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Introduction
Understanding network structure through the lens of higher-order organization has 
gained considerable attention in recent years (Battiston et al. 2020). In one sense, higher-
order structures correspond to small subgraphs in contrast to lower-order structures 
such as nodes or edges; such subgraphs have been shown to be crucial in driving the 
function of complex networks (Benson et  al. 2016). In a different sense, higher-order 
organization refers to the mesoscale structure of networks reflected in the hierarchical 
organization of its clusters and communities (Ravasz and Barabási 2003; Lancichinetti 
et  al. 2009). The mathematical discipline of algebraic topology provides a convenient, 
well-established framework for studying the latter form of higher-order organization 
(Sizemore et  al. 2019). Specifically within algebraic topology, a particular linear-alge-
braic tool known as homology has achieved great success in data applications due to 
its tradeoff between computational ease and ability to represent complex, higher-order 
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structures (Carlsson 2009). Moreover, such methods have been applied on network 
datasets to discover global structures that could not be easily obtained through standard, 
statistical mechanics-driven approaches to the study of complex networks (Petri et  al. 
2013). Crucial to these discoveries was the early development of computational librar-
ies (Adams et al. 2014) that enabled network scientists to rapidly test new mathematical 
tools and discover new questions that may be answered using such methods.

The particular flavor of homology that is currently best known across disciplines is 
simplicial homology (Giusti et  al. 2016). Here the basic objects are simplices—points, 
edges, triangles, tetrahedra, and so on—that encode relationships beyond the dyadic 
relationships captured by the edges of a graph. These simplices assemble together to 
form a structure called a simplicial complex, which in turn provides a principled method 
for representing complex shapes (Edelsbrunner and Harer 2010). Simplicial homol-
ogy then searches for the presence of holes or cavities in the network that may signify 
regions where small subgroups of nodes participate in correlated activity, but without 
overall consensus in the region of interest (Sizemore et al. 2019).

A caveat, however, is that simplicial homology is not immediately compatible with 
directed graphs (digraphs). In the linear-algebraic representation central to simplicial 
homology, directed edges of the form a → b and b → a are assigned to the same vector 
subspace, thus leading to a potential loss of information (Chowdhury and Mémoli 2018) 
(e.g. an email from an employee to a superior is semantically different from an email 
from a superior to the employee). A remedy to this situation is obtained via the notion 
of path homology, a version of homology defined on directed graphs that was developed 
in Grigor’yan et al. (2014a) and associated works (Grigor’yan et al. 2012, 2014b, 2015, 
2017, 2018a, b). Path homology resolves the (a → b)-vs-(b → a) situation by assigning 
different vector subspaces to each direction. Moreover, path homology generalizes sim-
plicial homology as follows. Given a simplicial complex S representing a shape, there is a 
natural ordering from lower to higher order simplices, given by the subset relation σ ⊆ τ 
for simplices σ , τ (e.g. a point belonging to an edge, or an edge belonging to a triangle). 
A digraph GS can then be constructed by taking the simplices as nodes, and directed 
edges σ → τ representing inclusion relations. Then the path homology of GS is natu-
rally isomorphic to the simplicial homology of the original complex S (Grigor’yan et al. 
2014a). In this sense, path homology generalizes simplicial homology. Additionally, path 
homology serves as a general framework for computing global structures in arbitrary 
digraphs via linear algebra. The tradeoff for this added generality is that the intuition 
for path homology can be more involved than finding non-local loops and cavities in a 
network. However, a useful (if imperfect) interpretation is that path homology measures 
the consistency and robustness of directional flow in a digraph. Specifically, in a digraph 
with the architecture of a multilayer perceptron (MLP)—i.e. layers of nodes with unidi-
rectional edges across consecutive layers, also referred to as a deep feedforward neural 
network—path homology is positively related to both the width of the layers (robust-
ness) and the agreement of edge directions (consistency) (Chowdhury et al. 2020).

Towards grounding the preceding discussion in a concrete application, consider the 
problem of examining control flow in computer programs. Control flow of code refers to 
the order in which information is passed among variables to carry out operations, and 
it can naturally be represented by a graphical structure that can in turn by quantified by 
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various metrics to predict defects and points of failure. One popular metric is cyclomatic 
complexity (McCabe 1976; Ebert et  al. 2016), which measures the number of linearly 
independent paths in the control flow graph. More explicitly, cyclomatic complexity is 
calculated via the simplicial homology of a graph. It has been shown that path homology 
is a stronger analogue of cyclomatic complexity that benefits by capturing the natural 
directionality of control flow graphs that is ignored by cyclomatic complexity (Hunts-
man 2020).

For further applications, multiscale versions of path homology have been developed 
in Chowdhury and Mémoli (2018), Dey et al. (2020), Lin et al. (2019). In sum, however, 
the empirical application of path homology to large-scale data structured as digraphs 
remains largely unexplored. The bottleneck for such exploration is the lack of methodo-
logical developments at different stages of the pipeline, including algorithmic develop-
ment, implementation, application to real-world networks, and posthoc analysis of the 
insights contributed by path homology.

To help bridge this perceptual gap between algebraic and combinatorial structure in 
service of analyzing real-world networks, we elaborate on the conference paper (Chowd-
hury et al. 2020). After reviewing the basics of path homology in §2, we present an algo-
rithm and implementation for computing path homology in arbitrary dimension in §3. 
In § 4, we then use this algorithm to compute the path homologies of (1) all digraphs on 
≤ 4 vertices, (2) all directed acyclic graphs on ≤ 6 vertices, (3) all undirected graphs on 
≤ 6 vertices, (4) Erdős-Rényi random graphs, and (5) small digraphs that exhibit torsion. 
These examples1 help develop intuition about path homology and yield digraph families 
whose path homology has surprising behavior. We then use this algorithm in §5-7 to 
compute path homologies of digraphs that represent the same three real-world temporal 
networks in complementary ways. Here we identify salient subgraphs with exemplars 
that appear in § 4 and relate them to broader network behavior within a given repre-
sentation. In §8 we perform additional analysis on these real-world temporal networks 
using popular existing network measures such as density and clustering coefficient to 
highlight differences from path homology. Finally, we discuss gross network behaviors 
that are preserved across representations and make concluding remarks in § 9.

Related literature

Parallel to path homology and its intermediate constructions, there have been recent 
developments in extending notions related to standard (i.e. simplicial) homology to 
account for directionality in the graph setting. Such advances started with the use of 
directed flag complexes in Reimann et al. (2017) and continued with theoretical, algorith-
mic, and empirical developments in Turner (2019), Lütgehetmann et al. (2020), Gebhart 
and Funk (2020). Further developments of related ideas have appeared in Chowdhury 
and Mémoli (2018), Méndez and Sánchez-García (2020), Bergomi et al. (2020).

1  While our analyses have revealed recurring motifs in the sense of small subgraphs that are statistically more frequent 
than in a null model (Smoly et al. 2017), our techniques are designed to identify individual subgraphs that exhibit robust 
and consistent directionality.
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Path homology
Here we sketch the basic elements of path homology as treated in Grigor’yan et  al. 
(2012), Chowdhury and Mémoli (2018). Although our development is nominally self-
contained, a reader who wants background in topology (e.g. the foundational theory of 
simplicial homology that shares many similarities with path homology) is commended 
to Ghrist (2014), Hatcher (2001).

Let X be a finite set, and let F be a field. A standard algebraic construction is the free 
F-vector space on X, i.e. a vector space with standard basis {ex : x ∈ X} . We denote this 
space by FX ∼= F

|X | , and additionally set F∅ := {0} . Next let D = (V ,A) be a loopless 
digraph, and consider the sets Vp = {(v0, . . . , vp−1) : vi ∈ V , 0 ≤ i ≤ p− 1} for p ≥ 0 . 
The non-regular boundary operator ∂[p] : FVp+1

→ F
Vp is the linear map whose action 

on the standard basis is

where ∇j(v0, . . . , vp) := (v0, . . . , vj−1, vj+1, . . . , vp) is the result of deleting vj from 
(v0, . . . , vp) . A few lines of algebra focused on index bookkeeping shows that 
∂[p−1] ◦ ∂[p] ≡ 0 , i.e. (FVp+1

, ∂[p]) is a chain complex (Ghrist 2014) as depicted in Fig. 1. 
The “boundary of a boundary is zero” condition admits a topological interpretation: as 
an example, consider that a 2-dimensional disk has boundary given by a circle, but the 
circle itself has no boundary.

Any chain complex (Cp, ∂p) gives rise to an algebraic invariant called homology. The 
invariance property of homology is that it behaves nicely with respect to maps on the 
chain complex that are induced by an underlying transformation of a common struc-
ture (here, a digraph). Writing Zp := ker ∂p and Bp := im ∂p+1 , i.e. the kernel and image 
of the boundary maps, the dimension p homology of the chain complex (Cp, ∂p) is the 
quotient

(1)∂[p]e(v0,...,vp) =

p
∑

j=0

(−1)je∇j(v0,...,vp),

(2)Hp := Zp/Bp.

Fig. 1  Schematic of a chain complex. Here Cp , Bp−1 , and Zp are respectively the domain, codomain, and 
kernel of ∂p , which conspire to make the homology Hp := Zp/Bp well defined
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Hp is a finitely generated abelian group, and therefore has the form Zβp ⊕ Tp , where the 
torsion Tp is a finite abelian group. The topological interpretation of this construction is 
that the Zβp and Tp terms correspond to “voids” and “twistedness” in a topological space, 
respectively. When computed over a field F , the Cp are vector spaces and the torsion 
is zero. In this setting the Betti numbers βp := dim Hp = dim Zp − dim Bp completely 
characterize homology up to isomorphism.

Returning to the loopless digraph D, consider the set Ap(D) of allowed p-paths:

By convention, we set A0 := V  , V 0 ≡ A−1 := {0} and V−1 ≡ A−2 := ∅ . Path homology 
arises indirectly from a chain complex derived from (FVp+1

, ∂[p])
2. Write

�−1 := F
{0} ∼= F , and �−2 := F

∅ = {0} . Now ∂[p]�p ⊆ F
Ap−1 , so 

∂[p−1]∂[p]�p = 0 ∈ F
Ap−2 and ∂[p]�p ⊆ �p−1 . The (non-regular) path complex of D is 

accordingly defined to be the chain complex (�p, ∂p) , where ∂p := ∂[p]|�p.
3 The (non-reg-

ular) path homology of D is just the homology of the path complex (�p, ∂p).
A basic example illustrating the mechanics of path homology is provided 

by considering the digraphs D1 and D2 in Fig.  2. A1(D1) and A1(D2) are given 
by the digraph arcs, A2(D1) = ∅ , and A2(D2) = {(w, x, z), (w, y, z)} . We have 
∂[1](e(i,j) − e(i,k) − e(l,j) + e(l,k)) = 0, and similarly ∂[1](e(x,z) + e(w,x) − e(y,z) − e(w,y)) = 0 . Now 
∂[2]e(w,x,z) = e(x,z) − e(w,z) + e(w,x) �∈ F

A1(D2) and ∂[2]e(w,y,z) = e(y,z) − e(w,z) + e(w,y) �∈ F
A1(D2) 

(because the arc w → z is not present), but

It follows that H1(D1) = F and H1(D2) = {0} , i.e., the Betti numbers are different: 
β1(D1) = 1 and β1(D2) = 0.

(3){(v0, . . . , vp) ∈ Vp+1 : (vj−1, vj) ∈ A, 1 ≤ j ≤ p}.

(4)�p :=
{

ω ∈ F
Ap : ∂[p]ω ∈ F

Ap−1
}

,

∂[2](e(w,x,z) − e(w,y,z)) = e(x,z) − e(w,z) + e(w,x) − e(y,z) + e(w,z) − e(w,y)

= e(x,z) + e(w,x) − e(y,z) − e(w,y) ∈ F
A1(D2).

Fig. 2  (Center) The digraph D2 has trivial path homology but the digraph D1 does not. (Left) The nontrivial 
path homology of D1 can be interpreted as a consistent and robust unidirectional flow. (Right) The trivial path 
homology of D2 can be attributed to w and z appearing as “bottlenecks” that prevent robustness of the flow. 
This intuition is formalized by results in Chowdhury et al. (2019)

2  Path homology can also be defined over rings such as Z without any modifications besides a change of notation. This 
definition gives additional power: M. Yutin has exhibited digraphs on as few as six vertices that have torsion: see Fig. 5.
3  The implied regular path complex is constructed so as to prevent a directed 2-cycle from having nontrivial 1-homol-
ogy. While (Grigor’yan et  al. 2012) evinces a preference for regular path homology, in our view non-regular path 
homology is simpler, richer, and more likely useful in applications. As a practical matter, our rationale amounts to the 
convention that a directed 2-cycle should count as a “hole.”
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For convenience, henceforth we generally replace the path complex (�p, ∂p) with its 
reduction

Assuming the original complex is nondegenerate and using an obvious notational 
device, this has the minor effect H̃0 ⊕ F ∼= H0 , while H̃p

∼= Hp for p > 0 . Similarly, 
β̃p = βp − δp0 , where the Kronecker delta δjk := 1 iff j = k and δjk := 0 otherwise.

Path homologies of the mutual dyad subgraphs

As another example with practical relevance that will be exhibited in §  5, we 
use path homology to characterize a family of network motifs that we call the 
n-uplinked mutual dyads—or dually, the n-downlinked mutual dyads—in refer-
ence to the original terminology from Milo et  al. (2002). Given an integer n ≥ 1 , the 
n-uplinked mutual dyad Wn is a digraph with vertex set {a, b, 1, 2, . . . , n} and edge set 
{(a, b), (b, a)} ∪ {(a, i) : 1 ≤ i ≤ n} ∪ {(b, i) : 1 ≤ i ≤ n} , as illustrated in Fig.  8. The 
n-downlinked mutual dyad is obtained by reversing all the arcs (cf. Fig. 7). From the lens 
of path homology, the number of uplinks (resp. downlinks) contributes robustness to an 
upward (resp. downward) flow. This intuition is formalized as:

Proposition 1  Let n ∈ Z>0 . Then β̃2(Wn) = n− 1 , and β̃p(Wn) = 0 for all p ≥ 0, p �= 2 . 
The n-downlinked mutual dyad has the same Betti numbers.

Proof From Grigor’yan et al. (2012) we know that β0 counts the connected components 
of the underlying undirected graph, so β0 = 1 and β̃0 = 0.
Now suppose p = 1 . We have ∂[1](e(a,b) + e(b,a)) = 0 , but also 
∂[2](e(a,b,1) + e(b,a,1)) = e(a,b) + e(b,a) , and so e(a,b) + e(b,a) cannot contribute to β̃1 . Simi-
larly terms of the form e(a,b) + e(b,i) − e(a,i) ∈ Z1, 1 ≤ i ≤ n, cannot contribute to β̃1 as 
they belong to B1 , being the images of e(a,b,i) for 1 ≤ i ≤ n.

Next suppose p ≥ 3 : then �p = {0} , since all the 3-paths have boundaries with non-
allowed paths, and taking linear combinations does not eliminate these non-allowed 
paths.

Finally we deal with the case p = 2 . Let 1 ≤ i �= j ≤ n . Then 
∂[2](e(a,b,i) + e(b,a,i) − e(a,b,j) − e(b,a,j)) = e(a,b) + e(b,a) − e(a,b) − e(b,a) = 0   . 
Therefore all 2-paths of the form e(a,b,i) + e(b,a,i) − e(a,b,j) − e(b,a,j) belong to 
Z2 , but not to B2 as �3 is trivial. Some linear algebra shows that the collection 
{e(a,b,1) + e(b,a,1) − e(a,b,j) − e(b,a,j) : 2 ≤ j ≤ n} is a basis for Z2 . It follows that β̃2 = n− 1.

To conclude the proof, we note that the above arguments hold for the downlinked 
mutual dyad by replacing terms of the form e(a,b,i) with e(i,a,b) .�  �

(5). . . �p+1

∂p+1

−→ �p

∂p
−→ �p−1

∂p−1

−→ . . .
∂1

−→ �0

∂̃0
−→ F −→ 0.
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Algorithm
To compute non-regular path homology, one needs to produce the requisite paths and 
perform the necessary linear algebra. However, performing this computation efficiently 
is a challenge that is addressed by our implementation, available at Yutin (2020). Our 
method introduces some nuances and is apparently among the first for dimension > 1,4 
so we outline our approach here.

First, for efficiency we remove nonbranching limbs (i.e., chains of vertices of total 
degree 2 that terminate in leaves of degree 1), since these do not affect homology by The-
orem 5.1 of Grigor’yan et al. (2012). We also exploit Proposition 3.25 of Grigor’yan et al. 
(2012), by decomposing the graph into weak components before computing homology 
componentwise. For each component D, we extend an order on vertices V(D) to order 
paths lexicographically. We construct Ap(D) for 0 ≤ p ≤ pmax inductively. Starting from 
A0(D) = V (D) , we construct Ap(D) by appending every vertex that has an arc from the 
terminal vertex of a path in Ap−1(D) . The paths are produced in lexicographical order 
for each p.

Next, using a radix-|V(D)| expansion, we compute the indices that specify the inclu-
sion Ap →֒ Vp+1 under lexicographical ordering. We then construct (in the standard 
basis) the matrix representation ∂[p,A] of the restriction of ∂[p] to FAp . Let ∇[p,A] denote 
the projection of ∂[p,A] onto FVp\Ap−1 (i.e., the matrix formed by removing rows of ∂[p,A] 
that correspond to elements of Ap−1 ), and let �[p,A] denote the projection onto FAp−1 . 
The kernel of ∇[p,A] is �p . To produce �p as efficiently as possible, we remove rows of 
∇[p,A] that are identically zero before computing this kernel. Once we have produced a 
matrix representation �[p,A] for the kernel above, we get the chain boundary operator 
∂p = �−1

[p−1,A]�[p,A]�[p,A] (i.e., the projection of ∂[p,A] onto FAp−1 , projected onto and 
restricted to the invariant space).

Finally, we compute the homology of this chain complex, using the rank-nullity theo-
rem and a singular value decomposition to compute the matrix ranks and in turn obtain 
the Betti numbers. We compute representatives for homology groups (without assur-
ances that the representatives are the best possible) as cokernels of [ker ∂p]T ∂p+1 . To find 
torsion over Z , we computed the Smith normal form of boundary matrices as in usual 
practice (cf. Fig. 5).5

In the worst case, our algorithm requires O(|V |2p+1) memory (to store the bound-
ary matrices) and O(|V |(p+1)ω) runtime (to compute matrix ranks), where the matrix 
multiplication complexity exponent ω is 3 in practice. In practice, these estimates are 
overly pessimistic (most digraphs analyzed in practice are very different from complete 
digraphs), though the memory requirements are still exponential in p unless the digraph 
being analyzed is acyclic, in which case the exponential relationship only holds up to the 

4  Though (Shajii 2013; Slawinski 2013) significantly predate our implementation, we were unaware of these until after we 
had produced our implementation, and we could not find any published work drawing on them.
5  To optimize further, we could preprocess the digraph in accord with Theorem 5.7 of Grigor’yan et al. (2012), though 
this would raise its own issues in low dimension. Instead of performing a singular value decomposition on rather large 
boundary matrices to compute their ranks, we could recursively construct invariant spaces — each sub-path of an invar-
iant path is itself an invariant path (since we only consider loopless digraphs). A simple approach in this vein might be 
to check every pair of paths in dimension p against every vertex to see where we can append ‘triangles’ and ‘squares’ in 
the sense of Grigor’yan et al. (2012). While promising, this approach generates too many paths, and reducing to a basis 
is computationally nontrivial. For low dimensions, we could also directly compute Betti numbers from the digraph itself 
(cf. Proposition 3.24 of Grigor’yan et al. (2012)).
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length of the longest path. Nevertheless, it is still essential to limit computations to fairly 
small p and use natural filtrations (e.g., time, weight, etc.) to isolate portions of ambi-
ent digraphs. While it would be ideal in this vein to compute persistent path homology 
(Chowdhury and Mémoli 2018; Lin et al. 2019; Dey et al. 2020), no practical algorithms 
for this are known in dimension > 1.

Phenomenology of path homology for small digraphs
Small digraphs.

We show digraphs on four vertices with β̃p > 0 for p > 1 in Fig. 3. Surprisingly, four 
vertices are enough for nontrivial homology to occur even in dimension three. Mean-
while, in Fig. 4, the left panel shows directed acyclic graphs (DAGs) on six vertices with 
β̃2 > 0 . Examining these DAGs led us to formulate and prove a conjecture about the 
path homology of DAGs that model the connectivity of deep feedforward neural net-
works (Chowdhury et al. 2019) and characterize temporal networks in the representa-
tion of Pósfai and Hövel (2014), as detailed in § 6. Finally, the right panel of Fig. 4 shows 
undirected graphs (which we treat as digraphs with arcs in both directions) on six ver-
tices with β̃2 > 0 . This highlights that path homology is also relevant for the analysis of 
undirected graphs.

Torsion.
Though nominally defined over fields, path homology makes sense over rings, e.g. Z , 

with scarcely any modifications required. This is a more powerful invariant, as it gives 
rise to torsion. Yutin (2019) was able to identify the digraphs in Fig. 5 by sampling Erdős-
Rényi digraphs and carefully decomposing an instance with nonzero torsion.

These digraphs are the smallest members of a family that we conjecture always 
exhibits torsion: larger members can be formed by taking a longer central unidirected 
closed path and linking each of its vertices to one of two external “polar” vertices (in 
an alternating fashion). Specifically, we conjecture that digraphs in this family with 
central paths of length 2n have torsion subgroups Z/nZ in H̃1 . (We have computation-
ally verified this conjecture for n ≤ 8 .) These digraphs seem to be analogues of so-
called lens spaces that are formed by gluing two tori together with a twist, and which 

Fig. 3  (L) β̃2 > 0 for these six (of 218 total) digraphs on four vertices. In each case it turns out that 
β̃p = δp,2 . As a “suspension” of the 2-cycle, the digraph in the upper left can be thought of as an analogue 
of a homology 2-sphere obtained by gluing two cones along a common equator. (R) β̃3 > 0 for these five 
digraphs on four vertices. In each case it turns out that β̃p = δp,3 . Continuing the geometrical-topological 
analogy from before, the upper middle digraph in the right panel is akin to that in the upper left of the left 
panel with its “poles” glued together by a circular path in another dimension, thus giving rise to homology in 
dimension 3
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are archetypal examples of spaces with torsion. While we do not pursue this analogy 
further in the current work, we note that such lens spaces have recently been used for 
nonlinear topological dimension reduction (Polanco and Perea 2019).

Erdős-Rényi random graphs.
In Fig. 6 we show empirical distributions for Betti numbers of Erdős-Rényi random 

graphs (Frieze and Karoński 2016) on four nodes. Further knowledge of these distri-
butions for different numbers of nodes would provide a useful method for testing if a 
stochastic digraph generating process could be described via an Erdős-Rényi model.

Applications to window‑aggregated temporal networks
We analyze three temporal networks (Holme 2015; Masuda and Lambiotte 2020): 
MathOverflow, an email network, and activity on a Facebook group. These are all 
directed contact networks (DCNs) in the sense of Cybenko and Huntsman (2019): i.e., 
each network event (“contact”) is specified by a source, a target, and a time. Formally, 
a DCN with (spatial) vertex set V ≡ [n] ≡ {1, . . . , n} is a finite nonempty set C for 
which each contact c ∈ C corresponds to a unique triple encoding a source s, a target 
t, and a time τ in the form (s(c), t(c), τ (c)) ∈ [n] × [n] × R with s(c)  = t(c).

Fig. 4  (L) β̃2 > 0 for these 17 (of 5984 total) DAGs on six vertices. Note that the DAG in the upper left 
is a ubiquitous subgraph of the others; the path homology of this graph and others like it is analyzed in 
Chowdhury et al. (2019). (R) β̃2 > 0 for these 17 (of 156 total) undirected graphs on six vertices. The graphs 
in the first two rows all have β̃• = (0, 0, 1, 0, . . . ) , and the remaining seven graphs (from left to right, top to 
bottom) respectively have β̃• = (1, 0, 1, 0, . . . ) ; β̃• = (0, 1, 1, 0, . . . ) ; β̃• = (0, 1, 1, 0, . . . ) ; β̃• = (0, 2, 1, 0, . . . ) ; 
β̃• = (0, 2, 1, 0, . . . ) ; β̃• = (0, 2, 1, 0, . . . ) , and β̃• = (1, 2, 1, 0, . . . ) . The common “bow tie” motif here appears 
to be the cause for emergence of 2-homology in transportation networks as capacities are filtered (this 
will be elaborated on in future work); meanwhile, polygons with ≥ 5 sides have too many sides for paths in 
opposing directions to “destructively interfere.” That is, although these graphs are undirected, the directed 
paths of length 4 through them exhibit more coherence than in other graphs of the same size

Fig. 5  These two digraphs have torsion subgroups of Z/2Z (left) and Z/3Z (right), i.e., their homology over Z 
contains these finite groups as a direct summand as described in §2
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In this section, we represent the three DCNs above by aggregating the activity over a 
time window into a single digraph which then varies as the window moves. In later sec-
tions, we will examine the same three networks, but via different network representa-
tions. In both this and later sections, we exhibit high-order interactions identified using 
path homology that are respectively indicators of dilution, recurring motifs, and concen-
tration within network behavior that is preserved across the various representations.

MathOverflow

The answer-to-question portion of the sx-mathoverflow DCN available at Leskovec 
and Krevl (2014) provides our first illustration of the ability of path homology to identify 
structurally relevant subgraphs. This network has 21688 vertices and 107581 directed 
temporal contacts, spanning 2350 days from 29 Sep 2009 to 6 March 2016; it was previ-
ously analyzed in Montoya et al. (2013), and Tausczik et al. (2014) contains a discussion 
of question/answer phenomenology on MathOverflow.

In our analysis, we considered contacts within a time window of 24 hours, moving 
every eight hours. We aggregated contacts in a given window into a static digraph and 
computed the first three Betti numbers.6

Fig. 6  Empirical distributions of β̃p(D4,q) , where Dn,q is the Erdős-Rényi random digraph on n vertices with 
probability q of a given arc occuring

6  NB. Our path homology code removes any loops from digraphs.
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Only two (immediately adjacent and overlapping) windows, over 13-14 Oct 2009, 
had β2 > 0 . Inspecting the homology representatives revealed an underlying motif, 
viz., the 2-downlinked mutual dyad (cf. Sec.  2.1). The particular questions and 
answers involved are shown in Fig. 7, which also highlights the dyad.

This (effectively) single occurrence of 2-homology happened very early in the 
history of MathOverflow–in fact, just two weeks after the website launched. As 
MathOverflow evolved, interactions on it also diluted. For example, most of the first 
200 users asked and answered many fewer questions over time, while the overall size 
of and activity on MathOverflow grew much larger (not shown here). One conse-
quence of this dilution of activity is that opportunities for tightly coupled patterns of 
questions and answers to occur diminished, with 2-homology serving as an indicator 
of this phenomenon.

An email network

The presence of linked dyads is actually ubiquitous and generalized in email net-
works, because of well-known behavior common to the medium (e.g., multiple peo-
ple sending to a common mailing list). We isolated this behavior in our analysis of 
the email-Eu-core-temporal network available at Leskovec and Krevl (2014). 
This network has 986 vertices and 332334 directed temporal contacts; it spans 804 
days of activity.

We considered contacts within a window of the most recent 100 contacts (emails), 
moving every 50 contacts. As before, we aggregated contacts in a given window into 
a static digraph and computed the first three Betti numbers. Many windows exhib-
ited high values of β2 that we traced to occurrences of the n-uplinked mutual dyad 
(cf. Sec. 2.1) motif shown in Fig. 8. The underlying dynamics is common: two people 
(“Alice” and “Bob”) both send email to the same wide distribution and to each other.

Fig. 7  Digraph of MathOverflow activity over a 24-hour period during 13-14 Oct 2009. User IDs serve as 
vertex labels, and arcs are directed from answerer to questioner (any parallel arcs are merged). We highlight 
arcs participating in a 2-homology representative. For completeness, the participating (arc, question) pairs 
are ((25, 65), 437), ((25, 83), 451), ((65, 83), 446), ((83, 65), 437), ((121, 65), 433), and ((121, 83), 446) as well as 
((121, 83), 451). Three of the four users {25, 65, 83, 121} share the same first subject tag (i.e., area of interest/
expertise) at time of writing; all four share the same second subject tag
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A Facebook group

As a final example using the window-aggregated DCN representation, we considered 
the first 1000 days of activity on a Facebook group (Viswanath et al. 2009; Kunegis 2013) 
starting from 14 September 2004 and ending on 11 June 2007. We aggregated this DCN 
(13295 vertices; 187750 contacts) into daily digraphs with no sliding windows because it 
has a daily lull with virtually no activity. Fig. 9 shows the number of posts per day and the 
first three Betti numbers. Besides an obvious correlation between network activity and β̃0 , 
it is also evident that progressively more and higher-dimensional homology classes appear 
over time. This emergent higher-order network structure indicates concentration of activ-
ity. Fig. 10 shows the first daily digraph with β̃2 > 0 . Because this sort of concentration of 
activity is tied to just a few specific loci (i.e., appropriate homology representatives in the 
corresponding time windows), statistical or other straightforwardly quantitative network 
measures are unlikely to capture it de novo. Though it is probably the case that such meas-
ures can be reverse-engineered, this misses the point of a qualitative measure: i.e., robust-
ness in the face of network perturbations or even (up to a point) differing representations.

Layered representations
A “layered” representation of DCNs that naturally leads to rich path homology charac-
terizations is that of Pósfai and Hövel (2014). The essential idea is to represent a contact 
of the form (s, t, τ ) as an arc from (s,  j) to (t, j + 1) where time is discretized into bins 

Fig. 8  (L) The distribution of β̃2 for windowed digraphs produced from the email network. (R) The digraph 
Wn depicted here has β̃2(Wn) = n− 1 ; it causes high values of β̃2 in windowed digraphs produced from the 
email network

Fig. 9  (L) Daily Facebook group posts. (R) Betti numbers of daily digraphs. As activity increases, so do 
topological features in dimensions 0 through 2
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such that τ is in the jth bin. That is, contacts are modeled as going forward in time from 
the current time bin to the next one.

This representation casts DCNs in a structural light virtually identical to that of 
weight-filtered multilayer perceptrons (MLPs) as discussed in Chowdhury et al. (2019), 
where it was shown that homology generically occurs in dimension up to L− 1 , where 
L indicates the number of time bins or layers being considered at a given time. However, 
while trained weight-filtered MLPs exhibit high-dimensional path homology generically 
because neural activations propagate across layers by design, the equivalent phenom-
enology in DCNs signals potential propagation of information (or whatever the DCN 
models) that is highly correlated across time windows in a way that there is no a priori 
reason to expect.

Tellingly, the path homology of DCNs in this layered representation again indicates 
gross dynamics of activity dilution (for the MathOverflow DCN); time-invariance (for 
the email DCN); or concentration (for the Facebook DCN). High-dimensional homol-
ogy occurs (if at all) only in rare episodes where network participants engage in highly 
correlated activity that has structural significance, e.g. co-clustering of question/answer 
behavior for MathOverflow; (presumably) organizational cliques for email; and joint 
self- and cross-posting for Facebook, respectively.

In detail, for each DCN in the previous section, we employ a time discretization into 
bins of duration δt , and a sliding window of duration d · δt , where d indicates the top 
dimension for which we compute β̃d and the window slides by δt . This alignment of 
dimension and temporal parameters ensures that we compute precisely the homologies 
which might be nontrivial. Here we use the preceding discussion on path homologies of 
MLPs, which suggests that for d layers, as in the sliding window of duration d · δt , we 
expect only trivial path homology in dimensions beyond d.

For the MathOverflow network (see Figs. 11 and 12), there is no evidence of 2-homol-
ogy for reasonable choices of time discretization and window duration, so we set 
δt = 24 hr and d = 1 . Here β̃1 is nonzero only transiently, shortly after the network 
began, in line with the general thrust of activity “dilution” mentioned previously. The 
absence of 2-homology can be attributed to an asymmetry between questioners and 

Fig. 10  (L) First daily digraph with β̃2 > 0 : day 756. The only weak component with β̃2 > 0 is indicated 
with a box. (R) Detail with (different graph layout and) arcs representing H̃2 highlighted. This homology 
representative is highly symmetrical
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answerers: in any given window, these two sets do not overlap enough for the layers of 
the digraph representation to produce MLP-like subgraphs.

For the email network, we set δt = 1 hr and d = 2 . Here the network behavior is 
roughly time invariant (apart from a prolonged lull towards the end of the data) and sev-
eral windows give rise to 2-homology (Figs. 13 and 14). This is apparently due to shared 
to/cc lists in emails that are related in subject matter and localized in time.

For the Facebook network, we set δt = 24 hr and d = 2 . Here β̃2 is nonzero only once, 
when two users self-post and interact with each other. Meanwhile, the increase of β̃0 and 
β̃1 (cf. Fig. 15) over time is consistent with the general thrust of activity “concentration” 
mentioned previously.

Temporal digraph representations
Yet another representation of DCNs is that of Cybenko and Huntsman (2019). Here, the 
entire network is losslessly encoded into a temporal digraph in which arcs are all either 
“spatial” (i.e., between vertices in the aggregated digraph) or “temporal” (i.e., connect-
ing a vertex at one time to itself at a later time). A temporal digraph and the associated 
notion of a temporally coherent path are indicated in Fig. 16.

Our investigations suggest that temporal digraphs are uninteresting from the point of 
view of higher homology.

Conjecture 1  The temporal digraph of a DCN has β̃p = 0 for p > 1.

The idea of the conjecture (which is based more on intuition and extensive experimen-
tation than exhaustive computation per se) is that there are no “diagonal” connections 
from a vertex at one time to a different vertex at a different time, which in turn con-
strains the algebra tightly enough that there are no linear combinations of p-paths of 
the kind required for nontrivial phenomenology with p ≥ 2 . For example, none of the 
digraphs in Fig. 3 can be subgraphs of the temporal digraph of a DCN, so any production 
of homology for p ≥ 2 must involve a subgraph on > 4 vertices. On the other hand, for 
p = 2 , the participating paths must be of length 3, and thus cannot involve more than 
four vertices each. In other words, higher homology would have to arise in an intrinsi-
cally distributed way.

Fig. 11  Betti numbers of the layered representation of the MathOverflow DCN
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Although Conjecture 1 was formulated based on small, synthetically generated tempo-
ral digraphs, it was borne out in analyses of the same data sets–and using the same time 
windows–as in earlier sections. While at some points the resulting temporal digraphs 
were large enough to preclude computing β2 due to the size of the boundary matrices 
involved, we always observed β2 = 0 for temporal digraphs of DCNs. These results are 
illustrated in Figs. 17 and 18.

Fig. 12  In the layered representation of the MathOverflow DCN, there are three windows with β̃1 > 20 . 
Here we depict the weak components contributing nontrivial homology in dimension one for each of these 
windows. Node labels indicate user IDs; subscripts indicate bins within the window. Essentially, the dynamics 
here are that groups of users answer multiple questions within a window in a way that overlaps. As the 
network matured and diluted, this tightly coupled behavior disappeared almost entirely

Fig. 13  Sorted Betti numbers of the layered representation of the email DCN
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We complement Conjecture  1 with a computationally supported conjecture about 
1-homology in temporal digraphs with two (spatial) vertices.

Conjecture 2  Let C be a DCN with two vertices and contacts at times in [T] for 
T ∈ {3, 4, ...} . The maximum possible value of β̃1 for the corresponding temporal digraph 
is T − 1 , achieved for the eight DCNs with contacts in alternating directions and possi-
bly both directions at times 1 and T. If there are no contact pairs of the form (1, 2, t) and 

Fig. 14  As Fig. 13 indicates, there are 18 windows in the layered representation of the email DCN with 
β̃2 > 0 . Here, we show for each instance the corresponding subgraphs on vertices that participate in 
2-homology representatives (it turns out in these particular instances that these subgraphs all have only 
a single weak component). These subgraphs are all very similar to the fully-connected deep feedforward 
networks (the difference here being that some of the layers are not fully connected, e.g. the graph in row 2, 
column 2) whose homology was analytically characterized in Chowdhury et al. (2019), and more generally are 
of the sort that would be encountered in weight-induced filtrations of multilayer perceptrons
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(2, 1, t) for t ∈ [T ] , then β̃1 (for the temporal digraph representation) counts the number 
of times that contacts change direction.

Fig. 15  (L) Betti numbers of the layered representation of the Facebook DCN. (R) The weak component in 
the window contributing to 2-homology, with the homology representative highlighted. Note that two users 
are posting to themselves and each other

Fig. 16  Temporal digraph of the DCN C := {(1, 4, τ1), (5, 4, τ2), (2, 5, τ3), (4, 3, τ4)} with τ1 < τ2 < τ3 < τ4 . 
We indicate a temporally coherent path from C-vertices 1 to 3 (with bold versus gray arrows). By comparison, 
there is no temporally coherent path from 2 to 3. Temporal (resp. spatial) arcs are horizontal (resp. vertical); 
temporal fibers are vertices along horizontal paths

Fig. 17  (L) Betti numbers of the temporal digraph representation of the (L) MathOverflow and (R) Facebook 
DCNs. In the former case, we used a window of eight hours (this is different than in other representations, 
and was done for the sake of scaling), whereas in the latter case we used a window of 24 hours, as in other 
representations. Note that in the latter case β0 is also the same as for the MLP representation. For some later 
times with both networks, β2 could not be computed due to memory constraints, but was always zero when 
computed, including near the beginning of the MathOverflow DCN. Recomputing the Betti numbers for 
p < 2 required just a few minutes



Page 18 of 23Chowdhury et al. Applied Network Science             (2022) 7:4 

The idea behind this conjecture is that “flips break squares” (where “squares” are in the 
sense of Grigor’yan et al. (2012)) and contribute to β̃1 , whereas instantaneous back-and-
forth contacts other than in the first and last instances prevent such contributions by 
adding enough terms to cause algebraic cancellations.

It might be tempting to consider a slightly different temporal network representation 
that allows “diagonal” arcs of the sort that seem necessary to support nontrivial path 
homology for p > 1 . For example, we might replace a “temporal” arc followed by a “spa-
tial” arc with a single “diagonal” arc. Such a representation indeed gives rise to nontrivial 
path homology for p > 1 . However, this representation is not robust and/or meaning-
ful unless the timestamps can actually differentiate between back-and-forth contacts 
that are merely close together in time versus exactly simultaneous, since these two cases 
can give different homologies. Meanwhile, if exact simultaneity is possible, the tempo-
ral network must actually inhabit discrete (if granular) time, and in this event the tem-
poral digraph representation is essentially the same as the layered representation of §, 
albeit with self-transitions automatically included. Taking the other observations of this 
section into account, we therefore see that the temporal digraph representation and its 
siblings either do not yield substantive insight, or require still further nuance to apply 
fruitfully.

Comparison with other activity measures
Thus far, we have performed extensive analysis on the dependency of path homology on 
the chosen representation of a temporal network. For completeness, we now compare 
path homology against two popular network measures—density and clustering coef-
ficient—to show that path homology captures essentially different features of network 
data from these classical measures.

Recall that the density of a network describes the ratio of the number of true connec-
tions to the number of possible connections. For a digraph D = (V ,A) , the density is 
given by |A|

|V |·(|V |−1])
 . Also recall that the clustering coefficient measures how often the 

neighbors of an edge are themselves neighbors. For the directed setting, we appeal to the 
notion of clustering coefficient developed in [?]. Following [?], we temporarily write A to 
denote the adjacency matrix (instead of the set of arcs), dj to denote total (i.e., in- plus 
out-) degree of vertex j, and d↔j  to denote the number of vertices that have arcs to and 
from j. Then the (directed) clustering coefficient is given by:

Fig. 18  Sorted Betti numbers of the temporal digraph representation of the email DCN. β2 was computed 
for all time windows but always equaled zero
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Overall, we find that density and clustering coefficient are generally uncorrelated with 
path homology Betti numbers (cf. Figs. 19, 21, and 22). There is one key exception to this 
rule (cf. Fig. 20): C and β̃2 are fairly strongly correlated when mutual dyad motifs Wn are 
present either in large numbers or for n large. The reason for this is simple: C essentially 
measures the number of triangles, and in the event above, there are many triangles to be 
found.

However, C and β̃2 are totally uncorrelated in layered representations of temporal net-
works for the equally simple reason that, by construction, the digraphs involved never 
have triangles. Meanwhile, in each temporal network considered here, the density and 
Betti numbers are also essentially uncorrelated (not shown here except for the MathOv-
erflow network, which is broadly phenomenologically representative in this respect).

While a comprehensive comparison to network measures beyond density and cluster-
ing coefficient is out of the scope of the current paper, we make a few additional remarks 
about the general landscape of such statistical network measures before concluding this 
section. A reader more comfortable with, e.g., network centralities or motif analysis 
may wonder why we have not sought to compare them to the techniques of this paper. 
The reason is that centralities and motif analysis (along with density and clustering 
coefficient) are intrinsically quantitative measures focused on the statistical properties 
of nodes, edges, and subgraphs in toto, while path homology is an intrinsically quali-
tative measure focused on generic characteristics of individual subgraphs that may or 
may not be present in data. Meanwhile, clustering or community detection in digraphs 
also answers a fundamentally different question (viz., when/where are interconnected 
regions?) than we address (viz., when/where are certain directionally coordinated 
activities?).

Remarks
As a generalization of simplicial homology, path homology holds the promise to 
advance the state-of-the-art in applications of algebraic topology to network science. 
In this work, we have addressed two critical bottlenecks in the application of path 

(6)C :=
1

2|V |

∑

j∈[|V |]

((A+ AT )3)jj

dj(dj − 1)− 2d↔j

Fig. 19  Clustering coefficient (6) and density for the windowed representation of the MathOverflow 
temporal network, with instances of β̃2 > 0 circled
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Fig. 20  β̃2 versus (left) clustering coefficient (6) and (right) density versus for the windowed representation 
of the email temporal network. The strong correlation between β̃2 and C is entirely due to the particular 
structure of the mutual dyad motifs that contribute to each activity measure. In other temporal network 
representations, or when these motifs are not dominant, these activity measures will not remain correlated 
(cf. Figs. 19 and 21)

Fig. 21  β̃2 versus (left) clustering coefficient (6) and (right) density for the windowed representation of 
the Facebook temporal network. The Betti number is essentially uncorrelated to either traditional activity 
measure

Fig. 22  β̃2 versus (left) clustering coefficient (6) and (right) density for the layered representation of the 
MathOverflow temporal network. The clustering coefficient is always trivial for such representations and the 
density is essentially uncorrelated to β̃1
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homology: (1) fast computation, and (2) intuition for the phenomena that it cap-
tures. Specifically, we have developed an efficient implementation (Yutin 2020) and 
reported on an exhaustive library of computational examples that we have in turn 
used to explain the subgraphs in real-world networks that drive path homology activ-
ity. Looking to the future, our work could be a precursor to follow-up works that 
combine network dictionary learning (Lyu et  al. 2020; Xu 2020; Vincent-Cuaz et  al. 
2021) with topological signatures (Gómez and Mémoli 2021).

Toward a comprehensive analysis of real-world directed contact networks (DCNs), 
we employed three different views of the data: window-aggregated, layered, and tem-
poral digraph representations. From our experiments it is evident that the structure 
and even existence of path homology-carrying subgraphs can vary greatly depending 
on the network representation. However, one key takeaway is that the bulk dynamics 
indicated by the time series of Betti numbers is more robust to the particulars of the 
representation, particularly in the case of window-aggregated and layered representa-
tions. We also note that although the computational requirements for path homology 
scale exponentially with homological dimension, even the two-dimensional case can 
highlight salient network structure and behavior. By using the window-aggregated or 
layered representations, path homology can be successfully brought to bear in this 
regard, illuminating both subgraphs with nontrivial path homology as well as the 
temporal networks themselves.

We also observed that although temporal digraph representations have an obvious 
advantage of efficiently representing temporally coherent paths, currently they do not 
appear capable of yielding nontrivial path homology in higher dimensions. The pos-
sibility of developing a similar but robust and meaningful temporal network repre-
sentation that can encode temporal coherence while also admitting nontrivial path 
homology in higher dimensions is an interesting avenue for future work. Overall, our 
findings suggest that different network representations of DCNs yield different per-
spectives of the data (see Singh et al. (2007); Lum et al. (2013) for related approaches), 
and considering families of path homology profiles built on top of a variety of net-
work representations (cf. Chowdhury et al. (2020)) may provide the most comprehen-
sive understanding of the data.
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