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Introduction
For modeling complex data, e.  g., continuous sequential, multi-relational and hetero-
geneous data, graphs provide sophisticated means for modeling and representation. In 
particular, for modeling complex systems—including those providing complex sensor 
data—graphs have emerged as a natural representation. Here, Graph Signal Process-
ing (GSP) (Stankovic et al. 2019a) has recently emerged as a powerful analytical frame-
work in such contexts: this is enabled both at the level of the network structure, as well 
as its (temporal) dynamics; GSP specifically extends on classical signal processing by 
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providing specific analytical options on irregular structures such as graphs and net-
works (Shuman et al. 2013), which naturally accounts for irregular relations (Stankovic 
et  al. 2019b). Besides GSP, Deep Learning approaches have been adopted in complex 
network modeling and analysis as well. Here, we specifically apply a Graph Convolu-
tional Network  (Kipf and Welling 2017; Wu et  al. 2020) (GCN) approach, where one 
of its branches of origin is actually rooted in GSP  (Cheung et  al. 2020), the so-called 
spectral-based Graph Neural Networks (GNNs).

Overall, in this paper—a substantially adapted and extended revision of Bloemheuvel 
et al. (2020)—we present a computational framework for modeling complex sensor data 
in the form of complex networks including GSP and GNN for Structural Health Moni-
toring (SHM) (Miao 2014; Sony et al. 2019; Abdulkarem et al. 2020) and analysis. Com-
pared to Bloemheuvel et al. (2020), we have specifically extended the presentation of the 
proposed approach, the contextualization as well as the experimentation. Most impor-
tantly, we have included a novel component into our framework, i. e., the GNN-based 
method for incorporating predictive analytics into our computational framework.

SHM is a multi-disciplinary field applying data-driven diagnostic methods which aim 
at investigating and estimating the integrity of massive complex structures. For these, it 
is then the ultimate goal to increase safety, reliability, efficiency, and ultimately (cost-)
effectiveness in such contexts, e. g., relating to civil infrastructures such as pipeline sys-
tems, buildings, and bridges. SHM data typically includes discrete-domain signals (time 
series). Adapting and using insights and methods from civil engineering, signal process-
ing, sensor technology, machine learning and data mining, cf.  Miao (2014), the data can 
then be analyzed. To the best of the authors’ knowledge, as presented in this paper, this 
is the first time that a combination of GSP and GNNs has been applied for such a data 
modeling and analysis task with respect to complex networks on real-world physical 
infrastructures.

Utilizing our proposed computational framework, we apply GSP and GNNs for SHM 
using a real-world dataset which has been collected in the context of a SHM project in 
the Netherlands called InfraWatch  (Knobbe et al. 2010). In this project, data has been 
captured by a set of sensors installed on a major highway bridge (the so-called Hol-
landse Brug), estimating the properties of traffic (i. e., pressure) which is passing over the 
bridge. For this, sensors estimating strain, vibration, as well as ultrasonic wave sensors 
(Lynch and Loh 2006) are typically directly attached to the respective structure.

There are two main advantages when analyzing and optimizing sensor networks 
(Capellari et al. 2018). To begin with, by optimizing the sensor network with respect to 
sensor location and type, the number of sensors can be reduced by sampling the most 
optimal subset. This leads to a cost reduction in the total SHM system. Furthermore, the 
amount of data that has to be analyzed is reduced significantly, speeding up the analy-
sis. Besides that, it also increases the possibility to create real-time estimation models 
and reduces the data storage in the long term (Capellari et al. 2018). Furthermore, GSP 
allows for the detection of unique trends in complex data as well as the recognition of 
specific events. This includes, e. g., the identification of traffic peaks and complex pat-
terns found when a significant amount of pressure is applied to different sections of 
the bridge. Such patterns can then indicate implicit/explicit hints and information for 
assessing the health of the bridge (Seo et al. 2016).
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Both of these problems are addressed in this work, i. e., how modeling and analy-
sis are carried out and to what degree we can identify certain subsets of sensors as 
well as interesting patterns in the modeled complex data, respectively. In addition, 
GNN methods can assist with the use case of real-time condition monitoring by fore-
casting the localized structural strain response of a respective monitored object. This 
structural strain response has recently received increased attention in the context of 
Condition Health Monitoring and prognosis since continuous strain measurements 
can then provide insights about the stress experienced on the bridge, in order to bet-
ter characterize local weaknesses and damage to the structure compared to global 
responses (Wan and Ni 2018). This highlights the potential of accurate forecasting 
of the structural stress responses by GNNs that (1) incorporate modern Deep Learn-
ing techniques and (2) complex networks to incorporate the spatial interdependence 
between the sensors.

Our contributions are outlined below: 

1.	 We suggest a theoretical framework for SHM that includes network modeling as well 
as complex network analysis using GSP and GNN approaches.

2.	 We outline the complex network modeling and analytical methodology of the pre-
sented framework in detail, exemplified by our application use case.

3.	 We use a dataset comprising real-world sensor data modeled in a complex network 
to illustrate the implementation of this system in a case study. 

(a)	 We present comprehensive analysis results for sensor network modeling in a 
resource-aware manner, with the aim of using the fewest number of sensors 
possible to recreate the provided signals.

(b)	 We present modeling results for signal pattern and event recognition.
(c)	 We show the ability of GNNs to grasp the physical nature of the sensors on a 

complex network embedded on a bridge.

The remainder of this work is organised as follows: Section 2 addresses related work, 
including an outline of essential theoretical concepts of GSP and GNN theory. Sec-
tion  3 then introduces our proposed structure and explains the approach in depth. 
Section 4 introduces the case study and addresses our results. Finally, Section 5 con-
cludes with an overview and interesting directions for future research.

Background and related work
This section discusses related work and outlines important fundamental concepts on 
the background of our proposed framework. We start by summarizing related work 
on complex networks, before we introduce the fundamental concepts of signal pro-
cessing on graphs and the requisite theoretical context. For a detailed overview on 
GSP, we refer to e. g.,  Ortega et al. (2018), Stankovic et al. (2019a). Next, we focus 
on the topic of Structural Health Monitoring. Finally, we provide a brief summary on 
Graph Neural Networks, where we introduce and explain this prominent approach 
for Deep Learning on graphs.
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Complex networks

In the world of today, complex networks—represented as graphs—can be observed in 
many different areas and domains. Altogether, complex networks have proven to be an 
effective method for modeling structural properties in a wide range of complex systems 
and a number of domains (e.  g.,   Strogatz 2001; Amaral and Ottino 2004; Boccaletti 
et al. 2006; Mitzlaff et al. 2014; Atzmueller 2014; Bloemheuvel et al. 2019). In particu-
lar, complex structures encountered in complex (networked) systems and structures, 
such as computer networks, social networks, infrastructure networks, sensor networks, 
as well as cyber-physical networks play an important role throughout our everyday 
life. However, the network concept transcends such explicit structures, towards more 
implicit networks observed in physical structures of interdependent elements or com-
ponents (Bloemheuvel et al. 2020; Worden 2021). In particular, in the field of complex 
networks and feature rich networks both the need as well as the opportunities in stud-
ying such complex network topologies, has made the use of complex network models 
pervasive in many fields of research such as computer science, physics, engineering and 
the social sciences, also joining into interdisciplinary research contexts (cf. Interdonato 
et al. 2019).

In comparison to simple homogeneous static networks, real-world networks are often 
dynamic and heterogeneous, with both nodes and links being represented by a collec-
tion of attributes and/or complex relationships caused by multi-relational, continuous 
sequential, and heterogeneous data. Thus, the mining of so-called feature-rich net-
works (Interdonato et al. 2019) is gaining increasing interest; such networks include, in 
particular, node-attributed and/or edge-attributed networks, where, for example, time 
series information obtained from sensor readings can be attached to nodes and/or edges 
of a network.

In this paper, we target the modeling of complex sensor network data—regarding 
topological/structural dependencies and properties using complex network approaches. 
Specifically, we apply GSP and GNNs on the modeled networks (being represented as 
graphs). To the best of the authors’ knowledge, this is the first time that such a combina-
tion of modeling and analysis methods has been applied for the task of SHM on real-
world physical infrastructures.

Graph signal processing

Classical signal processing can be exceptionally strong in uniform, euclidean 
domains, e. g., in the context of audio and power circuits. However, not all domains 
possess such a desirable feature. For instance, if examining sensors arranged along 
some topography of a building at distinct locations, then this arrangement will in all 
likelihood not resemble some kind of regular grid, where, e. g., wall and floor proper-
ties can considerably influence positioning and signal strengths of sensors. Moreover, 
transportation networks also resemble complex connections that are not structured 
uniformly. Some locations will serve as hubs in the network of rails, while there will 
be less dense connections in more urban areas. Thus, the complexity of such networks 
implies that the data coming from such irregular and complex structures do not lend 
themselves for standard tools (Ortega et al. 2018). This motivates, e. g., including the 
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spatial dimension towards complex modeling via GSP, extending signal processing by 
including irregular structures modeled as graphs (Shuman et al. 2013). Signal data on 
a graph can then be intuitively represented as a finite set of samples, where each node 
contained in the graph is assigned to one sample.

GSP: Basic Definitions We define a graph as G = (V ,E) where V are the nodes (also 
called vertices) and E the edges. An edge eij = (vi, vj) connects nodes vi and vj , i.  e., 
they are neighbors. The adjacency matrix A ∈ R

N×N  where |V | = N  is a square matrix 
such Aij = 1 if there is an edge from node vi to node vj , and 0 otherwise. The number 
of neighbors of a node v is known as the degree of v and is denoted by Dii =

∑

j Aij . 
For GSP, a graph G is most often represented via the Laplacian matrix L ∈ R

N×N  , 
i. e., the degree matrix minus the adjacency matrix; it holds several spectral proper-
ties that are desirable during GSP analysis (Stankovic et al. 2019a). For example, the 
Laplacian of an undirected graph is always positive semi-definite (all the eigenvalues 
of the matrix are non-negative). For a more detailed overview (see Stankovic et  al. 
2019a; Ortega et al. 2018; Ruiz et al. 2021).

•	 A graph signal is defined by associating real data values sn to each vertex. A graph 
signal is written as s = [s0, s1, . . . , sN−1]

T ∈ R in vector notation.
•	 In Digital Signal Processing, a signal shift is a shift in time of length N, resulting 

in ŝ = sn−1 . Such an operation helps with performing autocorrelation analysis. In 
GSP, a signal shift is more locally defined by replacing a signal value by a combina-
tion of a neighbors signal values Vn weighted by their respective edge weights. The 
two most popular graph shift operators are given by the Laplacian and adjacency 
matrix.

•	 One of the most important transformations in classical Signal Processing is the Fou-
rier transform, which changes the domain of a signal x from the time-domain to the 
frequency-domain. This change of perspective makes previously difficult problems 
more easily solvable, since it tells you what frequencies are present in your signal 
and in what proportions. Translated in terms of GSP, the Graph Fourier Transform 
(GFT) converts the graph signal from the vertex domain into the graph spectral 
domain. GSP achieves this transformation via the spectral decomposition of 

where the columns vn of the matrix V are the eigenvectors of the Laplacian L, and 
� the diagonal matrix of the corresponding eigenvalues. The eigenvalues act as the 
frequencies on the graph (Sandryhaila and Moura 2014). The GFT of the signal s is 
then calculated by ŝ = U∗s where U∗ the conjugate transpose of the Fourier Basis U.

•	 After Graph Fourier transformation, filters can be applied. These filters transform 
the graph signal into the graph spectral domain. Then, unwanted frequencies are 
weakened or wanted frequencies are magnified by altering the Fourier coefficients. 
Finally, the signal is reverted to the vertex domain.

•	 Lastly, a technique to measure the smoothness of a signal on a graph is called Total 
Variation. Smoothness is an important subject in Graph Signal Processing since a lot 
of techniques depend on the assumption that nearby nodes act similar. Smoothness 
is expressed by the function: 

(1)L = V�V−1,
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where A is the shift operator matrix of the graph, AX the shifted version of the sig-
nal and ‖‖1 the l1-norm. In other words, it is the cumulative difference between the 
original signal at each node and its neighbors. One could then use the end result as a 
global measure for the entire signal, or also investigate the individual values for each 
sensor.

Structural health monitoring

The collapse of the Polcevera Viaduct in Genoa showed that good designs alone are 
insufficient to ensure long-term viability of civil infrastructure (Clemente 2020). Such 
structures should be continually checked to identify damage and defects and to schedule 
timely maintenance programs. The field of applying such data-driven diagnostics that 
investigate and estimate the integrity of massive structures is called Structural Health 
Monitoring (SHM).

In principle, the main assumption of SHM is that global parameters (e.  g., mode 
shapes, natural frequencies) are functions of physical properties such as mass, damp-
ing, and stiffness (Seo et al. 2016; Cornwell et al. 1999). The deformation that a part will 
exhibit when vibrating at its natural frequency is referred to as its mode shape. From a 
Signal Processing view, mode shapes are patterns where signals and their frequencies 
are partitioned into different modal categories, e. g., using strain and/or vibration sen-
sors. Both local and global characteristics can be extracted. Specific local abnormalities 
of sensor data, for example, can suggest inaccurate sensor readings, motivating sensor 
replacement and/or maintenance. Global characteristics, however, could assess changes 
in the overall stiffness of a structure  (Seo et  al. 2016), and determine the current and 
future structural capacity of a bridge (Seo et al. 2016).

A specific problem connecting GSP and SHM which we also target in this paper, is 
resource-aware optimization; via identifying the minimal subset of sensors which is 
required to reconstruct the signal using GSP  (Capellari et  al. 2018), the needed num-
ber of sensors for reliably capturing (sensor) data from a specific complex system (e. g., 
a bridge) can be minimized, e. g., for a sensor network monitoring dynamic/structural 
properties.

Graph neural networks

Besides GSP, Graph Neural Networks (GNNs) have emerged as another successful tech-
nique for modeling complex graph-structured data. One of the branches of origins in 
GNNs called spectral-based GNNs even originates from the GSP literature. Older efforts 
to build GNNs mostly consist of spatial methods that look at the neighborhood of nodes 
to perform message passing between pairs of nodes to agglomerate them. This gap (spa-
tial/spectral) has been bridged by the Graph Convolutional Network (GCN) (Kipf and 
Welling 2017). Since then, spatial-based techniques have developed rapidly due to their 
efficiency and generality (Wu et al. 2020), e. g., Graph Convolutional Networks, Graph 
Autoencoders and Spatial-Temporal Graph Neural Networks; here, Graph Convolu-
tional Networks gained most attention (Wu et al. 2020).

(2)TVG(X) = �X − AX�1
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Essentially, almost all the GNNs can be expressed as Message Passing Neural Net-
works (Gilmer et al. 2017). 

1.	 The message passing function defines how the convolution works;
2.	 a node update function determines the new node states after propagation;
3.	 a readout function determines what is done with this information (e.g., node classifi-

cation or link prediction).

Figure 1 depicts a simple schematic overview of the node updating procedure, and its 
respective steps. First, node 2 will collect the node feature information from its neigh-
bors. Then, it will update its state and also provide a message for its own neighbors, con-
cluding the proposition of Gilmer et al. (2017).

The spectral-based GNNs exploit the adjacency or Laplacian matrix and the degree 
matrix of a graph to perform the convolution in the Fourier domain, similar to GSP 
techniques. A graph signal is convoluted throughout the graph in the Fourier domain, 
and reversely transformed back to the graph domain. However, a severe limitation of 
spectral-based methods is the lack of Transferability, since the method is dependent 
on the specific graph it is trained on. Therefore, the graph neural network models also 
needs the entire graph to train on, which is more complex in larger graph settings.

Spatial-based methods define the graph convolution on the spatial relations of a node, 
similar to the convolution step in a conventional CNN with image data. The graph 
convolution combines the representation of the central node’s representation with its 
neighbors representations to derive the updated state of the central node. The spatial 
graph convolutional operation fundamentally propagates node information along edges. 
Below, we summarize the core mechanisms which are relevant for the methods applied 
in this paper.

In both types of convolutions, added to this propagation of information are optional 
node and edge features. These node features and edge features in a graph G = (V ,E) are 
the feature description xi for every node i in the V × F  matrix X, where F is the number 
of input features.

However, to work with an adjacency matrix and to use node features and edge fea-
tures, some adaptions have to be made to the classical way a neural network performs 
feature propagation. In normal neural networks, we propagate to the next layer by:

(3)Hi+1 = σ

(

WiHi + bi
)

,
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3
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Fig. 1  Example of the basic message passing procedure of a GNN/GCN
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where Hi is the feature representation of each node at layer i + 1 , σ the activation func-
tion (e.g., Tanh or ReLU), Wi the weights at layer i, Hi the feature representation at layer 
i and bi the bias at layer i.

Kipf and Welling (2017) formalized the propagation rule in a GCN as:

where Wl is the weight matrix, σ the activation function (e.g., ReLU) and Â the normal-
ized adjacency matrix with the addition of the identity matrix I and multiplying by the 
inverse degree matrix D̂ of Â . These adaptions of the adjacency matrix and the degree 
matrix are necessary because of two reasons: 

1.	 If we would multiply with the normal adjacency matrix A, then for every node, we 
would sum up all the neighboring nodes except the node itself. Adding the identity 
matrix I to A will ensure that the node features of the node in question will also be 
taken into account.

2.	 If the adjacency matrix A would not be normalized, then nodes with a high degree 
will change the scale of the feature vectors. Once we use the symmetrically nor-
malized adjacency matrix D− 1

2AD− 1
2 , this problem is solved and the average of the 

neighboring nodes is used.

The resulting representation is a vector-form that can be directly used for several tasks. 
For example, the features can be used to predict the labels of specific nodes in a graph. 
Another example is applying classification of the entire graph. In this paper, we use the 
information to improve the results of forecasting the strain at each node in the sensor 
network.

Method
This section first provides an outline of our analysis framework. Then, the dataset and 
network modeling techniques are explained, before we describe the respective GSP and 
GNN methods.

Overview: GSP methodological framework

An overview on the proposed computational framework for modeling complex sen-
sor network data using GSP/GNN in SHM is given in Fig.  2; the figure depicts the 
overall processing and modeling pipeline of the framework. It is easy to see, that the 

(4)Hi+1 = σ

(

D̂− 1
2 ÂD̂− 1

2H (l)W (l)
)

Fig. 2  A brief overview and description of the proposed Graph Signal Processing and Graph Neural Network 
framework for Structural Health Monitoring
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presented framework provides an incremental and iterative workflow and methodol-
ogy with a human-in-the-loop. For the respective steps, of the framework, we pro-
ceed as follows: 

1.	 Input data: We start with the data as input for the modeling step.
2.	 Modeling: In the modeling step, we abstract the complex signal (i. e., the sensor net-

work data) into a complex network representation.
3.	 Already, at this step, the complex network model can be evaluated semi-automati-

cally in order to add refinements and adaptations of the network, for example, when 
faulty sensor (data) is detected.

4.	 Learning/Modeling: Next, we apply GSP and GNN learning on our network model, 
in order to obtain a graph-based machine learning (ML) model.

5.	 The resulting model can then be deployed for analysis and forecasting, in the context 
of SHM. Example applications include the identification of a minimal sensor subset, 
the detection of specific patterns, events, or mode shapes, as well as predicting spe-
cific diagnostic values—e. g., strain etc.

Below, we will exemplify the application of this framework in more detail in our case 
study.

Dataset

The InfraWatch project investigated the Hollandse Brug (built in 1969), a large high-
way bridge in the Netherlands that connects the provinces of Noord-Holland and 
Flevoland (Knobbe et al. 2010). After reports indicated that the bridge did not meet 
the quality and security requirements, sensors were placed at several locations on the 
bridge. This network of sensors includes 145 sensors, which contains 20 temperature, 
41 vertical strain (Y-strain), 50 horizontal strain (X-strain) and 34 vibration sensors. 
Various data mining techniques have been applied to the dataset, including time 
series analysis (Vespier et al. 2012, 2013) and modal analysis (Miao et al. 2013).

The dataset that was made available to us includes 5 min of sensor data collected 
in high-resolution, approximately 30,000 observations in total. The original provided 
data was sampled at 100Hz. For smoothing the signal, we took the averaged values 
per 100ms. The data consists of several traffic events, where the 10 most significant 
are examined in this paper.

Our domain specialist suggested that the strain sensors were not measured on the 
same scale or at the same time. Since time synchronization is in general a challenging 
task when gathering simultaneous sensor data (Mechitov et al. 2004), the clock times 
were matched by comparing the sensor reading peaks. Afterwards, the data was nor-
malized by rescaling them using a standard z-score standardization method.

The sensors were mounted at three different cross-sections within a single span, cf. 
Fig. 3 (see Miao 2014 for more visual information). As a result, in order to make the 
network links relevant, the 31 sensors in the middle and right cross-sections were 
removed. In addition, four sensors were discovered to be unreliable, reducing the 
total number of sensors from 145 to 110.
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Network creation

The blueprint of the bridge provides the geographical locations of the sensors to create 
the network (see Fig. 3 for the procedure). The choice for each edge (i,  j) is a bit more 
difficult, but also a crucial step (Mateos et al. 2019). A possible direction could be using 
geographical distance, but that would not grasp the functional relationship between 
the sensors, since the girders on the bridge should catch most of the strain. As a result, 
although the sensors at the top of the bridge are geographically similar to the other sen-
sors, they should behave in the exact opposite manner as the strain sensors at the gird-
ers. Therefore, the edges were determined by either (1) the correlation score or (2) the 
Dynamic Time Warp (DTW) distance between the sensor readings. Lastly, only the top 
three edges with the highest weight were added to the network (excluding the vibrations 
sensors, which had few edges in the first place).

The DTW distance can be calculated by first dividing time series 1 and time series 2 
into equal points. Afterwards, the euclidean distance is calculated between each point in 
the first time series and each point in the second, where the minimum distance is stored. 

Fig. 3  Overview of how the sensor network is created. First, the photo on top shows the sensors placed on 
the girders underneath the bridge. This is all made visible in the blueprint figure in the middle. Lastly, the 
exact locations of the sensors on the blueprint were used to create the sensor network. The same sensor is 
highlighted in each visualized step of the procedure for clarification. The width and height of the plot at the 
bottom of the figure are the 0-1 rescaled locations of the sensors on the blueprint
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This procedure is repeated for every point in the first time series until all data points 
are evaluated. The sum of all the minimum distances is then the measure of similarity 
between the two series (Fig. 4).

It is interesting to investigate which of the two techniques is most suited for each 
method used in this paper. To start, the main difference between both techniques is that 
DTW assumes that each time series is on the same scale, while correlation is scale-invar-
iant. On the other hand, correlation is a more global-based measure, which means that 
information signalling direction (one time series causing effect in the other) is not avail-
able. Therefore, each technique has advantages in different situations over the other.

To conclude, several networks are created. First, the X-strain network with 42 sensors 
and 126 edges. Second, the Y-strain network with 37 sensors and 111 edges. Third, a 
combination of X and Y sensors with 79 nodes and 237 edges. Lastly, the vibration sen-
sors form an especially small graph with 15 nodes and 26 edges. Each network had their 
own contribution to the analysis of this paper. For example, the strain sensors were used 
to conduct the sampling, mode shape identification and forecasting. The vibration sen-
sors mainly assisted with identification of the mode shapes.

Node subset selection—sensor subset sampling

One of the core tasks in GSP is to “reconstruct” the signal of sensors, i.  e., deducing 
those given a specific sample. As an example, consider a case in which cost, battery or 
bandwidth limits restrict the number of applied sensor nodes. In this work, we apply 
sampling by calculating the optimal subset of sensors that are able to reconstruct the 
original signal at specific time points. These specific moments in time refer to the traf-
fic events that happen on the bridge, since calculating the error during no traffic would 
inflate our reconstruction error. Figure 5 motivates this decision, where the time points 
outside of the peaks show little deviation at all. Incorporating these time points in the 
evaluation will highly influence and skew the results of each algorithm.

Since brute-force searching for the most optimal solution is not feasible with a large 
number of N nodes, the following strategies are investigated: random search and top-
down or bottom-up hill-climbing. The last two strategies are well known greedy-search 
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Fig. 4  Difference between the euclidean distance and the DTW-distance. The DTW method allows more 
flexibility in measuring time series that do not sync perfectly in time
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strategies (Krause et al. 2008; Aggarwal et al. 2017; Anis et al. 2016; Puy et al. 2018). The 
random search strategy serves as a baseline and creates a random set of sensors that are 
sampled. On the contrary, the hill climbing algorithms either perform subset selection in 
a bottom-up or top-down manner. Bottom-up hill climbing (i.e., Forward Selection) starts 
with zero selected sensors and progressively selects the most informative sensors that 
decrease the error the most. Top-down hill climbing (i.e., Backward Elimination) consist 
of starting with all sensors and eliminating the least informative sensors one-by-one. Both 
hill climbing techniques incorporate randomness by choosing from the top-3 either best 
or worst performing sensors, which prevents the hill climbers to reach local maxima and 
minima. Each algorithm ran a total of 500 iterations to find the best solution and was ter-
minated when 25% of the sensors were selected. It could then occur that the same result is 
repeatedly found, so only the unique solutions were stored.

To estimate the original signal from this subset of sensors, Tikhonov Minimization is 
applied in each iteration of the sampling procedure (Shuman et al. 2013; Defferrard et al. 
2014). The function solves for the unknown vector x:

if τ > 0 and

otherwise, with the graph signal y, the masking vector M that resembles a binary vec-
tor of which nodes are sampled (1 = sampled, 0 = not sampled), the Laplacian matrix 
L and the regularization parameter τ . Several values for the regularization parameter in 
the Tikhonov Minimization were tried, of which the default value of τ = 0 showed the 
optimum results.

Finally, each algorithm was also applied on data obtained by applying a low-pass filter g(x) 
on the graph frequencies x of the signals:

(5)argmin
x

||Mx − y||
2

2
+ τxTLx,

(6)argmin
x

xTLx : y = Mx,

g(x) =
1

1+ 0.5 · x
.

Fig. 5  Strain values ( µm/m ) of three sensors attached to the bridge at different locations. Sensor B and 
C show how the strain behaviour is influenced by their position on the bridge. Sensor A is placed at the 
right-most girder on the bridge; it captures most of the strain, whereas Sensor B and C are placed on the deck 
of the bridge where the strain is countered
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Essentially, a graph filter performs a transformation as a function over the graph fre-
quencies (in our example g(x)); it alters their contents by a point-wise multiplication 
in the graph Fourier domain (Isufi 2019). After the filter has been applied, the Inverse 
Graph Fourier Transformation of the Fourier domain signal reverts the signal back to 
the time domain for evaluation.

Strain forecasting method

In order to forecast the strain values in the sensor data, we applied the T-GCN utilizing 
the implementation contained in the Stellargraph Package (Data61 2018). The T-GCN is 
a Spatio-Temporal Graph Convolutional Network that combines graph layers with Long 
Short-Term Memory layers (Zhao et al. 2019). The spatial aspect of the data lies in the 
exact locations of the sensors, whereas the temporal aspect lies in the fact that different 
loads over time produce different stress on the bridge. For example, there could be a 
daily pattern in the direction of the traffic on the bridge.

The strain data of each sensor type was cut into 2914 sequences of length 10 (10 x 
100ms), where the task was to predict the strain value at the 12th timestep in the future 
(i.  e., the most difficult setting in the original T-GCN paper by Zhao et al. (2019)). In 
other words, we estimate the values 1.2  s later based on the preceding 1  s of strain 
observations. In our experimentation, we used an 80/20 split for training and testing. 
The model used the N × N  adjacency matrix and the N × T  feature matrix X, which 
describes the strain over T timesteps for N sensors. In this way, we regard the strain val-
ues Xt ∈ RN×T the strain measured at each sensor on the bridge at time i. We can thus 
consider our problem definition as learning the function f on the network topology of 
the sensor graph G and the feature matrix X to calculate the strain at timestep t.

For setting up the T-GCN, two GCN layers were used with each 8 filters. These were 
attached to two Long Short-Term Memory (LSTM) layers with each 50 filters. LSTM 
layers are special recurrent layers where the top horizontal line Ct is the memory state, 
enabling the LSTM to remember information from the past. It also contains gates that 
allow or block information in the network from passing by, and these gates consist of 
Sigmoid functions and multiplication operations. For example, the first sigma gate in 
Fig. 6 functions as a Forget Gate, blocking or allowing information to flow through. The 
second sigma functions as an input gate and the third sigma functions as the output 
gate. Lastly, the dense output layers consist of the N sensors in the graph with Tanh as 
the activation function, since the strain values can be negative and fall between [-1,1]. 
To conclude, Table 1 shows an overview of the T-GCN model. To calculate the quality 
of the predictions, the Root Mean Squared Error (RMSE) of each segment is taken and 
compared to a benchmark taking the most recently observed value. Such a benchmark 
is tough to beat, since it is not expected that the strain signal will differ significantly in a 
short period of time.

Results and discussion
Below, we present and analyze the results of the sensor sampling from which the total 
signal can be reconstructed. Then, mode shape detection and forecasting applications 
will be discussed.
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Sampling: selecting a minimal subset of sensors

To select the minimal subset of sensors, we used three algorithms: (1) random selec-
tion and (2) bottom-up or (3) top-down hill-climbers and assessed their performance 
based on the Root Mean Squared Error (RMSE) scores. We chose RMSE as a metric 
since it (1) penalizes errors more than other metrics and (2) measures in the same 
unit as the variable of interest. Each algorithm was also tested on either the correla-
tion-based graph or the DTW-based graph during the most noticeable traffic events 
(see Table 2).

In terms of RMSE, the top-down algorithm continuously beats the random 
(+ 28.39%) and bottom-up (+ 11.41%) algorithms. In addition, the random algorithm 
was tested for 50.000 iterations in a separate experiment (100x the original setting). 
Even after so many runs, the random algorithm did not outperform both hill-climbers 

σ σ Tanh σ

× +

× ×

Tanh

Ct−1

Ht−1

Xt

Ct

Ht2

Ht1

Fig. 6  Schematic overview of a single LSTM cell

Table 1  Schematic overview of the architecture of the T-GCN on the X-strain data with 42 nodes

Layer Activation Filters Shape Parameters

Input – – 42× 10 0

GCN 1 ReLU 8 42× 8 1886

GCN 2 ReLU 8 42× 8 1870

Reshape 1 – – 42× 8× 1 0

Permute – – 8× 42× 1 0

Reshape 2 – – 8× 42 0

LSTM 1 Tanh 50 8× 50 18600

LSTM 2 Tanh 50 50 20200

Dropout – – 50 0

Dense Tanh 42 42 2142
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when individual events were considered. In this way, a single top-down iteration 
outperforms a large number of random iterations (for any reasonable amount of 
iterations).

Considering the type of sensors, our domain specialist indicated that the bridge can 
travel more freely in the Y-direction. Therefore, modeling the Y-strain could be more 
difficult than the X-strain. Our results support this intuition, showing that the algo-
rithms work well with X-strain sensors but show weaker performance with Y-strain 
sensors.

The DTW-based graph outperforms (+ 10.5%) the correlation-based graph in terms 
of overall subset recovery performance. In addition, the DTW-graph also shows a 
reduction in the standard deviation in the RMSE results of the Y-strain and Com-
bined sensors. However, it is remarkable to see that while the correlation-based 

Table 2  Mean and standard deviation  (in italics) of RMSE scores (best performing in bold) in the 
DTW-graph and correlation-graph for all traffic occurrences for every algorithm

The columns non-filtered and filtered show whether or not graph signal filtering was used

Algorithm Sensor type

Non-filtered Filtered

X-strain Y-strain Combined X-strain Y-strain Combined

Correlation

Random 0.80 1.36 1.12 0.45 0.86 0.68

(.32) (.95) (.76) (.29) (.62) (.46)

Top-down 0.60 1.06 0.74 0.31 0.66 0.38
(.24) (.75) (.52) (.19) (.51) (.29)

Bottom-up 0.68 1.08 0.88 0.34 0.71 0.46

(.30) (.80) (.68) (.21) (.53) (.35)

DTW

Random 1.07 0.98 1.09 0.47 0.50 0.48

(.66) (.34) (.41) (.31) (.22) (.22)

Top-down 0.76 0.76 0.64 0.31 0.37 0.29
(.38) (.24) (.27) (.20) (.16) (.16)

Bottom-up 0.99 0.90 0.83 0.42 0.42 0.35

(.65) (.29) (.37) (.32) (.16) (.18)

Fig. 7  RMSE scores of each algorithm on X-strain sensors during traffic event 1. in the correlation graph
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graph version scores best in the X-strain condition, such a pattern is not visible in the 
DTW-graph. In the DTW-graph, combining the X and Y-strain sensors yields the best 
results.

Considering the individual performance of each subset sampling algorithm, Figs.  7 
and 8 show the performance on the X-strain sensors of a specific traffic event in the 
correlation-based graph. Set side by side, the top-down algorithm shows the best gen-
eral performance (M = 1.20, SD = .06) and shares no overlap with the iterations of the 
bottom-up algorithm. The bottom-up algorithm, however, already improved from the 
random algorithm (M = 2.60, SD = .45), which performed worst.

The top-down algorithm also has a substantially lower standard deviation, indicating 
that it performs more consistently when multiple iterations are carried out. The fun-
damental procedures of the hill-climbers will shed light on such results. The bottom-
up algorithm will calculate more unique iterations since the algorithm selects sensors 
instead of dropping them. It calculates the 25% selected sensors, while the top-down 
algorithm calculates the 75% sensors not selected. Therefore, weak sensors will almost 
always be removed in the top-down algorithm whereas such sensors could potentially 
still remain in the bottom-up algorithm longer. Therefore, running a few top-down trials 
to determine the ideal subset seems most optimal.

When examining the selected sensors by the top-down algorithm, Fig.  9 shows a 
nearly symmetrical set of sensors. Such a pattern is specifically noticeable in the X-strain 
sensors. These results point to potential over-engineering in the number of sensors used 
on the bridge. Furthermore, the second-lowest row of X-strain sensors (shown in Fig. 9) 

Fig. 8  Runtimes of each algorithm on X-strain sensors in the correlation graph

Fig. 9  For both the X-strain and Y-strain sensors, the colored nodes are the sensors selected by the top-down 
algorithm
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was not sampled at all. This suggests that the sensors mounted in the center of the gird-
ers are not very useful, and could potentially be left out when designing future Con-
dition Health Monitoring projects of bridges. Perhaps engineers could use the insights 
from such subset sampling techniques to determine the locations of the sensors in a 
data-driven way in future SHM projects.

Network representation example: girders and deck

For the network representation, we depict the sensors regarding X-strain and Y-strain 
in Fig.  10; Fig.  11 shows the respective sensors in one visualization. When examining 
Fig. 10, most of the connections in the network are between the strain sensors placed at 
either the top or the bottom of the bridge. Such a behavior is expected, which confirms 
our modeling choices: The bottom part of the bridge contains girders that carry most 
of the weight, which should all behave very differently from the sensors placed on top 
of the bridge deck. Figure 11 depicts traffic event 1, in which pressure can be seen on 
the bottom right side of the bridge, showing that one or more vehicle(s) passed by. The 
figure also shows a decline in strain located at the bridge deck, indicating that the girders 
are doing their function properly, according to our domain specialist. Engineers could 
track the signals over time and determine how the pressure and vibrations are transmit-
ted through the bridge. Figure 11 also shows a misbehaving sensor placed in the middle 
of the graph, of which engineers could assess whether this behavior is expected (placed 
on a special spot on the bridge) or not.

Figure 12 helps us investigate the behavior of the sensor network in more detail. The 
total variation of each node during a traffic event relative to the sensors to which it is 
connected is plotted as a signal on the X-strain network. The sensors placed on the 

Fig. 10  The sensors network during normal conditions without traffic on the bridge

Fig. 11  The sensor network during a traffic event on the right side of the bridge
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girders indicate that the strain is equally distributed across the constructed girders. 
However, there is a lot more variation in the strain on the deck of the bridge. The most 
yellow-colored sensors are the sensors that highlight this behavior. The total variation 
could be used in a global manner as a measure for signal smoothness, whereas the local-
ized version could highlight inaccurate sensor readings or sensor replacement.

Identification of mode shapes

The Finite Element Method (FEM) is a computational technique for solving partial dif-
ferential equations. It is commonly used to categorize the frequencies of signals into a 
combination of different modes in order to distinguish mode shapes. FEM can be applied 
for any physical phenomenon, e. g., heat flow, fluid behavior and wave propagation. FEM 
tries to solve a problem by partitioning a system into a set of smaller parts—the so-called 
“finite elements”, which basically act as a representation of the entire object. Each ele-
ment contains a simple equation that when combined models the global problem.

Fig. 12  Total variation during a traffic event on the X-strain sensor graph. The yellow colored nodes are the 
nodes whose sensor readings differ most from their neighbors

(a) (b)

(c) (d)

Fig. 13  a A FEM-based presentation of a mixture of mode shapes with the matching graph signal in c. b A 
FEM-based mixture of torsional mode shapes that are apparent in the girders, which are as well visible in d. 
Both a and b are from Miao et al. (2013), for which we refer to for further details on FEM
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Certain mode shapes could be observed when the graph is examined for t time peri-
ods. For example, Fig. 13a shows a FEM-based mode shape, which is similar to the graph 
signal shown in Fig.  13c. The bridge is vibrating back and forth during this event, of 
which Fig. 13c highlights a left-sided decrease in vibration. Figure 13d shows a vehicle 
passing by on the right side of the bridge, and how the girders carry the weight and allow 
the other parts of the bridge to decrease in strain level, relating to the FEM-based mod-
eling shown in Fig. 13b. A supplementary page1 with animated GIFs is available to pro-
vide additional insights into the graph signals.

Forecasting strain and vibration

The results of the forecast with T-GCN in terms of RMSE are visible in Table 3. Over-
all, the T-GCN outperformed the benchmark (last observed value) in terms of RMSE by 
around 21%. It is interesting to see that the forecasting scores follow a similar pattern as 
the node subset sampling results of the correlation-based graph. In general, the X-strain 
sensors are easiest to forecast, followed by combining both the X and Y-strain and only 
Y-strain sensors.

Considering the difference between the correlation-based graph and the DTW-based 
graph, not a huge disparity is found. The results in the non-filtered condition are identi-
cal, only the filtered conditions show some improvements in the Y-strain and combined 
sensor settings. However, it is recommended to use correlation over DTW in large graph 
applications, since calculating the DTW-based graph takes considerably longer than the 
correlation graph, especially if the graph is not static and thus needs to be recalculated 
frequently.

The final results of the forecasting procedure are visualized in Fig. 14. Overall, the 
T-GCN shows very promising results in forecasting the strain. Sensor 8 & 13 show 
some similar behavioural patterns in the strain readings. The T-GCN is able to pre-
cisely forecast the strain on the bridge, however, it does struggle with predicting the 
magnitude of the events. Sensor 34 in Fig. 14 shows the T-GCN struggling a bit with 
the timing of the events that occur in the sensor. Such a delay can be due to the sub-
optimal performance of the T-GCN on this specific sensor, or the fact that the sensors 

Table 3  RMSE scores (best scoring in bold) for the Graph Neural Network and Benchmark baseline 
on forecasting strain sensor readings in the correlation & DTW graph

Algorithm Sensor type

Non-filtered Filtered

X-strain Y-strain Combined X-strain Y-strain Combined

Correlation

Benchmark 0.49 0.79 0.58 0.36 0.59 0.45

T-GCN 0.38 0.61 0.44 0.29 0.46 0.36
DTW

Benchmark 0.49 0.79 0.58 0.34 0.49 0.37

T-GCN 0.38 0.61 0.44 0.28 0.39 0.31

1  https://​github.​com/​Stefa​nBloe​mheuv​el/​GSP_​Bridge to github page.

https://github.com/StefanBloemheuvel/GSP_Bridge
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had to be time-aligned (see Section 3.2). Lastly, sensor 39 shows a different behavioral 
pattern with fewer low-peaks in the strain of the bridge.

An interesting combination between GSP and GNNs can be conducted by apply-
ing the forecasting on the subset of nodes found by GSP. In the GSP method, the set 
of used nodes were reduced by 75%, leaving only 25% selected. Such a selection boils 
down to a parameter reduction of 19%, a Ms / epoch reduction of 30% and a (tol-
erable) RMSE increase of 7.9% of the selected sensors (see Table  4). Such a reduc-
tion could then also help to combat the problem that Condition Health Monitoring 
systems generally collect vasts amounts of data, making analysis slow (Wan and Ni 
2018).

Conclusions
This work presented a computational framework using Graph Signal Processing and 
Graph Neural Networks for modeling complex sensor data and its respective analysis 
in the area of Structural Health Monitoring. That is, in this framework, we integrated 
Graph Signal Processing and Graph Neural Networks, covering more analytics ori-
ented as well as more predictive/forecasting oriented techniques. In our experiments, 
we focused on a real-world complex sensor dataset in the context of structural health 

Table 4  Parameter reduction when using node subset sampling on the T-GCN

Situation N parameters Ms / epoch RMSE

All nodes 41.170 10 0.38

25% selected 33.346 (− 19%) 7 (− 30%) 0.41 (+ 7.9%)

Fig. 14  Visualization of re-scaled forecasting results of a set of four strain sensors. The orange lines resemble 
the original signal, the blue lines the predicted values. Sensors 8, 13 and 39 show that the T-GCN is able to 
forecast the strain values quite well, while sometimes struggling with the magnitude of events. In addition, 
there seems to be some delay in the forecast results of sensor 34



Page 21 of 24Bloemheuvel et al. Applied Network Science            (2021) 6:97 	

monitoring. According to the results of our experiments with respect to the proposed 
frameworks and the respective approaches, both techniques revealed to be appropri-
ate to work with the applied real-world complex sensor data.

Our results conducted on a real-world dataset indicate that GSP is capable of choos-
ing the most essential sensors in the Hollandse Brug, a large bridge in the Netherlands, 
to derive a minimal subset of sensors from a resource-aware perspective. We also con-
sidered different strategies for network creation, investigating correlation-based and 
DTW-based network models. Our proposed top-down algorithm performed best of the 
tested alternatives in combination with the DTW-based network. With this, significant 
cost-reductions could be accomplished by using GSP for sensor selection in monitoring 
major civil infrastructures. Moreover, the sensor selection might improve the lifetime of 
battery-powered sensor networks, e. g., by finding the two most optimal sets of sensor to 
turn on interchangeably.

Furthermore, we presented a method to observe (a mixture of ) mode shapes, which 
indicate interesting events; these results could be exploited to evaluate the condition of 
the bridge, since the mode shapes hint to global aspects of the bridge, such as damp-
ing and stiffness. Here, our GSP approach needs fewer modeling assumptions or back-
ground knowledge in engineering (e. g., compared to construction a FEM model).

Lastly, Graph Neural Networks were used to forecast the strain values in the bridge. 
The T-GCN algorithm surpassed the benchmark in each condition by around 21%. It 
is also interesting to note that filtering the graph signals with low-pass filters has an 
equal effect on reducing the forecast error as on the signal recovery using GSP. How-
ever, a possible downside of using Deep Learning is the computational complexity of 
such approaches. Nonetheless, the insights from the subset selection could also be used 
to (with a minor increase in RMSE) reduce the parameter size of the T-GCN by ∼20% , 
training speed with ∼30% and the amount of data with 75%.

So, in summary, in our experimentation on our real-world use case we showed that 
GSP enables the identification of the most important sensors, for which we investigate 
a set of search and optimization approaches. Furthermore, as indicated in our experi-
ments GSP enabled the detection of specific graph signal patterns (mode shapes), cap-
turing physical functional properties of the sensors in the applied complex network. 
Finally, we showed the efficacy of applying GNNs for strain prediction on this kind of 
data.

For future research, we intend to examine means to spot mode shapes with GSP with 
unsupervised techniques, e.  g., by adapting methods from the field of anomaly detec-
tion (Akoglu et al. 2015; Atzmueller et al. 2017), and also to investigate Deep Learning 
methods in this context. Here, specifically explainable (Barredo Arrieta et al. 2020) and 
interpretable  (Rudin 2019; Bloemheuvel et  al. 2019) approaches seem interesting and 
relevant, e.  g., building on approaches combining network-based approaches  (Masiala 
and Atzmueller 2018) with (explainable) deep learning, in particular also for time series 
data  (Schwenke and Atzmueller 2021a, b). This also extends to further hybrid compu-
tational approaches (e. g.,  Bellary et al. 2010; Barredo Arrieta et al. 2020; Dellermann 
et al. 2019). In addition, we intend to apply according methods using GSP and GNNs 
on other civil infrastructures and complex systems. For example, for potential other 
datasets that have already undergone sensor selection, it would be interesting to check 
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if our proposed techniques could reduce such datasets even further, e.  g., using node 
subset selection capturing extended dynamics of such systems in complex contexts. This 
could then also help in adapting to initially hidden or emerging relationships. Moreover, 
alternative methods for sensor placement that do not use any graph information could 
be adapted to our use case and compared against our graph-based approaches. Exam-
ples are the eigenvalue vector product, the variance method and the non-optimal drive 
point method (Meo and Zumpano 2005) that are originally developed for optimal sensor 
placement instead of selection.

In addition, investigating methods of learning the network structure in a more auto-
mated way looks promising: For this, we could consider learning the Laplacian matrix, 
i. e., constructing the graph Laplacian from the data itself in a statistical or unsupervised 
manner (Egilmez et al. 2016; Dong et al. 2016). This can then aid in supporting the many 
modeling decisions that had to be taken in order to create the graph, which are often 
not easy to define (Stankovic et al. 2020). Then, it would also be interesting to compare 
the performance of (1) our model, (2) more semi-automatic versions, (3) and completely 
automatic versions for obtaining the network structure.
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