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Introduction
Collaboration among diverse actors is critical for effective resilience planning and man-
agement of interdependent infrastructure systems (IISs) (Li et  al. 2019, 2021). In the 
context of this study, resilience is defined as “the capacity of human and infrastruc-
ture systems to prepare and plan for, absorb, recover from, or more successfully adapt 
to actual or potential adverse events (National Research Council 2012).” This definition 
highlights the importance of human systems affecting urban resilience that involve actors 
from diverse urban sectors (e.g., transportation, emergency response, environmental 
conservation, and flood control) with diverse priorities, resources, and responsibilities. 
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For example, actors from transportation sectors would focus on the improvement of 
roadway networks, while actors from flood control and environmental conservation may 
focus on flood mitigation and natural resource preservation. Urban resilience improve-
ment is a collective action problem, and therefore needs to account for complex inter-
actions and collaboration among diverse actors (Norris et  al. 2008). Existing studies 
highlight the importance of actor collaboration for planning (Godschalk 2003; Woodruff 
2018), emergency response (Chen and Ji 2021; Eisenberg et  al. 2020; Kapucu 2005; Li 
and Ji 2021), and recovery (Aldrich 2011; Berke et al. 1993; Gajewski et al. 2011; Rajput 
et al. 2020) before, during and after urban disruptions. In the context of resilience plan-
ning and management of IISs, inadequate collaboration and coordination among diverse 
actors in the planning process exacerbates a lack of institutional connectedness (Dong 
et  al. 2020) and would lead to contradictions and inconsistencies among networks of 
plans (e.g., land use, hazard mitigation, and environmental conservation) and increase 
social and physical vulnerabilities to urban disruptions (Berke et al. 2015, 2019; Malecha 
et al. 2018). For example, inconsistencies among land use approaches and hazard mitiga-
tion plans would allow urban growth in hazard-prone areas (Godschalk 2003).

Existing studies related to disaster management and environmental governance 
have explored factors that form the collaboration and social ties among diverse actors 
(Kapucu and Van Wart 2006; Nohrstedt and Bodin 2019). There is empirical evidence 
that actors with cognitive, organizational, and geographical proximity tend to form col-
laborations and social ties in inter-organizational networks (Balland 2012; Broekel and 
Hartog 2013). Matinheikki et al. (2016, 2017) found that actors with shared values tend 
to establish collaborations in a construction project. Hamilton et al. (2018) found that 
actors tend to engage in within-level (e.g., regional, local, and state) linkages in environ-
mental governance compared with cross-level linkages. Studies regarding social network 
analysis demonstrated homophily phenomenon that implies actors with similar attrib-
utes tend to establish ties with each other (Gerber et al. 2013; Kossinets and Watts 2009; 
Shalizi and Thomas 2011). On the other hand, the heterophily phenomenon also exists; 
studies have shown that actors with dissimilar attributes tend to form social ties (Bar-
ranco et al. 2019; Kimura and Hayakawa 2008; Lozares et al. 2014; Rivera et al. 2010). 
The theory of structural holes in social networks suggests that actors seeking to advance 
their positions and to broaden their influence tend to form ties with those with differ-
ent resources and skills (Burt 2004; Lazega and Burt 1995). McAllister et al. (2015) also 
argued that the links in networks related to urban governance were shaped based on the 
choices that actors make either to increase bonding capital, to reinforce shared norms 
and trusts, or to increase bridging capitals, linking with exotic resources. Asikainen et al. 
(2020) found that triadic closure (i.e., a structural property representing ties among three 
actors) and choice homophily are two important mechanisms for the evolution of social 
networks (e.g., communication networks), and that these two mechanisms are depend-
ent upon each other. Although multiple existing studies explored the mechanisms that 
form the collaboration and social ties in different fields, such as organizational teams, 
very few studies investigated the drivers for collaboration in actor collaboration net-
works for resilience planning and management of IISs. Also, most collective action 
studies in the context of disaster management and environmental governance focus 
primarily on the structural properties of actors’ social networks and have paid limited 
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attention to local interactions (based on examining motifs as topological signatures) and 
homophily effect (based on assessment of actor node attributes). The examination of 
these two mechanisms is essential for understanding and improving essential coordina-
tion in actors’ networks for resilience planning and management of IISs.

In this study, therefore, our goal is to examine two important mechanisms for actor 
collaborations: local interactions and homophily effects in resilience planning and man-
agement of IISs. In this paper, we define local interactions as the stakeholder interac-
tions on a small scale which can be examined by subgraphs or motifs in complex 
networks (Asikainen et al. 2020; Robins and Alexander 2004; Vázquez et al. 2004). We 
mapped actor collaboration networks for hazard mitigation before Hurricane Harvey 
based on a stakeholder survey administered in Harris County, Texas. The stakeholder 
survey captured collaboration among actors in various urban sectors (e.g., transporta-
tion, emergency response, flood control, environmental conservation, and community 
development) involved in hazard mitigation efforts. Also, the survey examined prefer-
ences of actors towards different types of flood risk reduction policies (e.g., land use 
approach, monetary policy, and engineering policies). Based on the mapped collabora-
tion networks, we adopted network motif analysis and exponential random graph mod-
els (ERGMs) to examine the drivers for actor collaboration formation. We elaborate on 
the network motif analysis and ERGMs in the following sections.

Study context and data collection
During Hurricane Harvey, a Category 4 hurricane that made landfall on the Texas Gulf 
Coast in 2017, flooding due to release of water from Addicks and Barker reservoirs 
inflicted property and infrastructure damage in Harris County totalling 125 billion, par-
ticular in the Houston area. The release of water was necessitated to avoid even more 
severe damage if the impounded water would have breached the dams (NOAA & NHC 
2018). Houston is a flood-prone city: Hurricane Harvey is only one in the long history 
of hurricane events in the Houston area. From 1935 to 2017, ten major flooding events 
occurred in the Houston area. Just before Hurricane Harvey, Memorial Day Floods in 
2015 and Tax Day Floods in 2016 wreaked havoc in Houston, and caused 16 casualties 
and more than $1 billion in losses (Berke 2019).

After Hurricane Harvey, we administered a stakeholder survey that focused on the 
Harris County area in Texas. The intent of the survey was to collect, among other things, 
essential data regarding actor collaboration for hazard mitigation and resilience plan-
ning of IISs, as well as actor preferences to different flood risk reduction policies. To map 
the actor collaboration network, we identified 95 influential actors involved in resilience 
planning from different urban sectors, including community development (CD), flood 
control (FC), transportation (TT), environmental conservation (EC), and emergency 
response (ER). These actors were listed in the survey roster as the actors that the survey 
respondents may have collaborated with. The survey question we asked the respondents 
to collect the collaboration data is included in the supplementary material.

Furthermore, we developed flood risk reduction policy actions to investigate prefer-
ences of actors from different urban sectors. The developed risk reduction policy actions 
included land use policies, engineering policies, and monetary policies. We identified 
these policies based on the strategies for urban flood resilience improvement discussed 
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in existing literature (Berke and Smith 2009; Brody et al. 2013, 2009; Burby 1998; Burby 
et al. 1999; Godschalk 2003). Table 1 lists the policy actions in the survey. Please see the 
supplementary material for survey questions to identify respondents’ preferences to the 
developed policy actions.

On January 31, 2018, we conducted a pilot test of the stakeholder survey to collect 
feedback on the first-round survey instrument. For the pilot test, we randomly selected 
a group of 15 individuals from an initial list of selected organizations. We identified an 
initial list of organizations from different urban sectors, such as Harris County Flood 
Control District, City of Houston Floodplain Management Office, Texas Department 
of Transportation, Urban Land Institute, and The Nature Conservancy. We then used 
a snowball sampling method to expand the initial list by asking respondents to recom-
mend relevant individuals and organizations to participate in the survey. Four respond-
ents completed the pilot test, concluded on February 12, 2018. We refined the survey 
instrument based on the feedback received in the pilot test. The stakeholder survey was 
officially launched on February 15, 2018 and closed on April 10, 2018. We sent out a total 
of 795 invitations in 25 waves. We selected organizations involved in resilience plan-
ning from different urban sectors, both within and outside government, and at different 
scales (e.g., local, county, regional and state). We selected respondents within organiza-
tions that were in positions of management and planning and thus were informed about 
planning and were influential in their organizations. Finally, 198 individual respond-
ents, representing 160 different departments of 109 organizations, (approximately 30% 
response rate) completed the survey.

Network models
We mapped the collaboration among diverse actors involved in hazard mitigation and 
resilience planning of IISs based on the survey results. We also mapped actor collabo-
ration networks at different collaboration frequency levels, such as daily and weekly 
collaboration networks. The mapped networks are bipartite networks with two node 
sets: one comprises actors in the survey roster; the other, survey respondents. The 
edges in the mapped network represent collaborations among the actors for hazard 
mitigation and resilience planning of IISs. Figure  1 illustrates the way to map the 

Table 1  Flood risk reduction policy actions in the survey

Policy description Policy description

P1: limit new development in flood-prone areas P9: protect wetland and open space

P2: elevate buildings P10: improve stormwater systems

P3: strengthen infrastructure design standards P11: build additional flood water drainage systems

P4: establish and implement infrastructure resilience 
program

P12: temporarily prohibit development in the period 
immediately after a disaster event

P5: minimize additional impervious surfaces, such as 
parking lots

P13: charge impacts fees for development in flood-
prone areas

P6: build additional protective dams P14: limit the development of public facilities and 
infrastructure in flood-prone areas

P7: build additional protective levees P15: limit rebuilding in frequently flooding areas

P8: build more catchment reservoirs and retention 
ponds

P16: buyout or otherwise acquire damaged property
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actor collaboration network. Considering that monthly collaboration was the most 
representative answer, our analysis focused on the monthly collaboration network.

We assigned the actor preferences to flood risk reduction policy actions as attrib-
utes to the nodes of the mapped actor collaboration network. Each node could have 
one of three preferences states for each policy action: Oppose, Neutral and Support. 
In the data processing process, we grouped the survey results of “Strongly oppose” 
and “Oppose” and “Strongly support” and “Support.” Furthermore, we divided survey 
respondents into five urban sectors based on the organizations and departments they 
represented: community development (CD), flood control (FC), transportation (TT), 
environmental conservation (EC) and emergency response (ER) (Dong et  al. 2020; 
Farahmand et al. 2020; Li et al. 2019, 2020c). Table 2 illustrates examples of classified 
urban sectors. The urban sectors of actors were also assigned to each node as one of 
the node attributes in the mapped collaboration network to examine the homophily 
effect. Table  3 summaries the node attributes that we accounted for in the mapped 
collaboration network.

Fig. 1  Map actor collaboration network based on survey results

Table 2  Examples of departments and organizations in classified urban sectors

Category Example of involved departments Example of involved organizations

Flood control (FC) Water departments and institutions, 
drainage, and floodplain manage-
ment

The Texas Floodplain Management 
Association, Harris County Flood Con-
trol District, City of Houston Floodplain 
Management Office

Emergency response (ER) Disaster management, disaster relief, 
fire department, police department, 
resilience offices

Harris County Office of Emergency 
Management, Texas Department of 
Public Safety, Federal Emergency 
Management Agency (FEMA)

Transportation (TT) Transportation strategic planning, 
design, construction, and manage-
ment departments

Metropolitan Transit Authority of Harris 
County (METRO), Houston TranStar, 
Port of Houston Authority, Texas 
Department of Transportation (TxDOT)

Community development (CD) Business and economic services, 
academic institutions, public work 
departments, recreational depart-
ments

Houston Real Estate Council, United 
Way of Greater Houston, Harris County 
Community Economic Development 
Department, Bay Area Houston Eco-
nomic Partnership

Environmental conservation (EC) Pollution control, waste manage-
ment

Bayou Land Conservancy, Bayou 
Preservation Association, Houston 
Wilderness, Urban Land Institute, The 
Nature Conservancy
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Methodology
The examination of the local interactions and homophily effects that form the social 
ties and contribute to the evolution of social networks are usually regarded as a bot-
tom-up process (Boyd and Jonas 2001). As such, network motif analysis and ERGMs 
are suitable approaches for revealing the network configurations that encode the 
importation information related to tie and collaboration formation. Hence, we 
adopted network motif analysis for the examination of local interactions and ERGMs 
for the assessment of homophily effects in the actor network in the context of resil-
ience planning and management of IISs in Harris County.

Network motif analysis

Network motifs are defined as the network structural elements in complex networks 
that have significantly larger counts compared with the random networks (Milo et al. 
2002). Compared with the global network measures, network motifs reveal the pat-
terns of local interactions, thus playing an important role in understanding the hid-
den mechanisms behind complex networks. Network motifs have been widely studied 
in social, neurobiology, biochemistry, financial, and engineering networks. To name 
a few studies, Dey et al. (2019) showed that distributions of network motifs (i.e., the 
patterns of local interactions) are strongly connected with the robustness of systems 
(e.g., power-grid networks, transportation networks). Saracco et  al. (2016) detected 
the early-warning signs of the financial crisis through analyzing the motifs of the 
bipartite world trade networks. Schneider et al. (2013) studied the motifs of human 
mobility network and unraveled the mobility patterns. Gorochowski et  al. (2018) 
studied organizations of 12 basic motif clusters in natural and engineered networks. 
The results showed that the organizations of motif clusters were different between 
networks of various domains. Robins and Alexander (2004) examined seven bipar-
tite network configurations to study the small-world effects and distance in corporate 
interlocking networks. These examples highlight the growing use and capability of 
network motif analysis to study local interactions and hidden mechanisms that con-
tribute to the robustness, organization, and functionality of complex networks.

In this study, we focused seven basic network configurations of bipartite networks 
without network projections, because studies showed that network projections may 
lose important information of bipartite networks (Robins and Alexander 2004; Zhou 
et al. 2007). Figure 2 illustrates seven network configurations of bipartite networks in 

Table 3  Considered node attributes in the network

Node attributes Values

Urban sectors CD, FC, TT, EC, and ER

Preference to P1 Oppose, neutral and support

Preference to P2 Oppose, neutral and support

…

Preference to P16 Oppose, neutral and support
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which the blue square and the red circle represent two-node sets. Table 4 shows the 
relative statistics and interpretations of the network configurations.

As illustrated in Table 4, Robins and Alexander (2004) introduced two new configu-
rations, three trails and cycles, to study the local structures of bipartite networks. It is 
worth noting that these two configurations would lose the information of local interac-
tions if we conducted network projections (three trails will become one edge and cycles 
will become one weighted edge). Therefore, it is essential to include these two network 
configurations for bipartite networks. Robins and Alexander (2004) argued that three 
trails could reflect the global connectivity of the bipartite network and cycles represent 
local closures in the bipartite network. For the bipartite networks with similar sizes and 
densities, more three trails and fewer cycles will increase the levels of connectivity and 
shorten the average path of the network, while more cycles and fewer three trails indi-
cate stronger localized closeness. The bipartite clustering coefficient, 4 × C4/L3, could 
quantify the length of the average path and the strength of local interactions in the 
bipartite network.

Network motif analysis also involves comparing the numbers of network configura-
tions in the examined network with those in random networks. In this research, we 
generated random bipartite networks with the same degree distributions and com-
pared them with the examined network (Saracco et al. 2015). The configuration model 
that generated random graphs had fixed node degree distribution was regarded as one 
of the most insightful null models in monopartite networks (Chung and Lu 2002). We 
extended the configuration model to bipartite networks (Saracco et  al. 2015). In this 

Fig. 2  Seven network configurations of bipartite networks: R and P represent two node sets of bipartite 
networks (Roster actors and Participants respectively in this study); blue squares represent node set R; red 
circles represent node set P

Table 4  Statistics of network configurations of bipartite networks

MRP represents the value of the elements in the bi-adjacent matrix of the bipartite network. If node R and P are linked, 
MRP = 1 . Otherwise MRP = 0

Network configurations Network statistics Interpretation

Edges: L ∑
R

R=1

∑
P

P=1
MRP

Number of edges in the bipartite network

Two stars:SR2
∑

R

R=1

∑
P

P′>P
MRPMRP′

Correspondent to an edge between node 
set P in the 1-mode network

Two stars:SP2
∑

P

P=1

∑
R

R′>R
MPRMPR′

Correspondent to an edge between node 
set R in the 1-mode network

Three stars:SR3
∑

R

R=1

∑
P

P′′>P′>P
MRPMRP′MRP′′

Correspondent to a triangle between node 
set P in the 1-mode network

Three stars:SP3
∑

P

P=1

∑
R

R′′>R′>R
MPRMPR′MPR′′

Correspondent to a triangle between node 
set R in the 1-mode network

Three trails:L3
∑

P

P′>P

∑
R

R′>R
MPRMPR′MP′R(1−MP′R′ ) Reflect global connectivity in bipartite 

networks

Cycle:C4
∑

P

P′>P

∑
R

R′>R
MPRMPR′MP′RMP′R′

Local closures in bipartite networks
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analysis, we used sequential importance sampling to simulate bipartite networks with 
fixed degree distributions (Admiraal and Handcock 2008; Blitzstein and Diaconis 2011).

Although network motif analysis is a powerful method to investigate local interactions 
and reveal hidden mechanism behind complex networks for collaboration, it does not 
fully account for node attributes. Therefore, we adopted ERGMs to investigate the extent 
to which the node attributes affect the ties in the actor collaboration network.

Exponential random graph models (ERGMs)

ERGMs are a family of statistical models that could fit local structures or network con-
figurations to model the network formations using maximum likelihood estimations 
(Wang et al. 2009). In a defined network space Y that includes all possible networks with 
n nodes, a random network Y ∈ Y , where Yij = 0 or 1 depending on whether the pair of 
nodes (i, j) are connected or not, then the probability of Y could be determined based on 
the counts of a set of network configurations. The general form of ERGMs could be writ-
ten as follows:

where Si
(
y
)
 represents any user-defined network statistics measured on the network 

Y, and θi is associated parameters to be estimated. k(θ) is the normalizing constant to 
ensure the legitimacy of the defined probability distribution. Here, we provide a illus-
trative model inspired by Bomiriha (2014) for the general readers. For an undirected 
friendship network in which edges represent mutual friendships and the network has 
probability p1 between students living in the same dormitory and probability p2 between 
students living in different dormitories. Then the ERGM model for investigating p1 and 
p2 could be written as follows:

The first set of statistics in Eq.  (2) represent the number of edges; the second set of 
statistics is the number of edges connecting nodes living in the same dormitory. Based 
on this model, we can easily derive p1 equals to eθ1+θ2/(1+ eθ1+θ2) and p2 equals to 
eθ1/(1+ eθ1) . Furthermore, the coefficient θ2 could show the homophily (with θ2 > 0 ) 
or heterophily (with θ2 < 0 ) effect in the studied friendship network. More in-depth dis-
cussion regarding the theory of ERGMs could be found in Robins et al. (1999, 2007) and 
Wang et al.’s works specifically for bipartite networks (2009).

ERGMs provide a powerful tool for generating quantitative evidence for the tie forma-
tion process related to network configurations and node attributes. The existing litera-
ture has adopted ERGMs to study the dynamics and mechanisms of social tie formations 
behind different kinds of networks, such as collaborative networks (Nohrstedt and Bodin 
2019), partnership networks for urban development (McAllister et al. 2015), inter-organ-
izational knowledge sharing networks (Broekel and Hartog 2013), Facebook friendship 
networks (Traud et al. 2011, 2012; Wimmer and Lewis 2010), and hospital networks of 
patient transfers (Lomi and Pallotti 2012). In this paper, we focus on the examination of 
the homophily effect in the actor collaboration network in resilience planning and man-
agement of interdependent infrastructure systems. Homophily in the bipartite networks 

(1)P
(
Y = y

)
=

1
k(θ)

exp
{∑p

i=1θiSi
(
y
)}

, y ∈ Y

(2)P
(
Y = y

)
∝ exp

{
θ1

∑
i<j yij + θ2

∑
i<j yijI{i and j lives in the same dormitory}

}
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is represented by two neighbors with the same attributes connected to the same node 
(illustrated in Fig.  3) because they cannot directly connect with each other (Bomiriha 
2014). We adopted network statistics developed by Bomiriha (2014) to model homophily 
for bipartite networks. Equation 3 illustrates included network statistics.

In Eq. 3, edges represent network statistics of edges in the mapped bipartite network. 
Nodematch (urban sector CD) represents network statistics of two survey respondents 
in the same urban sector, community development (CD), collaborating with the same 
actor in the survey roster. Likewise, nodematch (P1) represents network statistics of two 
survey respondents both supporting policy action P1 collaborating with the same actor 
in the survey roster. The detailed calculations of network statistics (i.e., nodematch) 
could refer to the R package: ergm (Hunter et al. 2008). The parameters in Eq. 3 were 
estimated by Monte Carlo maximum likelihood estimation. Therefore, the parameters 
θ2 ∼ θ22 could show the homophily effect with positive values and the heterophily effect 
with negative values.

Results
The network motif analysis shows that the actor collaboration network has strong local 
interactions. Figure 4 illustrates the network configurations in the observed network and 
those in the simulated 1000 random models. Table 4 shows the detailed statistics of net-
work configurations in the observed network as well as mean values and standard devia-
tions in the random models.

From Fig. 4 and Table 5, we can find that the observed actor collaboration network 
has significantly fewer three trails (Z-score: − 15.4) and more cycles (Z-score: + 6.51) 
compared with the simulated random models. Also, the local clustering coefficient 
of the observed actor collaboration network is significantly higher (Z-score: + 15.83) 
than the simulated random models. Apparently, the algorithm that we applied, Net-
worksis package in R, fixed the number of edges, two stars, and three stars to gen-
erate the random models with same degree distributions (Admiraal and Handcock 
2008). The results of the motif analysis indicate that: (1) there are hidden mechanisms 
and additional social processes to form the collaborations among actors due to sig-
nificantly different counts of three trails and cycles compared with the random mod-
els; and (2) the observed actor collaboration network has a long average path length 
and strong local interactions due to its fewer three trails, more cycles, and higher 

(3)P
�
Y = y

�
∝ exp






θ1edges + θ2 ∗ nodematch(urban sector CD)+ · · ·+

θ6 ∗ nodematch(TT )+ θ7 ∗ nodematch(P1)+ · · ·+

θ22 ∗ nodematch(P16)






Fig. 3  Homophily and heterophily effect in bipartite networks. Squares represent the node set of actors in 
survey rosters; circles represent the node set of survey participants; node colors represent different node 
attributes
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clustering coefficient compared with the random models. The results imply that the 
formations of the actor collaborations are due to strong local interactions, such as 
collaborations in the same urban sectors or collaborations among actors with same 
policy preferences. Also, collaborations outside the local clusters are limited due to 
their long average network path length. The ERGMs could help in further investiga-
tions of the factors affecting the actor collaboration.

Fig. 4  Network configurations in the observed network and null models: bars show the mean value of 
configurations in generated null model; the line chart shows the counts of configurations in the observed 
network

Table 5  Statistics of network configurations in the observed network and null models

For the simulation models, numbers in the parentheses are standard deviations and number outside the parentheses are 
mean values

Statistics Observed network Simulated models Z-score

Edges: L 1414 1414 (0) 0

Two stars: SR2 13,635 13,635 (0) 0

Two stars: SP2 18,302 18,302 (0) 0

Three stars: SR3 231,964 231,964 (0) 0

Three stars: SP3 126,400 126,400 (0) 0

Three trails 430,999 452,387 (1393) − 15.4

Cycles 49,626 43,464 (946)  + 6.51

Clustering Coeffi-
cient:4× C4/L3

0.46 0.384 (0.0048)  + 15.83
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The ERGMs demonstrate both significant homophily effects and heterophily effects 
for actor collaboration in resilience planning and management of IISs. The results show 
the significant homophily effects within the transportation sector, significant heteroph-
ily effects within the emergency response sector, and varied homophily and heteroph-
ily effects due to different flood risk reduction policy actions. This finding implies that: 
(1) the actors in the transportation sector are less likely to build collaboration ties with 
actors from other urban sectors; and (2) emergency response actors are likely to form 
collaboration ties with actors of other sectors. Table 5 shows the estimated coefficients 
of variables in ERGMs. We include the Markov Chain Monte Carlo (MCMC) diagnostic 
plots in the supplementary information. The plots were obtained from randomly gen-
erated networks from the fitted models. The MCMC diagnostic plots showed evidence 
of random variation and approximately normal-shaped distributions centered at zero, 
which are consistent with good performance in model fitting (Bomiriha 2014).

We can observe from Table 6 that the probability of edges is e−2.8619
= 0.057 , exclud-

ing all the homophily effects in the table, which is lower than the density of the observed 
network: 0.0756. This result implies that the structure of the observed network is shaped 
by homophily effect, which is consistent with the results of network motif analysis 
that the network showed a strong local interaction effect (actors of the same sector are 
more likely to collaborate with each other). Also, we found that actors from the emer-
gency response sector (ER) showed significant heterophily effects. When an actor from 

Table 6  Estimated coefficients of variables in ERGMs

***significant at 99%, **significant at 95%, *significant at 90%; here support combines survey response strongly support and 
support

Variables Estimate SD p value

Edges − 2.862 0.160 < 0.0001***

Urban sector: CD 0.146 0.308 0.6358

Urban sector: EC − 0.074 0.276 0.7887

Urban sector: ER − 0.988 0.283 0.0005***

Urban sector: FC 0.006 0.280 0.9818

Urban sector: TT 1.297 0.295 < 0.0001***

P1: support − 1.517 0.212 < 0.0001***

P2: support 0.531 0.153 0.0005***

P3: support − 0.381 0.212 0.0730*

P4: support − 0.007 0.213 0.9739

P5: support 0.182 0.149 0.2225

P6: support − 0.137 0.159 0.3859

P7: support − 0.820 0.158 < 0.0001***

P8: support 1.193 0.197 < 0.0001***

P9: support 0.681 0.153 < 0.0001***

P10: support − 0.428 0.238 0.0717*

P11: support 0.801 0.252 0.00015**

P12: support − 0.602 0.145 < 0.0001***

P13: support 0.148 0.135 0.2729

P14: support − 0.773 0.165 < 0.0001***

P15: support 0.463 0.213 0.0298**

P16: support 1.452 0.176 < 0.0001***
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ER collaborates with an actor in the survey roster, another actor from the emergency 
response sector would have reduced probability ( e−2.8619−0.9879 = 0.021) to collaborate 
with the same actor in the survey roster. This result is consistent with the real situa-
tion that actors from the emergency response sector usually collaborate with actors from 
other sectors (e.g., flood control and transportation sectors) for hazard mitigation dur-
ing disasters. Furthermore, the actors from the transportation sector (TT) showed sig-
nificant homophily effect. When an actor from the transportation sector collaborates 
with the actor in the survey roster, another actor from the transportation sector would 
have increased probability ( e−2.8619+1.2971

= 0.209 ) to connect with the same actor in 
the survey roster. This result shows strong local interactions in the transportation sec-
tor. The results are also consistent with our former studies regarding actor collaboration 
within and across different urban sectors for hazard mitigation and resilience planning 
of IISs (Li et al. 2019). Actors from the transportation sector showed the highest within-
sector collaboration, while actors from the emergency response had highest across-sec-
tor collaborations. However, we cannot see significant homophily effects in other urban 
sectors, such as the community development (CD), environmental conservation (EC) 
and flood control (FC) sectors. This result may imply that the formation of collaboration 
is not purely due to the organizational proximity.

We also found significant heterophily effects in some flood risk reduction policy 
actions including P1 (Limit new development), P3 (Strengthen infrastructure), P7 (Build 
levees), P10 (Improve stormwater system), P12 (Temporarily prohibit development after 
disasters), and P14 (Limit development of public facilities). The actors have preferences 
to these policy actions had significantly reduced probability to collaborate with the same 
actors in the survey roster. Based on the structural hole theory, this heterophily effect 
may suggest collaboration among these actors was sought to increase bridging capitals, 
to seek exotic resources and skills to advance their positions, and to broaden the influ-
ence in the network (Burt 2004; Lazega and Burt 1995; McAllister et al. 2015). We also 
found significant homophily effects in some flood risk reduction policy actions, includ-
ing P2 (Elevate buildings), P8 (Build reservoirs/retention ponds), P9 (Protect wetlands/
open space), P15 (Limit rebuilding in frequent flooding areas), and P16 (Buy out or 
acquire property). The actors indicating preferences to these policy actions had a signifi-
cantly increased probability to collaborate with the same actors in the survey roster. The 
intent of collaboration among these actors was to increase the bonding capital and to 
reinforce shared norms and trusts (McAllister et al. , 2015).

Discussion
The results did not indicate that the urban sectors of actors were a pure driver to form 
the collaborations among actors. Actors from the flood control, environmental conser-
vation, and community development sectors did not show significant homophily effects 
in formation of ties. The results indicated that actors from emergency response sec-
tors had significant collaboration with actors from other urban sectors. Previous stud-
ies showed that emergency response actors, such as Houston Fire Department, Harris 
County Office of Emergency Management, and Texas Department of Public Safety, col-
laborated with actors from other sectors, including environmental conservation, com-
munity development, and transportation sectors, for first response and recovery during 
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and after disasters (Li et  al. 2019). Existing studies also highlighted the importance of 
collaboration among actors from diverse sectors for effective emergency response and 
disaster recovery (Aldrich 2012; Campanella 2006; Gajewski et  al. 2011). The results 
also showed strong within-sector collaborations for actors from the transportation sec-
tor. The transportation sector in Texas has great and wide-ranging authority and is a 
leading voice in infrastructure development driven by real estate development. Trans-
portation planning in Texas, however, lacks resilience metrics for the long run. Further-
more, the transportation sector has its own planning and environmental affair divisions, 
which may contribute to its limited collaboration with other urban sectors. The results 
of network motif analysis showed that the collaboration network has a long average path 
length and strong local closeness, which also implied that actors from the transportation 
sector have strong local interactions but limited collaboration with actors from other 
sectors. A lack of collaboration with actors from the flood control sector, however, may 
lead to urban growth without compatible investments on flood control infrastructures. 
Also, insufficient collaboration between flood control and transportation sectors may 
lead to infrastructure development in hazard-prone areas.

The results of network motif analysis and homophily effects of actors from urban sec-
tors in ERGMs are consistent with the planning background in the Houston area. Hou-
ston repeatedly suffers from extensive damage due to major flood events (Boburg and 
Reinhard 2017; Patterson 2017). One major reason is rapid urban growth without holis-
tic planning for flood risks. On one hand, Houston plans growth primarily by developing 
major institutional projects, building expansive infrastructure networks, and encour-
aging neighborhood-level planning through super neighborhood organizations (Neu-
man and Smith 2010). Also, Houston adds density bonuses to encourage development 
in the urban core (Fulton 2020). Although these policies support population growth 
(Masterson et al. 2014; Qian 2010), they also exacerbate flooding vulnerability (Zhang 
et al. 2018). On the other hand, Houston mitigates flood risk with projects such as the 
Bayou Greenways Initiative to protect and enhance the network of connected open 
spaces along bayous (Blackburn 2020), development of structural surge infrastructure, 
and coastal ecosystem enhancement along Galveston Bay (Blackburn 2017), construc-
tion and restoration of detention ponds, supporting home buyouts (Harris County Flood 
Control District 2017), and retrofitting critical flood control infrastructures through the 
Hazard Mitigation Plan (Harris County Flood Control District 2017). Planning in Hou-
ston, however, is driven largely by the real estate development serving the desire for eco-
nomic growth. Houston lacks a compatible planning crosswalk between urban growth 
and the investment on flood control infrastructure, which requires the involvement and 
collaboration of diverse stakeholders from urban sectors and scales. The findings of this 
study showed the need for a greater cross-sector collaboration to expand local interac-
tions, as well as the important roles certain actors could play to span boundaries and 
bridge ties among actors of various sectors with similar and dissimilar preferences to 
flood risk reduction policy actions.

Furthermore, we found both significant homophily and heterophily effects in actor 
preferences to flood risk reduction policy actions in ERGMs. The results indicated mixed 
mechanisms for collaboration among actors. The heterophily effect indicates that a part of 
actor collaboration was to increase the bridging capitals, to seek exotic resources and skills 
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to advance the positions, and to broaden the influence in the network. The involved actors 
usually play a brokage role in the collaboration network, helping connect different actors 
from diverse urban sectors. Based on network measures, such as betweenness centrality, we 
can identify these actors in the collaboration network (Li et al. 2020c). The homophily effect 
indicates that a part of collaboration was to increase bonding capitals, reinforcing shared 
norms and trusts. The involved actors usually are in the core of networks or local clusters. 
We can identify these actors in the collaboration network through core-periphery analysis 
and community detection (Li et al. 2020a; c). The ERGMs provide insights into the mecha-
nisms for collaboration among diverse actors, helping to develop strategies to increase net-
work cohesion and to improve collaboration among actors from diverse urban sectors.

The results of the study highlight some resilience characteristics embedded in human 
systems for urban resilience governance. The first is multi-scale governance (Paterson et al. 
2017; Wagenaar and Wilkinson 2015). Urban resilience requires multi-level collaborations 
across complex boundaries at social, physical, and ecological dimensions (Boyd and Juhola 
2015; Li et al. 2020b). Also, resilience planning is the outcome of interdependent plans at 
different scales (e.g., city, regional, state, and federal). In a study of resilience practitioners 
in 20 cities, Fastiggi et al. (2021) pointed out that external collaborations, such as multi-
disciplinary consultants, advisory committees, resilience consortiums, and peer networks, 
would be of great help in improving multi-governance for urban resilience governance. 
Another resilience characteristic is the knowledge co-production and trust (van der Jagt 
et al. 2017). Existing literature stressed the importance of diverse stakeholder engagement 
to improve knowledge co-product and trust in urban resilience governance (Graversgaard 
et al. 2017; Nutters and Pinto da Silva 2012; Watson et al. 2018; Wiesmeth 2018). The inclu-
sion of diverse stakeholders across various urban sectors would improve the collective 
understanding of complex systems, solve conflicts, and enhance shared values.

Furthermore, given that existing studies usually examined these resilience characteristics 
separately, Dong et al. (2020) proposed the institutional connectedness for effective urban 
resilience governance, accounting for three synergistic areas embedded in human systems: 
the actor collaboration of actor networks, the plan integration of networks of plans, and the 
shared norm and values. Our study provides a new way to examine the actors’ network and 
their attributes simultaneously. The level of local interactions could shed lights on the need 
for external collaborations, and ERGMs provides insights into policies and norms for actor 
collaborations. Furthermore, institutional connectedness stresses shared norms among 
actors to increase network cohesion and actor collaborations for resilience governance. In 
our study, we found that the heterophily effect is also an important factor for tie formation 
in actor collaboration networks. The result is consistent with those from existing studies 
that highlighted the heterophily effect for the tie formation in different types of social net-
works (Barranco et al. 2019; Kimura and Hayakawa 2008; Lozares et al. 2014).

Concluding remarks
In this paper, we examined two important mechanisms, local interactions and homoph-
ily effects for actor collaboration in resilience planning and management of IISs. We con-
ducted a stakeholder survey to collect data regarding actor collaboration for resilience 
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planning of IISs and actor preferences to a list of flood risk reduction policy actions. 
We mapped the bipartite network and adopted network motif analysis and ERGMs to 
investigate network configurations and related node attributes, which encode important 
information of collaboration among actors. The paper has both theoretical and practi-
cal contributions: (1) we combined network motif analysis and ERGMs models which 
both focus on the network configurations and a bottom-up process in the formation of 
social networks. The results of network motif analysis and ERGMs have different focuses 
and could be complementary to each other. (2) The study could provide empirical evi-
dence regarding drivers of collaboration among diverse actors in resilience planning and 
management of IISs. These results could help develop strategies to foster collaboration 
among actors from diverse urban sectors involved in the process of resilience planning 
and management of IISs.

This study and its findings complement the existing literature related to actor collabo-
rative network analysis in collective action problems related to disaster management and 
environmental governance by the examination of two mechanisms contributing to net-
work formation and evolution: local interactions and the homophily effect. Many of the 
existing studies primarily focused on topological properties of actor networks but did 
not fully account for actor node attributes. The combined analysis of network structure 
and node attributes (i.e., sectors and policy preferences of actors) and findings provide 
deeper insights into the institutional connectedness of human systems that influence 
urban resilience. In addition, this study contributes to the field of urban resilience plan-
ning and management of IISs by advancing the empirical understanding of actors’ net-
work properties and the underlying mechanisms that govern the creation of ties/links in 
actor collaboration networks.

The study has some limitations. First, we did not consider dynamic network evolu-
tions in this paper due to the lack of longitudinal data. Future study could collect actor 
collaboration data after Hurricane Harvey to investigate the extent to which local inter-
actions and homophily effects affect the network evolution after the disaster like Hurri-
cane Harvey in the collaboration network. Second, we found significant homophily and 
heterophily effects for preferences to different risk reduction policy actions; however, we 
did not explore whether the policy actions led to the homophily or heterophily effects. 
Future studies could explore the reason based on the essential knowledge of public poli-
cies. Third, we applied an algorithm to generate random networks with fixed degree dis-
tributions. The algorithm fixed the counts of edges, two stars, and three stars, which lost 
some information of the network motif analysis. Although Saracco et al. (2015) noted 
that higher-order network motifs (e.g., three trails and cycles) encode much more net-
work information compared with the lower-order network motifs, future studies could 
test and apply different algorithms to examine the significance of network motifs.
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