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Introduction
At the beginning of 2020, the COVID-19 disease rapidly spread from the local Chi-
nese region of Hubei, soon becoming a global health emergency. Since it originated in a 
highly populated region that is strategic for several industrial sectors, the effects of lock-
down restrictions led to a freezing of business investments and a reduction in Chinese 
households consumption, which had a significant impact on Chinese trades. The spread 
of COVID-19 has rapidly and severely affected every economy in the world.

Understanding the factors that triggered the COVID-19 outbreak is still an subject of 
debate. The spread of a pandemic is a complex matter, affected by several interacting 
elements. On top of physical elements, such as, for instance, temperature, humidity, and 
air pollution, socio-economic factors seem to have played a major role in driving the 
COVID-19 outbreak (Antonietti et al. 2021b). The reasons and opportunities that com-
pel people to travel around the world to spend time meeting other people have sustained 
the chances for the virus to spread. Different kinds of business, social and/or family rea-
sons determine much more effectively the chances for people to enter into physical con-
tact with each other at both the global and local scales. An estimation of the impact of 
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socio-economic factors on the spread of the COVID-19 pandemic is therefore of clear 
importance.

Some of research contributions related to the COVID-19 pandemic are concerned 
with models that aim to describe and understand the dynamics of the pandemic, that 
is, how it has spread over time as a consequence of a series of variables considered as 
exogenous. Epidemic models clearly belong to this class. A different class of models 
looks to static or preliminary conditions that can be related to the huge differences in 
the diffusion of the consequences of the pandemic. Our contribution falls into this last 
framework. More precisely, we aim at identifying the significant properties of the set 
of world trades that can explain the initial differences across countries with respect to 
the infection and death rates. The two points of view positively interact, since all sys-
tem dynamic models depend on the initial conditions to explain future evolution. This 
is particularly true in the case of the COVID-19 pandemic. Indeed, starting from the 
World Health Organization’s (WHO) declaration, the evolution of COVID-19 in each 
country followed independent and autonomous paths, driven mostly by more or less 
severe lockdown policies, which dramatically reduced the usual volume of global trade 
and the mobility of people. So, if any link exists between world economic exchanges and 
the COVID-19 pandemic, it can first be traced out during its early stages, since in the 
following periods the adoption of diversified containment policies by national govern-
ments can make the role of international trade less clear.

In this paper, we stress the importance of countries’ central positions in the global 
trade scenario. From a topological point of view, the economic transactions between 
countries are characterized by an intricate weave of relations, and complex network the-
ory offers an effective representation of this situation. Both connections between coun-
tries and bilateral trade flows can be modelled as a dense network of interconnected 
agents. However, a major difficulty arises in the search for such interconnections. More 
precisely, since the trade network is naturally dense and almost complete, the study of 
the classical global network indicators applied to the whole network is not informative 
enough. This demands an accurate choice of more effective network tools. In order to 
make this choice, we first assess countries’ centrality, identifying a satisfactory represen-
tation of the international trade landscape. Focusing on 2019 and 2020, such analyses 
allow us to detect whether any change in the international trade network has occurred 
and relate it to the emergence of COVID-19, focusing on those measures that are mean-
ingful in capturing possible modifications. We then assess whether these centrality 
measures have an explanatory power with respect to the wide differences in the rates 
of infection and mortality that have been observed worldwide, once a series of other 
confounding factors have been controlled for. We stress that our aim is not to identify 
possible network measures that can be used as proxies of the spread of COVID-19, but 
rather to specify the role that the complex structure of the world trade network (WTN) 
has played during the beginning of the pandemic. Hence, we detect the presence of trade 
communities not only via their direct connections, as measured by the total volume 
of trade directly exchanged between two countries, but also via indirect connections. 
Indeed, we argue that it is crucial to consider deep interconnections between nodes to 
capture strategic commercial links, which can survive beyond a global shock. To this 
end, we apply the recent methodology proposed by Bartesaghi et al. (2020), focusing on 
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the Estrada communicability distance (Estrada and Hatano 2009). As a result, the analy-
sis of communities performed on 2019 and 2020 shows that the trade network is a resil-
ient structure, adapting itself to a global shock such as a pandemic. We provide strong 
empirical evidence that, on the contrary, network centrality measures can explain the 
early diffusion and mortality rates of COVID-19. We show, in particular, that a higher 
country centrality in the WTN corresponds to a higher risk of infection and death. In 
addition, the community clustering coefficient, which synthesises both the community 
structure and countries’ centrality, can explain the high number of deaths and infections 
better than the classical clustering coefficient.

The paper is organised as follows: in “Related literature” section, we review the rel-
evant literature. “Methodology and network indicators” section describes the methodol-
ogy and the network indicators, as well as the econometric model used to perform the 
analysis. In “Data, samples and variables” section, we describe the WTN and socio-eco-
nomic data used and how we constructed the WTN. In “Results” section, we report and 
discuss the results of the network analysis and the econometric model. Conclusions fol-
low in “Conclusions” section. “Appendix A” reports the list of countries used to develop 
the analysis. “Appendix B” shows the WTN visualisations for 2019 and 2020. “Appendix 
C” shows the community detection obtained through the modularity optimisation (Lou-
vain method).

Related literature
Some works in the literature relate the level of mobility of people (both at the global and 
local levels) to the COVID-19 pandemic (Antonietti et al. 2021a; Fernández-Villaverde 
and Jones 2020). More precisely, countries with higher levels of inward international 
mobility have higher probabilities of anticipating the time of the first contagions and 
having a higher number of infected people freely circulating during the pre-symptom 
period. Russo et  al. (2020) point to January 18th as day zero of the COVID-19 out-
break in Lombardy (Italy), which has been one of the most severely hit regions world-
wide. Parodi and Aloisi (2020) suspect that the abnormal number of cases of bilateral 
pneumonia that occurred in Lombardy already in December 2019 could be attributed 
to COVID-19. A factor that increases the probability of early contagion in a region, or a 
country, is certainly the movement of the citizens outside and inside its borders. In their 
cross-sectional analysis based on Spanish regions, Paez et al. (2020) observe that local 
public mass transportation systems, more than international airport facilities, appear to 
be linked to a higher severity of contagion rates. International and local transportation 
seem to act differently. The former increases the chances of early contagion events, while 
the latter acts as a second-order contagion enhancer.

International trade data can be used as a comprehensive indicator accounting for 
population density, economic dynamism and human mobility. In this regard, Bontempi 
and Coccia (2021) investigate the relations between the total imports and exports of 107 
provinces in Italy and COVID-19 transmission dynamics. Extending previous work, 
Bontempi et al. (2021) focus on regional data from France, Italy and Spain and confirm 
the relevance of trade in the analysis of the COVID-19 pandemic, finding a strong posi-
tive correlation between the international trade volume of each region and the percent-
age of patients who recovered in intensive care units. From a network perspective, the 
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impact of topology and metric properties on the stability and resilience of an economic 
or financial system has been widely studied in the literature (see e.g. Kali and Reyes 2007; 
Piccardi and Tajoli 2018).

On the one hand, community detection is a useful tool to see how an external shock 
modifies the topological structures of complex systems (Fortunato and Hric 2016). On 
the other hand, a suitable metric can highlight the role of non-local interactions between 
nodes. In this regard, Estrada and Hatano (2008, 2009) introduce the concept of commu-
nicability, presenting a metric between nodes that takes into consideration long-range 
interactions between them.

An area in which these concepts allow us to gain a deep insight into the hidden struc-
tures of the network is properly the WTN (see Bartesaghi et al. 2020).

The topology of the WTN has been extensively analysed over time. The behaviour of 
international trade flows, the impact of globalisation on international exchanges, the 
presence of a core-periphery structure and the evolution of community centres of trade 
are just some of the issues addressed by recent developments (see Serrano et al. 2007; 
Tzekina et al. 2008; Fagiolo et al. 2010; De Benedictis and Tajoli 2011; Blöchl et al. 2011; 
Grassi et al. 2021; Ercsey-Ravasz et al. 2012). Recently, some works have correlated com-
mercial trade with COVID-19 diffusion from a network point of view (Antonietti et al. 
2020; Reissl et al. 2021; Kiyota 2022; Fagiolo 2020; Gruszczynski 2020).

Such results further motivate the analysis of the link between the COVID-19 pan-
demic and the trade networks between countries.

Methodology and network indicators
In this section, we briefly introduce the definitions of the centrality measures used later 
for the econometric analysis. We then describe the methodology that we apply in the 
paper. In particular, we use the community detection method based on the Estrada com-
municability distance, recently proposed in Bartesaghi et al. (2020). We present the main 
steps of the methodology and we refer the reader to the cited reference for a detailed 
description.

The application of centrality measures, as well as the study of the network topology of 
the WTN, are useful in explaining the initial diffusion of the pandemic, as explained in 
“Related literature” section. The origins of COVID-19 are still largely uncertain, as well 
as the very early stages of its spread outside China. However, it can be supposed that, 
during this first period, the chances of “importing” the SARS-COV-2 virus were not the 
same for all countries. On the contrary, the established trade routes for the circulation of 
commodities and the mobility of people have probably driven the direct or the indirect 
import of the SARS-COV-2 virus inside national borders, determining significant initial 
differences in the early contagion rates between entire clusters of countries.

These reasons motivate the use of centrality measures and of the Estrada commu-
nicability distance in explaining the first wave of the contagion. On the one hand, the 
Estrada communicability distance allows us to highlight the strategic commercial links, 
which can survive beyond a global shock. On the other hand, suitable centrality meas-
ures quantify specific factors, such as the number and volume of trades, the power of 
a country in commercial framework and triadic relations between countries, which are 
non-negligible in studying the initial diffusion of the pandemic.
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From now on, we consider a simple weighted undirected network G = (V ,E), 
where V is the nodes set with |V | = n and E is the set of links. The unweighted and 
weighted adjacency relations are represented by matrices A and W , respectively.

Centrality measures

Many centrality measures have been proposed in the literature. Among them, some 
measures highlight various characteristics of the WTN.

The first measure we use in the analysis is the most intuitive one, i.e. the degree 
centrality. This measure counts the number of links incident on a vertex. For 
weighted networks, the corresponding measure is the strength centrality. In the 
WTN, these measures quantify how much a country directly trades, in terms of 
number and volume of trades.

The eigenvector centrality [see Bonacich (1972)] is formally represented by the i-
th component of the principal eigenvector of the adjacency matrix. Since it quanti-
fies the connections of a vertex with its neighbours that are themselves central, it 
can be interpreted as a measure of the power of a country in the trading scenario. 
The extension to the weighted case is immediate, as the weighted adjacency matrix 
W preserves all characteristics of A.

The betweenness centrality of a node is the fraction of the shortest paths between 
pairs of nodes passing through it. With reference to the WTN, with trade many other 
elements are transferred between countries. In this perspective, this measure quan-
tifies the influence that a country has in spreading information within the network.

We also consider the local clustering coefficient, which measures the tendency to 
which nodes in a network tend to cluster together. Since the WTN is represented by 
an indirect and weighted network (see “Data, samples and variables” section for a 
detailed description of the network), we focus on the local weighted coefficient pro-
posed by Onnela et al. (2005):

where di is the degree of node i and W̃ is the weighted adjacency matrix obtained by 
normalizing the entries wij of W as w̃ij =

wij

max(wij)
 ∀i, j . Notice that Ci(W̃) = Ci represents 

the geometric mean of the links weights incident to the node i, divided by the number of 
potential triangles di(di − 1) centred on it. The main idea is to replace the total number 
of triangles in which a node i belongs with the “intensity” of the triangle, defined here as 
the geometric mean of its weights. Since it is a measure of how many nodes are locally 
clustered, the clustering coefficient is extremely interesting to investigate in the context 
of international trade. Indeed, trade relationships induce a dependency between coun-
tries, as two nodes that are both trading partners of a node are likely to trade themselves. 
From this perspective, it is interesting to investigate how countries are reciprocally 
dependent, that is, how nodes are clustered together.

(1)Ci(W̃) =

∑

j

∑
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Community detection based on communicability distance

The main idea is to detect communities by optimising a quality function that exploits 
the additional information contained in a metric structure based on the Estrada com-
municability. At first, we recall the definition of the Estrada communicability (simply, 
communicability) between two nodes i and j (see Estrada and Hatano (2008)):

As the ij-entry of the k-power of A provides the number of walks of length k starting at i 
and ending at j, Gij accounts for all channels of communication between two nodes, giv-
ing more weight to the shortest routes connecting them. The elements Gii , i = 1, . . . , n 
are known in the literature as subgraph centrality (Estrada and Rodriguez-Velazquez 
2005). The communicability matrix is, then, the exponential of the matrix A , simply 
denoted by G.

In the case of a weighted network, the weighted communicability function is 
defined as

where S is the diagonal matrix whose diagonal entries are the strengths of the nodes. 
Following Crofts and Higham (2009), the matrix W in Formula (3) has been normalized 
to avoid the excessive influence of links with higher weights in the network.

Using the communicability, a meaningful distance metric ξij can be constructed, as 
defined in (Estrada 2012):

By definition, communicability measures the amount of information transmitted from 
node i to j. On the other hand, Gii measures the importance of a node according to its 
participation in all closed walks to which it belongs. Hence, in terms of information dif-
fusion, Gii is the amount of information that, after flowing along closed walks, returns to 
node i.

Thus, the quantity ξij accounts for the difference in the amount of information that 
returns to nodes i and j and the amount of information exchanged between them. The 
greater is Gij , the larger is the information exchanged and the nearer are the nodes; 
the greater are Gii or Gjj , the larger is the information that comes back to the nodes 
and the farther are the nodes. Since ξij is a metric, then Gii + Gjj ≥ 2Gij , i.e. no mat-
ter what the structure of the network is, the amount of information absorbed by a 
pair of nodes is always larger than or equal to the amount of information transmitted 
between them.

This metric is meaningful if we apply it to the WTN. Indeed, network flows 
along links measure how well two countries communicate in terms of commercial 
exchanges. For instance, the link between two nodes may be identified with the total 
trade or money flow between two countries.

(2)Gij =

+∞
∑

k=0

1
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(4)ξij = Gii − 2Gij + Gjj .
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We assume that two nodes are considered members of the same community if their 
mutual distance ξij is lower than a threshold ξ0 ∈ [ξmin, ξmax] . In particular, we construct a 
new community graph with adjacency matrix M = [mij] given by:

In this way, clustered groups of nodes that ’strongly communicate’ emerge, varying the 
threshold ξ0.

As well explained in Bartesaghi et al. (2020), ξ0 is not arbitrarily chosen but is obtained by 
solving the following optimisation problem:

The objective function Q is

where xij is a binary variable equal to 1 if nodes i and j belong to the same community 
and 0 otherwise. γij is a function measuring the cohesion between nodes i and j. Origi-
nally proposed in Chang et al. (2016), it is defined in Bartesaghi et al. (2020) as follows:

where ξ̄j is the average distance between node j and nodes other than j and ξ̄ is the aver-
age distance over the whole network.

Since two nodes are cohesive (and incohesive, respectively) if γij ≥ 0 (γij ≤ 0) , in terms of 
distance, they are cohesive if they are close to each other and, on average, they are both far 
away from the other nodes.

From this perspective, γij can be seen as the ’gain’ if positive or the ’cost’ if negative of 
grouping two nodes i and j in the same community. The applied methodology will allow us 
to discover communities in the WTN based on all the possible channels of interactions and 
exchanges between countries.

Econometric model

Baseline model

In what follows, we want to assess the role of the WTN in the evolution of the pandemic in 
the five weeks between March 11th and April 21st, 2020. At the same time, we want to con-
trol for additional socio-economic factors that can have an impact on the diffusion of the 
pandemic. To avoid the possibility that, in turn, these factors might be affected by COVID-
19 diffusion, we include them as referring to 2019.

The baseline model that we adopt to test for the role that network centrality has played 
in explaining the number of infections (INF) and deaths (DEATH) in the first wave of the 
COVID-19 outbreak (i.e. between March 11st, 2020 and April 21st, 2020) is the following:

(5)mij =

{

1 if ξij ≤ ξ0
0 otherwise

ξ0 ∈ arg maxQ.

(6)Q =
∑

i,j

γijxij ,

(7)γij = (ξ̄j − ξ̄ )− (ξij − ξ̄i),

(8)Yit = β0 + β1,iTNCi + Z′
iβZ + γt + ǫit
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where Yit is either the number of COVID-19 infections (INF) or the number of deaths 
(DEATH) in country i and week t. The variable TNCi stands for trade network central-
ity and represents a given centrality measure1 (respectively: degree, strength, weighted 
eigenvector and weighted clustering coefficient) measured in 2019; Z is a vector of addi-
tional regressors that can explain the number of infections and fatalities due to COVID-
19, namely GDP per capita (GDPPC, at constant 2010 US$), total resident population 
(POP), the share of elderly population (POP65+), the number of hospital beds per 1,000 
inhabitants (HBEDS) and the average temperature in February and March (TEMP) in 
degrees Celsius, all measured in 2019. The term γt is a series of five week-specific dum-
mies that capture the trend in the dynamics of COVID-19 infections and fatalities for 
all our countries,2 while ǫit is the stochastic error component with zero mean and finite 
variance σ 2

ǫ  . To control for the unobserved arbitrary within-group correlation of our 
observations, we cluster the standard errors at the country level.

Since Yit is a count variable, and our regressors are time-invariant because they are 
all measured in 2019, we estimate Eq.  (8) using a pooled negative binomial regression 
model. As is common for count-data models, we test for the overdispersion of our data, 
that is, for the fact that the conditional mean can be lower than the conditional vari-
ance, typically due to the presence of unobserved factors than can affect the number of 
COVID-19 infections or deaths. In such a case, the main assumption for the use of the 
Poisson model is violated, and the negative binomial model fits the data better.

We also check for the presence of potential multicollinearity by re-estimating Eq. (8) 
through a linear regression model and using a variance inflation factor (VIF) statistic. 3 
Multicollinearity can be considered an issue if the VIF statistic takes a value higher than 
the commonly accepted threshold of 5. To check which of the proposed trade network 
centrality measures provides the highest explanatory power in predicting Yit , we use the 
Akaike information criterion (AIC) and Bayesian information criterion (BIC).

To compare the magnitude of the estimated coefficients, we standardise all the regres-
sors by subtracting their mean and dividing by their standard deviation. For each vari-
able, we report the incidence rate ratio (IRR), which measures the impact of a unit 
increase of the regressor on the risk of contagion (mortality) from COVID-19, computed 
as the ratio between the number of infected (deceased) individuals and the number of 
non-infected (surviving) individuals. In this respect, the IRR of a regressor is easier to 
interpret than the corresponding estimated coefficient, since the latter measures the 
impact of a unit increase in the regressor itself on the log of the expected number of 
infections or deaths. We also test for the validity of our negative binomial regression 
mode in two ways. First, we estimate Eq. (8) using a Poisson model, and we use the Pear-
son goodness of fit test, where a significant χ2-distributed statistic would reveal that, 
because of overdispersion in the data, the Poisson regression model is not appropri-
ate, and a negative binomial specification should be preferred. Second, after estimating 

1  As it will be seen in Table 3, network centrality measures are highly correlated and, therefore, we use network central-
ity measures one at a time in Eq. (8).
2  We have also estimated Eq.  (8) without the week dummies, and we do not find any relevant change in the results. 
Rather, we find that the goodness of fit of the model decreases. The results are not available here for reasons of space but 
are available upon request.
3  The VIF is the ratio of variance in a model that uses multiple independent variables and the variance of a model that 
uses only one independent variable. This statistic is used to test for the severity of multicollinearity in linear regressions. 
To see in detail how VIF statistic works, we refer, for instance, to James et al. (2013).
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Eq.  (8), we compute the average predicted probabilities and we compare the observed 
number of infections and deaths with the number predicted by our negative binomial 
regression model.

Econometric model considering WTN mesoscale structure

To check whether the WTN community structure had an impact on COVID-19 dif-
fusion during the first wave, we re-estimate Eq.  (8) using an averaged local clustering 
coefficient of network communities detected with the methodology described in “Com-
munity detection based on communicability distance” section. We then compare the 
IRRs with those estimated for the local clustering coefficient (as in Eq. (1)). Specifically, 
for each community, we compute the average of the clustering coefficients C̄ of the coun-
tries therein. Therefore, each country in community k has a new clustering coefficient 
equal to C̄k , defined by

where nk is the size of community k and Ci, is the local clustering coefficient of node i as 
in Eq. (1).

Coefficient C̄ has two properties: on the one hand, it still reflects the country’s central-
ity within all its triadic relations expressed by the local clustering coefficient in Eq. (1). 
On the other hand, C̄ takes into account the mesoscale structure of the WTN based 
on communicability. In other words, with this new coefficient, we capture the impact 
of a country’s centrality in a subset of the WTN, where nodes strongly exchange trade-
related information that can be directly observable (such as merchandise trade) or indi-
rectly observable (such as the interactions characterising the supply chain of a good).

We then re-estimate Eq.  (8) using as a network centrality measure the average com-
munity local clustering C̄k , as in Eq. (9), and we compare the newly estimated IRR with 
that of the local clustering coefficient of each country. We also provide a series of robust-
ness tests in which we re-estimate Eq. (8) week by week, dropping the term γt and using 
a series of five distinct cross-sectional negative binomial regression models for each of 
the two dependent variables, INF and DEATH, respectively. In this way, we can observe 
whether, and to what extent, the estimated IRRs vary along the first wave of the COVID-
19 pandemic, and test for the stability of the IRRs for the country-specific network cen-
trality measures, as compared with the corresponding community-level measures.

Data, samples and variables
Dataset description

The empirical analysis is based on two datasets. The first is used to construct the net-
work and consists of a sample of monthly trade values during the first semesters of 2019 
and 2020 for 55 countries4 listed in Table 11 of “Appendix A”. Data are provided by the 

(9)C̄k =
1

nk

nk
∑

j=1

Cj

4  We notice that the list of countries does not contain France, Russia and China, which are among the largest in terms 
of trade. The reason lies in the lack of WTN data from UN COMTRADE (2021) for these countries for the first half of 
2020. However, concerning these countries, we expect that community detection results are in line with those obtained 
for the year 2016 by Bartesaghi et al. (2020), as the network nature is the same, as well as the applied methodology. The 
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UN COMTRADE (2021), which is the largest depository of international trade data. It 
contains over 40 billion data records since 1962 and is available publicly on the internet.

The second is used to analyse the relationship that such a trade network has with 
COVID-19 diffusion. Data on COVID-19 diffusion come from the The European Cen-
tre for Disease Prevention and Control (2021) (ECDC), an EU agency for the protection 
of European citizens against infectious diseases and pandemics. The data on the distri-
bution of COVID-19 worldwide are updated daily by the ECDC’s Epidemic Intelligence 
team, based on reports provided by national health authorities. Since we are interested 
in the first wave of the pandemic, we retrieve cross-country daily data on the number of 
COVID-19 infections and deaths, which we pool into five weeks from March 11st, 2020 
to April 21st, 2020.

To control for other factors that can potentially affect the diffusion patterns of 
COVID-19, we also consider the following country-level information provided by The 
World Bank (2021): the real GDP per capita (GDPPC, in 2010 USD), used as a proxy for 
the average standard of living in a country; the total resident population (POP), taken 
as a proxy for a country’s size; the share of population aged 65 or higher (POP 65+); the 
number of hospital beds per capita available in public, private, general, and specialized 
hospitals and rehabilitation centres (HBEDS), which we include to capture the average 
quality of the health system in each country; and the average temperature in February 
and March (TEMP) in degrees Celsius, ◦ C.

Network construction

Trades between countries are represented as a weighted network, where each country is 
a node and connections, i.e. links between nodes, are measured by the amount of traded 
volume (expressed in US dollars).

At first, we separately compute the aggregate trade values of imports and exports 
between each pair of countries. We then consider a pair of countries (i, j) such that both 
imports and exports exist. Specifically, focusing on trade flows from i to j, let wimp

ij  and 
w
exp
ij  be the aggregate import trade value and the aggregate export value, respectively, 

from i to j. We then place a weighted link from i to j representing the average value 
between imports and exports, defined as follows:

Notice that, due to the incompleteness of the data,5 in general, w̄ij �= w̄ji . The resulting 
network is then weighted and oriented, with bilateral links between two nodes eventu-
ally forming.

w̄ij =

{

w
imp
ij +w

exp
ij

2
if w

imp
ij > 0 and w

exp
ij > 0

0 otherwise

5  Since we refer to 2019 and 2020, not all countries have completely communicated their data to UN Comtrade.

Footnote 4 (continued)

authors show that France belongs to the European cluster. China is one of the major players in the Pacific cluster, while 
Russia belongs to the Baltic cluster.
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Since the approach of Bartesaghi et al. (2020), based on the communicability distance, 
has been developed on indirect networks, we investigate whether it is possible to neglect 
the direction of the links. To this end, we compute the Spearman correlation between in 
and out strength distribution for each year of the sample. The resulting correlations are 
0.99 for both years. We then can substitute the bilateral arcs between nodes i and j with 
a single non-oriented link having weight given by the maximum value between w̄ij and 
w̄ji , i.e.

This choice is based on an information quality reason: we expected that the higher the 
value traded, the higher is the quality of the information that can be contained.

In Table 1, we report the global network indicators of the WTN for 2019 and 2020. As 
expected, the network shows an extremely connected, dense and almost complete struc-
ture. This is certainly confirmed by the average degree (51 and 52) and density6 (0.937 
and 0.948 for 2019 and 2020, respectively). A high value of the transitivity (0.953 and 
0.959 for 2019 and 2020, respectively)7 denotes a strong interconnection among coun-
tries. The WTN network is depicted in Figs. 8 and 9 of “Appendix B”.

Tables 2 and 3 show the main summary statistics and the pairwise correlations among 
the WTN 2019 network centrality measures and the socio-economic data, which will be 
used as regressors in Eq.  (8). As discussed in “Econometric model” section, the WTN 
centrality measures and the socio-economic factors refer to 2019 to avoid the possibility 
that these factors might be affected by the diffusion of COVID-19.

Results
In this section, we present the results emerging from the analysis of the topology of the 
WTN and from the econometric regressions. The former makes a resilient mesoscale 
structure emerge in the international trade among countries, while in the latter, we 
show that both countries’ and communities’ centrality are good predictors of the risk 
of COVID-19 infections and deaths. In line with our expectations, this can explain the 
reason why one country was more vulnerable than another during the first wave of the 
pandemic.

wij = max(w̄ij , w̄ji).

Table 1  Global network indicators of the WTN for 2019 and 2020

Feature 2019 2020

Number of nodes 55 55

Number of links 1392 1409

Average degree 51 52

Density 0.937 0.948

Transitivity 0.953 0.959

6  Density measures how many links between nodes exist compared to how many links between nodes are possible.
7  The transitivity coefficient is the ratio between the number of actual triangles and the number of potential ones (see 
Newman (2001)). It expresses the network cliquishness, as it can be seen as the probability that the adjacent nodes of a 
reference node are themselves connected.
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Evolution of WTN during COVID‑19

We apply the methodology described in “Community detection based on communica-
bility distance” section by using the communicability distance. As already stressed in the 
previous sections, the WTN is characterized by an almost complete structure, where 
direct connections between countries are dominant. With this approach, we have a tool 
to quantify the depth of the level of communication between countries. At first, we com-
pute the communicability distance between countries for networks in 2019 and 2020 by 
applying Formula (4). In 2019, the nearest countries are Canada and the United States 
( ξmin = 1.1166 ), and they still remain in 2020 ( ξmin = 1.1316 ). In 2019, the farthest 
countries were Kyrgyzstan and the United States ( ξmax = 1.4969 ), whereas in 2020, the 
farthest were the United States and Iceland ( ξmax = 1.5077 ). These results underline the 
central role of the United States in the WTN and at the beginning of the pandemic.

We then apply the community detection method based on the communicability dis-
tance. The optimal thresholds ξ∗0  maximising the quality function Q defined in Eq.  (6) 
are 1.3676 and 1.3723 for 2019 and 2020, respectively. The corresponding optimal val-
ues of the quality function Q∗ are 86.2301 and 87.0466 for 2019 and 2020, respectively. 
Figures 1 and 3 report the community graphs whose adjacency matrices are computed 
according to Formula (5). Communities obtained with the optimal threshold ξ∗0  for both 
years are also shown in Figs. 2 and 4, through a world map representation.

Grey countries are those not included in the sample, while the yellow countries are the 
isolated nodes, which, in the following, will be denoted as the rest of the world.

Observe that, in 2019, the number of communities is 22 with 18 isolated nodes, 
whereas in 2020, this number is 21 with 16 isolated nodes. The slight reduction in the 
number of communities can be explained by the effect of a strengthening of long-range 
alliances: on the one hand, countries reinforce the existing links, and on the other hand, 
they make deals with geographic neighbours.

In correspondence with the optimal threshold ξ∗0  , community detection in the WTN 
shows a fragmented structure, where three strong communities emerge. The first is 
the European community, containing 12 European countries; the second contains the 
United States, Canada, Japan and Australia; and the third community includes the 

Table 2  Summary statistics referred to 2019

Variable Mean Std. dev. Min Max

Network centrality

Degree 50.62 5.223 27 54

Betweenness 0.0011 0.0008 0 0.0019

Local clustering 0.0022 0.0026 0.0001 0.0122

Weighted Eigenvector 0.109 0.198 0.0002 1

Strength (:109) 53.71 96.00 0.130 485.9

Additional regressors

GDPPC 27085.33 26413.5 809.36 111062.3

POP (mln) 53.754 187.62 0.3613 1366.4

POP65+ 0.147 0.063 0.026 0.280

HBEDS 4.031 2.375 0.600 13.40

TEMP (C) 6.181 10.89 − 20.99 26.80
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Fig. 1  Community graph obtained with the communicability distance method in 2019

Fig. 2  World map with the optimal community structure in 2019
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Fig. 3  Community graph obtained with the communicability distance method in 2020

Fig. 4  World map with the optimal community structure in 2020
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North European group. The member of these communities are listed in Table  4 for 
2019 and in Table 5 for 2020.

Not surprisingly, we can also observe a persistence of the community structure 
in the WTN during the pandemic situation. The type of data (average total trade 
exchanged) do not allow us to show important movements. We expect that, by focus-
ing on some specific sectors (such as, for example, the pharmaceutical industry), pos-
sible community changes could be noticed; however, at this time, the available data do 
not allow us to do this.

Moreover, the analysis period starts in January and ends in June. Those months in 2020 
contain only the beginning of the COVID-19 pandemic, i.e. the so called ’first wave’. Rea-
sonably, the COVID-19 pandemic situation cannot be reflected immediately in the trade 
volumes, and it is not possible to see the effects of the containment measures.

We now compare the results obtained with the methodology proposed in Bartesaghi 
et al. (2020) with a classical methodology in community detection, the Louvain method 
(Blondel et al. 2008). This method is based on the maximisation of a modularity score 
for each community, where the modularity function quantifies the quality of an assign-
ment of nodes to communities. We observe that the classical method provides a less 
detailed division in the WTN. In both years, we can observe three communities: the first 
one contains Europe, the second one contains the United States and Pacific area and the 
third corresponds to Northern Europe.

Figures 5 and 6 report the communities obtained by applying the Louvain method for 
the year 2019 and 2020, respectively.

“Appendix C” shows in detail the results obtained with this method. Members of commu-
nities are plotted in Figs. 10 and 11 for 2019 and 2020, respectively. The two lists of countries 
collected into communities are shown in Tables 12 and 13 for 2019 and 2020, respectively.

Table 4  Members of the five most populous communities in 2019

Size Members

Community 1 6 AUS CAN JPN NZL PHL USA

Community 2 14 BEL CHE CZE DEU ESP GBR HUN

IRL ITA MDA NLD PRT ROU SVK

Community 3 5 BIH HRV MNE SRB SVN

Community 4 7 DNK EST FIN LTU LVA NOR SWE

Community 5 3 ARM AZE GEO

Table 5  Members of the six most populous communities in 2020

Size Members

Community 1 6 AUS CAN JPN NZL PHL USA

Community 2 12 BEL CHE CZE DEU ESP GBR HUN

IRL ITA NLD PRT SVK

Community 3 5 BIH HRV MNE SRB SVN

Community 4 7 DNK EST FIN LTU LVA NOR SWE

Community 5 3 ARM AZE GEO

Community 6 3 ISL MDA ROU



Page 17 of 29Antonietti et al. Applied Network Science            (2022) 7:18 	

We notice that, as with the methodology based on communicability distance, the 
Louvain method also reveals a structural persistence in the WTN during the first wave 
of the COVID-19 pandemic. This is in line with the recent results obtained by Kiyota 
(2022). We emphasise that the classical method catches only a persistence in the macro-
scopic structure, while the method of Bartesaghi et al. (2020) reveals a persistence in the 
mesoscale structure. This result confirms that by looking beyond the direct connections, 
it is possible to capture a strong interactions between countries.

Impact of countries’ centrality measures on the COVID‑19 pandemic

Baseline econometric model

Tables 6 and 7 show the results of regressions (as in Eq. (8)) concerning, respectively, the 
number of COVID-19 infections and the number of COVID-19 deaths. In both tables, 
each column reports the results of a regression based on a model that uses the five dif-
ferent TNC indicators introduced in “Econometric model” section one at a time.

In Table 6, we see that the IRRs of all our centrality indicators are always statistically 
significant and higher than 1: in general, a higher country centrality in the international 
trade network corresponds to a higher risk of infection.

Specifically, we find that, ceteris paribus, a one unit increase in each TNC indicator is 
associated with an expected increase in the risk of infection by a factor ranging from 3.2 
(Column 4 referred to the weighted eigenvector) to 4.2 (Column 3 referred to the local 
clustering coefficient). Moreover, we note that the IRR of each TNC indicator is always 

Fig. 5  Communities obtained with the Louvain method referred to 2019
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higher than the IRR of each other regressor, meaning that a country’s centrality in the 
WTN is a key variable when analysing the initial diffusion of COVID-19.

Interestingly, the AIC and BIC statistics, in line with the value of the pseudo log-like-
lihood and the pseudo R2 , show that the model with the highest goodness of fit with 
respect to the observed number of infections is that of Column 3, where the TNC indi-
cator corresponds to the local clustering coefficient. Incidentally, the IRR of this latter is 
also the highest among all the other TNC indicators.

In addition, both in Table 6 and in Table 7, we find that the Pearson goodness of fit 
test always rejects the null hypothesis that the sample mean equals the sample variance, 
leading to the conclusion that a negative binomial regression model fits our data bet-
ter than a Poisson model does. The validity of our models is also confirmed in Fig. 7, 
where we plot the differences between observed and predicted infections (left chart) and 
deaths (right chart) for a maximum number of 20. Comparing the two charts, we find 
that these differences are lower for the number of infections, for which the average dif-
ference over the total number of cases is of the order of 0.002. In any case, even the dif-
ference between the observed and the predicted number of deaths remains low, e.g. of 
the order of 0.008 across the entire distribution.

Looking at the other regressors, we find that the risk of infection increases with the 
country’s GDP per capita (Columns 3–5), with the share of elderly population (Columns 
1 and 3–5) and with a lower endowment of health facilities (Columns 3–5), confirming 
previous results obtained for a wider set of countries (Antonietti et al. 2021a).

Fig. 6  Communities obtained with the Louvain method referred to 2020
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The same kinds of results emerge for the case of COVID-19 fatalities, as shown in 
Table  7. Again, we find that the higher a country’s centrality in the trade network, 
the higher the risk of death due to COVID-19. Ceteris paribus, if a country’s central-
ity increases by one unit, the risk of death is expected to increase by a factor ranging 
from 2.9 (Column 1) to 8.6 (Column 3). Again, the AIC and BIC statistics show that 
the econometric model that uses the local clustering coefficient is the one with the 
highest goodness of fit with respect to the observed number of deaths.

In addition, and still in line with previous literature (Antonietti et  al. 2021a), we 
find that the risk of death increases with the share of elderly population and with a 
lower endowment of hospital beds in a country. On top of this, both in Table 6 and 

Table 6  Negative binomial regressions: infections, incidence rate ratios

Country-level clustered standard errors in parentheses.

All the estimates also include a constant term. * p < 0.1 ; **p < 0.05 ; ***p < 0.01

DEP. VAR.: INF (1) (2) (3) (4) (5)

Degree 3.608***

(0.631)

Betweenness 4.121***

(1.868)

Local Clustering 4.201***

(0.968)

Weighted Eigenvector 3.225***

(0.875)

Strength (:109) 3.339***

(1.052)

GDPPC 1.676 1.147 1.191** 1.238* 1.264**

(0.632) (0.266) (0.103) (0.144) (0.133)

POP 3.026 1.813 1.023 1.132 1.136

(3.227) (2.130) (0.134) (0.224) (0.184)

POP65+ 2.226*** 1.685 1.688*** 2.680*** 2.420***

(0.685) (0.539) (0.294) (0.636) (0.564)

HBEDS 0.678 0.710 0.585*** 0.557** 0.555***

(0.212) (0.230) (0.087) (0.132) (0.107)

TEMP 1.120 0.728 1.080 1.387 1.316

(0.226) (0.335) (0.142) (0.350) (0.231)

Week dummies Yes Yes Yes Yes Yes

Overdispersion (α) 1.319*** 1.393*** 0.998*** 1.263*** 1.193***

(0.209) (0.170) (0.178) (0.213) (0.204)

N 275 275 275 275 275

Log Pseudo-likelihood − 2490.6 − 2500.5 − 2440.5 − 2482.5 − 2472.2

AIC 5005.1 5025.1 4905.1 4989.0 4968.4

BIC 5048.5 5068.5 4948.4 5032.4 5011.82

Pseudo R2 0.076 0.072 0.094 0.079 0.083

Max VIF 3.01 3.20 2.72 2.57 2.60

Mean VIF 1.79 1.89 1.73 1.69 1.68

Pearson GOF test 1.34e+07 1.29e+07 2061931 2680124 2229799

p-value 0.000 0.000 0.000 0.000 0.000
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in Table 7, the VIF statistics are low enough with respect to the commonly accepted 
threshold of 5, showing again that multicollinearity is not an issue.

Econometric result considering WTN mesoscale structure

The results of the econometric analysis with the community average clustering coef-
ficient are shown in Table  8. Columns 1 and 3 report the results shown in Column 3 
of Tables 6 and 7 concerning infections (INF) and deaths (DEATH), respectively, while 
Columns 2 and 4 show the new results for the model that uses average community coef-
ficient C̄k as the main regressor.

Interestingly, we find that a unit increase in averaged local clustering coefficient C̄k 
corresponds to a higher risk of infection and death as compared to country i local clus-
tering coefficient Ci . Those risks pass from an order of 4.2 to 5.6 in the case of infection 
and from an order of 8.6 to 10.3 in the case of death. These results confirm that com-
munity-specific measures of country centrality can provide even stronger results on the 
first-wave diffusion patterns of COVID-19. The fact that communities are detected using 
a wider set of trade-related information between countries, which implicitly include 
unobserved flows of people other than merchandise, allows us to account for a higher 
risk of contagion attributable to international trade.

Finally, Tables 9 and 10 show the results of our additional robustness tests. As spec-
ified in “Econometric model considering WTN mesoscale structure" section, we have 
re-estimated Eq. 8 for each single week from March 11th to April 21st 2020, using five 
negative binomial regression models on a corresponding sample of 55 countries. To 
save space, each column reports only the IRR of the Local Clustering variable among 
the TNC indicators. We have also estimated each of the five equations using the Aver-
age Community Clustering as the main regressor, and in both tables, we only report 

Fig. 7  Difference between observed and predicted INF (left) and DEATH (right)
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the corresponding IRR in order to compare it with that of the Local Clustering. Three 
interesting results emerge from both of the tables. First, the estimates confirm that 
the IRR of Local Clustering is highly statistically significant, larger than 1 and of an 
order of magnitude comparable to that obtained in Tables 6 and 7, Column 3. Second, 
we observe that the IRR of Local Clustering increases over the weeks in Table 9 and 
decreases in Table 10, which means that a country’s centrality in the WTN correlates 
with the risk of infection more and more intensively as the pandemic spreads over 
time, whereas the correlation with the death risk becomes less and less intense. Third, 
we also find that the IRR of the Average Community Clustering is of the same mag-
nitude as that obtained in Table 8 and always larger than the IRR of Local Clustering.

Table 7  Negative binomial regressions: deaths, incidence rate ratios

Country-level clustered standard errors in parentheses.

All the estimates also include a constant term. * p < 0.1 ; **p < 0.05 ; ***p < 0.01.

DEP. VAR.: DEATH (1) (2) (3) (4) (5)

Degree 2.878***

(0.888)

Betweenness 6.750***

(3.022)

Local Clustering 8.648***

(3.579)

Weighted Eigenvector 5.123**

(3.339)

Strength (:109) 6.893***

(5.123)

GDPPC 1.458 0.755 0.930 0.933 0.966

(0.671) (0.162) (0.141) (0.149) (0.136)

POP 2.897 1.486 0.867 1.020 1.016

(3.258) (1.636) (0.102) (0.196) (0.169)

POP65+ 6.223*** 3.099*** 2.136*** 5.423*** 4.037***

(2.549) (1.216) (0.606) (2.338) (1.830)

HBEDS 0.370*** 0.434*** 0.484*** 0.382*** 0.429***

(0.105) (0.127) (0.099) (0.119) (0.127)

TEMP 1.721 0.973 1.426* 1.968 1.915**

(0.471) (0.424) (0.272) (0.814) (0.556)

Week dummies Yes Yes Yes Yes Yes

Overdispersion ( α) 2.245*** 2.055*** 1.400*** 1.933*** 1.805***

(0.283) (0.255) (0.217) (0.266) (0.263)

N 275 275 275 275 275

Log Pseudo-likelihood − 1519.4 − 1500.6 − 1437.9 − 1490.9 − 1479.2

AIC 3062.9 3025.3 2899.9 3005.7 2982.3

BIC 3106.3 3068.7 2943.3 3049.2 3025.7

Pseudo R2 0.101 0.112 0.149 0.118 0.124

Max VIF 3.01 3.20 2.72 2.57 2.60

Mean VIF 1.79 1.89 1.73 1.69 1.68

Pearson GOF test 1.07e+07 713491.1 228495.4 297189.9 301596.9

p-value 0.000 0.000 0.000 0.000 0.000
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Table 8  General versus average community clustering coefficient and COVID-19 diffusion

Country-level clustered standard errors in parentheses.

All the estimates also include a constant term.

*p < 0.1 ; **p < 0.05 ; ***p < 0.01

DEP. VAR.: INF DEATH

(1) (2) (3) (4)

Local clustering 4.201*** 8.648***

(0.968) (3.579)

Average community clustering 5.551*** 10.25***

(2.486) (4.977)b

GDPPC 1.191** 1.510** 0.930 1.166

(0.103) (0.243) (0.141) (0.199)

POP 1.023 2.499 0.867 2.107

(0.134) (2.467) (0.102) (2.137)

POP65+ 1.688*** 1.705** 2.136*** 2.945***

(0.294) (0.425) (0.606) (0.904)

HBEDS 0.585*** 0.652* 0.484*** 0.419***

(0.087) (0.146) (0.099) (0.087)

TEMP 1.080 0.980 1.426* 1.294

(0.142) (0.286) (0.272) (0.448)

Week dummies Yes Yes Yes Yes

Overdispersion ( α) 0.998*** 1.344*** 1.400*** 1.898***

(0.178) (0.211) (0.217) (0.284)

N 275 275 275 275

Pseudo R2 0.094 0.074 0.149 0.120

Table 9  Robustness tests on infections (INF) by weekly estimates

Country-level clustered standard errors in parentheses.

All the estimates also include a constant term.

*p < 0.1 ; **p < 0.05 ; ***p < 0.01.

DEP. VAR.: INF Week 1 Week 2 Week 3 Week 4 Week 5

Local Clustering 3.985*** 4.257*** 4.180*** 4.307*** 4.327***

(0.880) (0.969) (0.927) (1.003) (1.042)

Average Community Clustering 5.160*** 6.066*** 5.713*** 5.613*** 5.362***

(2.560) (2.824) (2.521) (2.417) (2.318)

GDPPC 1.405*** 1.302*** 1.174* 1.087 1.011

(0.120) (0.115) (0.108) (0.097) (0.094)

POP 0.950 0.911 1.006 1.053 1.110

(0.162) (0.112) (0.131) (0.128) (0.150)

POP65+ 2.148*** 1.878*** 1.707*** 1.517** 1.414**

(0.360) (0.311) (0.304) (0.285) (0.287)

HBEDS 0.470*** 0.528*** 0.566*** 0.631*** 0.674**

(0.060) (0.077) (0.086) (0.097) (0.111)

TEMP 1.208 1.173 1.056 1.029 0.979

(0.203) (0.146) (0.136) (0.144) (0.142)

Overdispersion ( α) 0.948*** 0.957*** 0.963*** 0.955*** 1.002***

(0.191) (0.191) (0.186) (0.174) (0.176)

N 55 55 55 55 55

Pseudo R2 0.108 0.096 0.089 0.084 0.079
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Conclusions
In this paper, we evaluate the relationship between the WTN’s structure and the first 
wave of COVID-19. The complex nature of the trade relationships between coun-
tries requires them to be investigated using effective network tools to reveal the hid-
den mesoscale structure, which is characterised by strong interconnections, as well 
as to assess countries’ central positions in the network. These trade relationships 
could have been impacted by the COVID-19 pandemic, both directly because of 
the spread of the virus and indirectly due to the policies that countries have imple-
mented to reduce the pandemic’s diffusion and consequences. At the same time, it 
is very possible that the pandemic itself has been favoured by the complex network 
of relationships are established when trade occurs. Through network measures, we 
have evaluated the extent to which the WTN has been affected by COVID-19 and the 
extent to which countries’ centrality explains the diffusion and mortality of COVID-
19. Moreover, we have shown that the WTN’s mesoscale structure has been resilient 
to the diffusion of the pandemic. Even if such a result was expected at the global level, 
we have shown that it holds also when looking at the number and members of the 
communities that emerged before and during the outbreak of COVID-19, showing 
that the strength of long-range alliances have not been affected by the beginning of 
the COVID-19 pandemic.

On the contrary, country centrality has shown to be a key explanatory variable for 
the diffusion and mortality of COVID-19. We showed that country centrality measures 
strongly explained the risk of infection and mortality, when controlling for other possi-
ble confounding socio-economic factors.

Table 10  Robustness tests on deaths (DEATH) by weekly estimates

Country-level clustered standard errors in parentheses.

All the estimates also include a constant term.

*p < 0.1 ; **p < 0.05 ; ***p < 0.01.

DEP. VAR.: DEATH Week 1 Week 2 Week 3 Week 4 Week 5

Local Clustering 11.23*** 8.890*** 7.681*** 7.837*** 7.974***

(5.953) (3.903) (2.887) (2.854) (2.898)

Average Community Clustering 10.09*** 10.53*** 9.609*** 9.985*** 9.838***

(5.996) (5.640) (4.460) (4.670) (4.550)

GDPPC 1.147 1.025 0.900 0.898 0.852

(0.219) (0.163) (0.129) (0.121) (0.108)

POP 0.805 0.805* 0.846 0.910 0.940

(0.157) (0.103) (0.089) (0.096) (0.104)

POP65+ 2.232** 2.481*** 2.251*** 1.979** 1.788**

(0.908) (0.726) (0.595) (0.530) (0.497)

HBEDS 0.475*** 0.440*** 0.460*** 0.504*** 0.514***

(0.103) (0.092) (0.099) (0.116) (0.113)

TEMP 2.130*** 1.719*** 1.332 1.272 1.112

(0.488) (0.359) (0.257) (0.252) (0.228)

Overdispersion ( α) 1.851*** 1.430*** 1.232*** 1.241*** 1.260***

(0.343) (0.287) (0.206) (0.188) (0.181)

N 55 55 55 55 55

Pseudo R2 0.177 0.156 0.143 0.130 0.122
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Both results can be of interest for the analysis of the structure and evolution of the 
WTN and from the point of view of studying the determinants and the consequences of 
the COVID-19 pandemic. International trade activities are also related to human factors 
that have been crucial in the spread of the pandemic. In future research, it could be inter-
esting to deeply investigate this aspect, comparing the different roles of human-based 
and economic linkages in COVID-19 diffusion. Finally, the established link between 
the pandemic and the structure of the network of international trade can provide use-
ful policy insights. More precisely, this knowledge can guide decision makers about the 
adoption and calibration of relevant public safety policies, such as general lockdown 
measures and temporary trade bans, which have huge economic consequences but have 
shown so far unclear effectiveness on the virus’ spread. This can be important for both 
the actual COVID-19 pandemic, which at the time of the writing of this article is still 
widely diffused worldwide, as well as for the unfortunate yet possible case of the diffu-
sion of a new pandemic event in the future.

Appendix A: List of countries
See Table 11.

Table 11  List of countries of the WTN

Country Code

Armenia ARM

Australia AUS

Azerbaijan AZE

Belgium BEL

Belize BLZ

Bosnia Herzegovina BIH

Canada CAN

Croatia HRV

Cyprus CYP

Czech Rep. CZE

Denmark DNK

Ecuador ECU

Egypt EGY

El Salvador SLV

Estonia EST

Finland FIN

Gambia GMB

Georgia GEO

Germany DEU

Greece GRC​

Guatemala GTM

Guyana GUY​

Hungary HUN

Iceland ISL

India IND

Ireland IRL
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Table 11  (continued)

Country Code

Israel ISR

Italy ITA

Japan JPN

Kyrgyzstan KGZ

Latvia LVA

Lithuania LTU

Luxembourg LUX

Montenegro MNE

Netherlands NLD

New Zealand NZL

Norway NOR

Pakistan PAK

Paraguay PRY

Philippines PHL

Portugal PRT

Rep. Of Moldova MDA

Romania ROU

Serbia SRB

Slovakia SVK

Slovenia SVN

South Africa ZAF

Spain ESP

Sweden SWE

Switzerland CHE

TFYR of Macedonia MKD

Ukraine UKR

United Kingdom GBR

United States USA

Uzbekistan UZB
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Appendix B: World trade network representation
This section collects the WTN representations in 2019 and 2020.

See Figs. 8 and 9.

Fig. 8  WTN representation in 2019. The size of the nodes is proportional of its strength

Fig. 9  WTN representation in 2020. The size of the nodes is proportional of its strength
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Appendix C: Community detection based on Louvain method
The world map of communities obtained by applying the Louvain method for 2019 and 
2020 are plotted in Figs. 10 and 11, respectively. Tables 12 and 13 list the members of 
communities. 

Fig. 10  World map with the communities obtained by applying the Louvain method in 2019

Fig. 11  World map with the communities obtained by applying the Louvain method in 2020
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Abbreviations
WTN: World Trade Network; VIF: Variance Inflation Factor; INF: Number of infections; DEATH: Number of deaths; GDP: 
Gross domestic product; GDPPC: Gross domestic product per capita; POP: total resident population; POP65+: Share of 
elderly population; HBEDS: Number of hospital beds; AIC: Akaike Information Criterion; BIC: Bayesian Information Crite-
rion; IRR: Incidence rate ratio; TNC: Trade network centrality.
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