different clus-
ters. This is because individuals residing in black-dominated/disadvantaged neighbor-
hoods encounter more heterogeneous exposures to neighborhood racial composition 
than other individuals and spend a nontrivial proportion of their time in low proportion 
black/disadvantaged neighborhoods (Browning et  al. 2021b), largely in the context of 
organizational resource seeking, thereby resulting in dissimilar activity profiles.
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