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Introduction and motivation
Background

Since December 2019 the world has been adjusting to life with COVID-19, with the first 
outbreak being reported in Wuhan in China (Wu et  al. 2020). COVID-19 is a disease 
caused by the highly contagious SARS-CoV-2 virus and is characterised by severe res-
piratory complications and high fatality rates. Societies worldwide are facing up to the 
first global pandemic since the ‘Spanish Flu’ outbreak of 1918; a so-called once in a cen-
tury event. What is very evident from available data is that the epidemic will very sadly 
continue to claim lives until a cheap and simple treatment is available or the recently 
developed vaccines are distributed widely. At the time of writing worldwide fatalities 
are approaching four million individuals (Gardner 2020), and with the arrival of the so-
called delta variant the ‘third wave’ is well underway as we head into the northern hemi-
sphere summer. Public policy towards control of this disease has mostly focused upon 
social-distancing measures to break the chain of infection, and more recently along-
side the roll-out of novel new vaccines. Social distancing as a policy is based upon the 
idea that SARS-CoV-2 is spread via person to person contact, and by reducing social 
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mixing the epidemic will be significantly slowed. This approach is based upon the well 
understood models of network epidemiology which in turn relies upon a contact graph 
(Pastor-Satorras and Vespignani 2001; Newman 2002; Kiss et al. 2017) over which the 
network spreads.

Interruption of this network of social contacts via a lockdown has serious economic 
consequences. In the initial phases of the pandemic the consequences of the lockdown 
included a drop of 87.5% in airline traffic in China accompanied with a drop of 21.2% in 
retail sales (Malden and Stephens 2020), and a precipitous contraction of 20.4% in the 
Gross Domestic Product of the United Kingdom (Scruton 2020) as examples. Although 
economies recovered moderately in the summer of 2020, and again in the spring of 2021, 
economic activity is still well below normal.

The purpose of this paper is to investigate how the two deleterious consequences 
of the pandemic may be balanced. On the one hand it is unrealistic for economies to 
remain locked down, and on the other it is vital to control the speed of the epidemic to 
minimize fatalities. At the heart of all economies are transport networks, and the capac-
ity of transport networks is an indicator of economic activity. We focus upon the air-
line transport network as detailed data is available on routes (OAG Yearly Historic Flight 
Schedules, Open Data from OurAirports), capacity and timetables, although the meth-
ods and analysis are applicable to any transport network. It is also interesting to note 
that certain Agent Based Models of epidemic spread focus upon airports as the principle 
point of ingress of a pathogen (Cliff et al. 2018), and so controlling the spread through 
the airport network would significantly reduce community spread inside of geographi-
cally isolated nations such as Australia.

The role of the airline transport network in epidemic spread has been studied previ-
ously (Colizza et  al. 2006; Balcan et  al. 2010; Bajardi et  al. 2011), although the results 
do not provide a clear template as to how the network could be restricted to slow down 
epidemic spread. In particular the Bajardi et al. study noted that even with a 40% reduc-
tion in airline traffic between the US and Mexico the epidemic of H1N1 did finally 
break through. The 40% reduction was achieved by the effective isolation of Mexico into 
quarantine, by severely restricting direct international travel, but of course there are 
many ways to getting to and from a country that do not involve a direct flight which 
may explain the epidemic breakthrough. The transport network, considered in isola-
tion, is a graph over which the epidemic can be modelled as a spreading phenomenon. 
The removal of links from this graph will eventually break it down into disconnected 
components, a process known as ‘dismantling’ (Tian et  al. 2017; Wandelt et  al. 2018). 
Clearly when a transport network is dismantled it is not possible for an epidemic to trav-
erse from one disconnected component to another. However, this is a rather dramatic 
way to contain an infection and the central aim of our work is to see how possible it is 
to balance route carrying capacity reduction, as the route network is dismantled, with 
the reduction of the speed of epidemic spread. Although many schemes for dismantling 
have been studied for efficacy in the speed with which a network may be deconstructed 
(Requião da Cunha et al. 2015; Zdeborová et al. 2016; Braunstein et al. 2016; Morone and 
Makse 2015; Wandelt et al. 2018), the majority of the networks studied are unweighted. 
To truly model capacity we need to introduce the concept that all links are not equal, 
and this can best be represented by weighting the links with a capacity metric. With this 
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addition we can assess the dismantling approaches with respect to the reduction in total 
carrying capacity of the network, which we can then balance against a simple model of 
epidemic spread on that network. Together with a metric of graph entropy that meas-
ures the information content of the graph on a node by node basis, and known as Ver-
tex Entropy (VE) (Tee et al. 2017, 2018), we compare a number of dismantling schema 
on capacity and epidemic spread. In the cited studies of network dismantling the lead-
ing metric, as measured by the ‘Robustness’ metric is the Betweenness Centrality (BC) 
(Wandelt et al. 2018), which identifies nodes that lie on the most shortest paths between 
node pairs in the network. The robustness metric essentially computes how fast the net-
work is dismantled by measuring the reduction in the size of the Giant Component (GC), 
and so this is perhaps unsurprising. Betweenness Centrality is expensive to compute and 
misses some of the subtleties of inter-connectivity, which in our study is the availabil-
ity of indirect flights between destinations. Vertex Entropy is much cheaper to compute 
than BC and has been seen to act as a good approximation to it in other applications 
(Tee et al. 2017). Although VE is closely correlated with centrality measures, it does not 
exclusively identify the hubs or connectivity ‘pinch points’ in the network, but will also 
identify nodes on highly critical paths through a network that are not necessarily the 
shortest ones. We speculate that these nodes represent important pathways for spread-
ing phenomena, but are not necessarily high capacity routes in the network, and seek to 
verify this numerically in the “Simulations and results” section. The principle contribu-
tion of this work is that VE is at least as effective as BC in preserving capacity whilst 
slowing epidemic spread, it also has the advantages of being easier to compute, and a 
simpler and more natural extension to weighted networks. This extension to weighted 
networks of the version of VE that we consider here is novel and not previously studied, 
and we outline the theoretical treatment in the “Theoretical considerations” section.

The answer to the question that we pose, rests upon the relationship between the 
capacity of a transport network and the spread of an epidemic on the same network, 
as modelled by the site percolation model described in “Materials and methods”. Spe-
cifically, we are able to compare different schema for the reduction of capacity of the 
network on their effect of the rate of spread of the epidemic as measured by the effec-
tive transmission rate, Re . We are careful to stress that this is not the basic reproduction 
rate R0 , as the primary purpose of our model is to experiment with network restric-
tion, not provide robust predictions of epidemic spread. Indeed, producing an accurate 
model of the epidemic spread on the airline transport network is not the primary goal 
of this work. Building such a model would be an extremely complex undertaking, and, 
for the purposes of the question we address in this work, unnecessary. For our require-
ments, a consistent model of epidemic spread, dependent upon the network structure, 
is more important and allows us to compare the various network dismantling schemes. 
The approximate model yields the value Re , as described above, which, although not in 
any way an indicator of R0 , allows this comparison in a quantitative manner. Neverthe-
less, we are able to show that there is a significant difference between random closure of 
airports and routes and a selective method that uses graph properties of the network to 
select airports and routes to close.

In analyzing the schema for route limitation in the transport network we focus upon 
the network structure specifically targeting nodes. It is well known that real world 
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networks, particularly those possessing the scale-free property have non trivial behav-
ior as links are progressively removed (Albert et  al. 2000). In particular the collapse 
of the Giant Component (GC) exhibits a second-order phase transition (Xiao et  al. 
2015), which although originally studied in scale-free graphs, is in principle present in 
all graphs with a long tail degree distribution. The random removal of links tends not 
to provoke functional failures of a network (as measured by the number of nodes that 
become unreachable), but targeted removal of hubs (nodes with a large degree or num-
ber of links) can provoke failure very quickly, essentially accelerating the change of 
‘phase’ from highly connected to disconnected. It is this critical behavior under node 
removal that provides the motivation for our approach, as the connectivity of a network 
has a profound impact on the speed with which an epidemic can spread, as modeled by 
a random walk of infectious individuals upon it. In essence, if velocity of the epidemic 
spread reduces linearly with the number of nodes removed, it is possible that prior to 
the phase transition and collapse of the GC that the epidemic will be retarded whilst the 
capacity is less affected.

Indeed the relationship between Re and network capacity is complex and non-linear. 
In the cases we examine, we show that for a drop in Re of 0.15, the capacity of some 
of the underlying networks can be 50% greater than for the random removal case. We 
believe this justifies the principle of partial network restriction for epidemic moderation.

It is possible to refine further the methods used to model the spread of SARS-CoV-2 in 
a much more granular fashion. We believe these results provide a motivation to produce 
those more detailed models and that those models have the potential to form the basis 
of an alternative approach to managing this and future pandemics, rather than repeated 
and complete closure of transport infrastructure.

Outline of this paper

We begin in “Theoretical considerations” with an overview of the necessary concepts 
of network epidemic models and vertex entropy in which to frame the experiments we 
undertake. We describe the simulation and experimentation in the “Materials and meth-
ods” section, outlining the construction of both our epidemic spreading model and also 
the route restriction methodology. In “Simulations and results” we discuss the results 
obtained and draw to a close in the “Conclusions” section, where we include an outlook 
for further work.

Theoretical considerations
Notation

Throughout this paper we follow the conventional notation for graph theory defined 
in standard texts (Bollobás 1998). A graph is a collection of vertices V and the edges, 
E⊂V×V  , that exist between those vertices, which we write as G(V, E). An edge, repre-
sented by eij , denotes a link between vertices vi and vj . We assume that the graph is sim-
ple and undirected. Later in the analysis we will have cause to examine weighted graphs, 
which we denote by G(V, E, w), where w represents the weighted adjacency matrix. We 
define w, such that the weight of an edge, is defined as wij , where wij = 0 if there is no 
edge between vi and vj . Also, as the graphs we consider are simple and undirected, wij is 
symmetric and wii = 0
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For both weighted and unweighted graphs, we can form an induced subgraph by con-
sidering a subset of its vertices S⊂V  , and the subset of edges eij ∈ E , where both verti-
ces vi, vj are in S.

Network epidemic models

As was noted in the introduction, infections require a physical means of transferring 
from an infectious individual to a susceptible one. Some diseases, such as sexually trans-
mitted ones, require physical contact for transmission to occur, whereas airborne infec-
tions, believed to include SARS-CoV-2, only require proximity. Whatever the biological 
mechanisms, at the core of epidemic spread is a network of contacts. A contact net-
work represents individuals (or places) as nodes, and the links represent a contact along 
which transmission can occur. The disease then proceeds by transmission along the 
links usually governed by a transmission probability. The structure of the network has an 
important role on the progression of the network (Bell et al. 2020; Newman 2002), and 
provides the starting point for the strategy we investigate in this paper.

In particular, many real-world networks are known to possess the ‘small world’ prop-
erty (Watts and Strogatz 1998), involving the presence of hubs that create short cuts in 
the network and dramatically reduce the graph diameter. In principle, fewer network 
hops are required on average to reach a node, with obvious implications for epidemic 
spread. This property can be replicated with networks that are generated by the vari-
ous forms of preferential attachment (Barabási 2016; Albert and Barabási 2002), which 
produce a scale-free degree distribution. It is an often-cited claim that real-world net-
works have a power-law degree distribution where p(k) ∝ k−α ; with values of α typically 
in the range 2.0–3.0 and p(k) being the probability of a randomly chosen node having 
degree  k. This claim has been much disputed (Broido and Clauset 2019), and indeed 
contact networks may not be scale free (Vanhems et al. 2013). It has been hypothesized 
that transport networks exhibit a reasonably strong scale freedom (Sridhar and Sheth 
2008), however, our analysis of the airline network does not agree with this conclusion. 
Using the approach outlined in Broido and Clauset (2019), we performed a goodness-
of-fit test for the airline network degree distribution against the power law, truncated 
power law, log-normal, and exponential distributions. Our analysis showed the closest 
fit to be a truncated power law. This result is intriguing, because although the airline 
network may not itself be scale free, it does exhibit similar resilience behavior. Of course, 
networks have many properties beyond degree distribution, each with potentially dif-
ferent scales. In fact Zhou et  al. (2020) define a new property, degree-degree distance, 
whose distribution has been shown to exhibit a better power-law fit than degree. The 
key point however, is that the presence of hubs, connecting distant parts of the network, 
could underlie the collapse of the giant component upon targeted node removal.

In our work we adapt the percolation approach to modeling epidemic spread (Moore 
and Newman 2000; Newman 2002). The percolation model depends upon each link in 
a contact network permitting transmission of the disease according to a probability T 
called the transmissibility. Effectively, one starts with one infected node and then as a 
path of infection is traversed the link is marked as ‘occupied’ and the component of the 
graph connected by such links emerges as an infected cluster.
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The transmissibility governs the size of the infected cluster and is dependant upon the 
length of time an individual is infectious τ , and the rate β at which an individual infects 
one of its contacts. Providing β is independent of time, in terms of these parameters its 
value is T = 1− e−βτ . As this probability varies from 0.0 to 1.0 the size of the infected 
cluster does not vary smoothly, but in general transitions to a large fraction ( say > 50% ) 
at a distinct value of T. That is, the epidemic undergoes a phase transition (Dorogovtsev 
et al. 2008), and this critical behavior is a function of the control parameter T. Below a 
critical value Tc the size of the infected cluster is very small and the epidemic not wide-
spread. Above Tc the spread affects a finite fraction of the population.

We describe in “Materials and methods” how we apply transmissibility and percola-
tion to our simulation, but at coarse scale it is not meaningful, in a network carrying 
millions of passengers, to model every interaction between infectious and susceptible 
passengers. Instead, we use the concept of a contact probability of transmission to deter-
mine the number of infected passengers that exit a flight dependant upon the capacity 
of the aircraft. This is a key simplification (and vulnerability) of our model, and in future 
work we intend to expand our model to take account in a more granular fashion the per-
son to person interactions of our infected individuals.

This detail notwithstanding, it is clear that the value of β plays an important role 
whether the epidemic spreads at all on our toy model. We assume for the purposes of 
exploring the effectiveness of our route closure selection schema a value of β that will 
lead to an endemic spread of the infection.

A key metric in our analyses is the effective transmission rate, Re . As we stated in the 
“Introduction and Motivation” section, Re is not the basic reproduction rate, gener-
ally denoted as R0 , and which is the number of secondary infections created by a single 
infected individual. We assume that in the early stages of the epidemic that the growth 
of the epidemic is exponential in time, consistent with Susceptible-Infected-Recovered 
(SIR) compartmental models of epidemics (Bell et al. 2020). Early in the epidemic if I(t) 
is the proportion of infected individuals as a function of time, then I(t) ∝ eR0t (Kiss et al. 
2017). This result is only valid when I(t) and R(t) are small relative to the population, 
and can only be asserted early in the progress of the pandemic. Our computation of Re 
is taken by making the assumption that I(t) ∝ eRet and extracting Re by fitting our epi-
demic spread to this relationship. We specifically do not intend this ansatz to imply any 
direct relationship between Re and R0 , but instead justify the use of Re as a measure of 
epidemic spread for our model.

Vertex measures of graph entropy

The concept of graph entropy was introduced by Körner 1986 and Simonyi 1995. Since 
then many approaches (Passerini and Severini 2008; Bianconi 2007, 2009) have emerged 
to analyze and quantify the information encoded in the structure of a graph, in particu-
lar how the potentially vast configuration space of graphs that share common features 
(such as degree distribution) effectively ‘hide’ information and therefore have entropy. In 
essence, graph entropy measures the complexity of a graph but it is neither easy nor effi-
cient to compute. For example, the original definition of Körner relies upon determining 
the stable sets of a graph, a well known NP-complete problem. For practical purposes it 
would be ideal if an approximate vertex level measure of entropy were available.
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Vertex Entropy (Tee et  al. 2017) is one such approach. Initially defined on 
unweighted, simple graphs, VE is based upon a formalism for vertex level entropy 
first introduced by Dehmer (2008), and  Dehmer and Mowshowitz (2011). Dehmer 
utilized the concept of a local functional for a vertex, which can be scoped to calcu-
late values for every vertex based upon the local topology of the graph. The degree of 
locality in the treatment is controlled by using the concept of the j-sphere, Sj , in the 
graph, centered at a given vertex. For clarity, in the following definition a superscript 
indicates the order of the j-sphere whereas subscripts run over the members of the 
vertex set of the graph.

The methodology of Dehmer’s original definition relied upon subsets of vertices of 
a fixed distance from a given vertex vi , where distance d(vi, vj) is the fewest number 
of edges in a walk from vi to vj . This definition excluded the vertex vi , and other inte-
rior nodes for j ≥ 1 , but this introduces problematic zeroes when we introduce the 
clustering coefficient. Accordingly, in Tee et al. (2017), we extended the definition to 
include the vertex vi as part of the set. The definition of Sj is then modified as follows. 
For a graph G(V, E), we define for a vertex vi ∈ V  , the j-sphere centered on vi as:

and for convenience we also define the related j-edges, Ej
i as

where ekl represents an edge between vertices vk and vl.
The concept of j-spheres is a convenient formalism to capture locality in the graph 

and by breaking a large graph into j-spheres, we can progressively examine com-
plex combinatorial quantities such as graph entropy on increasingly larger subsets 
of the graph. We proceed by equipping each Sji with a positive, real-valued function 
fi : vi ∈ S

j
i → R

+ . This function is intended to be dependent upon properties of the 
nodes that are members of the j-sphere, such as their degree, number of cycles and 
so on, and therefore capture the localized structural properties of the graph. We can 
then construct a proper probability function for each vertex,

which naturally satisfies 
∑

i pi = 1 . These functions are then used to construct entropy 
measures in direct analogy to Shannon entropy as follows:

A basic form of vertex functional can be chosen to be fi = ki . The probability in this 
instance, as defined by Eq.  (3), represents the probability of a randomly chosen edge 
being incident upon vertex vi . This choice gives the first definition of a VE,

(1)S
j
i = {vk ∈ V |d(vi, vk) ≤ j, j ≥ 1} ∪ {vi}

(2)E
j
i = {ekl ∈ E|vk , vl ∈ S

j
i},

(3)pi =
fi

∑

vk∈S
j
i

fk
,

(4)H(vi) = −pi log2 pi.

(5)Hk(vi) =
ki

2|E|
log2

(

2|E|

ki

)

,
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where |E| is the number of edges in the graph, recalling that 
∑

i ki = 2|E| . The definition 
of VE was analyzed in Tee et al. (2017) and termed Fractional Degree Entropy.

The influence of a vertex within any graph is likely to be related to how it is con-
nected into that graph, not simply by how many edges are incident upon it. To cap-
ture this local structure we consider the concept of vertex clustering first introduced 
in Watts and Strogatz (1998) as a normalizing factor in our definition of a vertex 
entropy, such that:

where Cj
i represents a local clustering coefficient for the j-sphere of interest. The normal 

definition for the clustering coefficient given in Watts and Strogatz (1998) introduces 
numerical difficulties for triangle-free graphs. In accordance with the definitions of Sji 
and Ej

i in (1) and (2) respectively, Tee et al. (2017) modifies the clustering coefficient to 
include edges incident on vi . We define Cj

i in terms of the number of edges in a j-sphere 
edge set |Ej

i | , (2), as,

Finally, and for completeness, Normalized Fractional Degree Entropy is defined by:

Vertex entropy for weighted graphs

The analysis above is conducted on simple, undirected and crucially unweighted graphs. 
This last restriction will be problematic for our simulation work, so accordingly, and 
using the nomenclature defined in the  “Notation” subsection  of “Theoretical consid-
erations”, we will now introduce an extension to Vertex Entropy for a weighted graph 
G(V, E, w) on N = |V | vertices. As we are still dealing with undirected graphs, we can, 
instead of using the number of edges incident on a vertex, compute a weighted degree, 
Ki , such that

To produce a valid probability we need the sum of this weighted degree as the denom-
inator in expressions analogous to Eq. (3). We know that for the unweighted case 
∑

i ki = 2|E| , consequently and for a fixed set of weights, we can also write:

where W is a constant. We retain the factor of 2 in Eq. (10) to emphasize the proportion-
ality of 

∑

i

Ki to the sum of unweighted degree, which is 2|E|. We could of course absorb 

(6)H ′(vi) =
H(vi)

C
j
i

,

(7)C
j
i =

2|E
j
i |

ki(ki + 1)
.

(8)H ′
k(vi) =

k2i (ki + 1)

4|E
j
i ||E|

log2

(

2|E|

ki

)

.

(9)Ki =

j<N
∑

j=0

wij .

(10)
∑

i

Ki = W × 2|E|,
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this factor of 2 into W, but retention highlights the relationship between 
∑

i

Ki and  
∑

i

ki . 

It suffices now to normalize the weighted degree, by dividing by W, so that K ′
i = Ki/W  , 

and we can define our vertex functional pwi  , as follows:

with identically,

We now use the the well defined probability pi = K ′
i /2|E| to define our Weighted Frac-

tional Degree Entropy as:

with its normalized counterpart given by:

and hence, for completeness,

where Cj
i is the unweighted, local clustering coefficient given by Eq. (7).

Weighted betweenness centrality

A key metric we use to investigate the dismantling of the airline route network is 
betweenness centrality. A measure that metricates the number of shortest paths between 
all pairs of nodes in a graph that pass through a given node. Many algorithms exist to 
compute BC on unweighted and weighted graphs, with the Brandes algorithm (Brandes 
2001) representing the most efficient.

To implement the weighted version of BC in our model however requires some care. 
Typically you would want the weight in the computation to represent ‘distance’, with 
larger values indicating a longer link so that the BC value for a node captures the ‘flow’ 
distance through the graph. The weights that we utilize however act in the opposite 
direction, in the sense that a higher passenger carrying capacity represents a link that 
is more likely to transmit infection. As such we need to transform the weights into a 
distance to compute weighted BC, using a decreasing function in the link weight wij . It 
is important that any parameters in this function do not affect the ranking of the nodes 
by weighted BC and we have conducted experimentation to determine an appropriate 
function. If Dij is the distance weights for the computation of weighted BC, wmax the 
maximum weight of the graph, we define the following transform,

(11)pwi =
K ′
i

2|E|

(12)
∑

i

pwi = 1.

(13)H ′
K (vi) =

K ′
i

2|E|
log2

(

2|E|

K ′
i

)

,

(14)H ′
K ′(vi) =

HK ′(vi)

C
j
i

,

(15)H ′
K ′(vi) =

1

C
j
i

K ′
i

2|E|
log2

(

2|E|

K ′
i

)

,
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In this definition ǫ a small positive parameter necessary to avoid zero values of Dij that 
cause instability in the computation. Experimentally we determined that a value of 
ǫ = 10−6 was effective at avoiding the zero length instabilities whilst not affecting the 
ranking of graph nodes by weighted BC.

Materials and methods
Data source and data manipulation

The airline route graph used in our analyses was constructed using flight data from the 
Official Aviation Guide and airport data from ourairports.com. Each entry within the 
flight database includes departure and arrival airports, airline and flight number, flight 
duration, plane capacity, code-share data, annual flight schedule etc. Best efforts were 
made to remove duplicate entries arising from code-sharing and multi-leg flights.

We define a route as any pair of airports between which there is at least one flight. For 
each route we aggregate flight details from across the year to give metrics such as flight 
distance, flights per day, passengers per day, and flight capacity.

More formally, we define our airline route graph as an undirected, weighted graph, 
G(V, E, w), where V is the set of airports, E the set of routes, and w the matrix of weights 
for individual routes such as its capacity in passengers.

Overall objective

Using this weighted graph we simulate the spread of a disease by modelling a random 
walk of infectious individuals across the route network. As nodes are visited we mark 
the site as infected and continue our random walk, propagating the epidemic by using a 
coarse grained approach to infection using the concept of transmissibility.

The coarse graining is obtained by categorizing the routes by the average capacity of 
flights operating between the airports. For each arriving flight that contains an infec-
tious individual we use a probabalistic model to assess any onward infection. In the event 
that onward transmission has occurred, we assume that the infected individuals become 
infectious immediately, and hence they become transmitters of the virus on the next step 
of the random walk. This of course is not a realistic assumption for a true model of epi-
demic spread, not least because the serial interval, being the time between becoming 
infected and infecting another person, is estimated to be 3–7 days for SARS-CoV-2 (Park 
et al. 2020). Our justification is that we are effectively ‘compressing’ time by making this 
assumption, and we are principally interested in the overall effect of network changes 
on the spreading phenomenon, not detailed predictions for the actual spread of the dis-
ease—that would require a much more detailed approach such as an agent based model 
(Cliff et al. 2018). We compute averages over multiple runs of the simulations, each of 
which are terminated when 80% of the nodes become infected and then historically com-
pute the Re value of the infection. The computation of Re is undertaken by optimizing a 
fit for the early part of the infection using an exponential spread model and extracting 
the reproduction rate.

(16)Dij = 1−
wij

wmax
+ ǫ.
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Simulation detail

Every random walk starts at a random node in the graph. The onward step at every 
stage of every walk is chosen using a probability weighted by the number of passen-
gers travelling along each route from the current location. Intuitively, this describes 
the case of a passenger randomly picking a single ticket from the set of all tickets 
available across all flights for all destinations available from that airport.

Our analyses consider seven approaches to restricting the size of the network. The 
first regime is based upon random selection. A further six use targeted approaches 
based upon the local structure of the graph: node degree; Vertex Entropy, Eq.  (8); 
Betweenness Centrality; weighted degree, Eq. (9); weighted Vertex Entropy, Eq. (15); 
and weighted Betweenness Centrality. We use the number of passengers along each 
route as the basis for the weighting criteria. For degree and Vertex Entropy we use 
this quantity directly, and apply the transformation of Eq. (16) for Betweenness Cen-
trality. For random removal, and in order to give a more realistic simulation, we con-
sider only those airports categorized as large by ourairports.com.

The number of onward infections is chosen in a two-stage process. Our simulation 
requires discrete walkers. To facilitate this, we map a nominal value for Re (in this case 
1.5), onto a discrete probability density function and randomly choose the number of 
onward infected walkers from that distribution. The probability density function is a 
truncated normal distribution with a mean of Re , a standard deviation of Re/2 , zero as 
the lower limit of the distribution, and no upper limit. Our choice here of a random 
distribution of newly infected onward walkers reflects the lack of detail in the model 
regarding the behavior of the infection during the flight taken by the original infected 
passengers. To accurately reflect the number of onward walkers would involve detailed 
modeling of the transmission of the disease in an airplane, taking into account occu-
pancy, seat layout, plane ventilation, social distancing measures at airports and many 
other factors. However, the number of individuals infected during the flight will also be 
driven by the basic reproduction number, with a higher value resulting in more infec-
tions. We make the assumption that the number of new infected travellers will depend 
upon a collection of independent random factors, each of which will have a potentially 
complex relationship to Re . We then appeal to the central limit theorem to assert that 
the number of onward walkers can be modelled as a normal distribution, around Re , 
and choose the variance such that 95% of the onward walkers laying between 0 and 2Re . 
In order to introduce the effect of flight capacity characteristics into the transmission 
model we factor this value based on the average capacity of the planes serving the route. 
We use a factor of 2 for medium aircraft ( 150–300 passengers) and a factor of 3 for larger 
aircraft. The values chosen for these factor is somewhat arbitrary and so a limited num-
ber of different values were assessed. We observed some variation in the absolute val-
ues of Re , as would be expected, given that the factors directly impact the number of 
onwards transmissions. However, the qualitative behaviour and relative performance of 
the different removal regimes were largely unchanged. We remind the reader that the 
purpose of our epidemic model is to have a qualitative comparison of different disman-
tling regimes on epidemic spread rates, rather than extracting detailed epidemic metrics 
such as R0 or final epidemic size. The faithfulness of the model to the detail of an actual 
epidemic is in this way less important than having a consistent experimental framework. 
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Regardless of these observations we do acknowledge the limitations of the current 
approach and consequently consider an improved model of transmission dynamics to be 
a key part of our future research.

To cover the different node removal regimes we adopt two different approaches to the 
random walks. The common elements of both are: nodes are removed from the graph 
until its GC reduces to 80% of its original size; and each random walk terminates once 
80% of the nodes in the original graph have become infected. The reasons for our choice 
of 80% for the GC size and the infected node thresholds are two-fold. In order to min-
imize any potential bias in our simulations introduced by network size, we wanted to 
ensure that we retained as much of the original GC as possible during the network dis-
mantling process. However, and contrary to this first objective, we also needed to ensure 
that the capacity of the dismantled network could be both heavily restricted and that its 
ongoing rate of decay was both small and reducing. Preliminary simulations showed that 
both of these criteria could be met with an 80% threshold on the size of the reduced GC.

For the targeted approaches we remove nodes in descending order of the value of the 
removal criterion i.e. degree, VE, BC, weighted degree, weighted VE, or weighted BC, 
based on the initial route graph with no nodes removed. For each node that is removed 
we conduct 100 random walks.

The random removal regime is more complex as there are two sources of random-
ness: the nodes to be removed from the graph, and the random walks taken upon those 
graphs.

To create each randomly reduced graph, we remove an independently and randomly 
chosen set of vertices from the original graph. The initial set of removed vertices has 
a cardinality of one. The cardinality is repeatedly incremented by one until the GC of 
the reduced graph falls below the size threshold as described above. For each cardinal-
ity of the removed vertex set we create 20 different sets of vertices and hence 20 dif-
ferent graphs. Upon each randomly reduced graph we conduct 50 random walks. 
Consequently, for each value of the cardinality of the removed vertex set, we conduct 
a total of 1000 random walks, specifically 50 walks on each of the 20 randomly reduced 
graphs.

We acknowledge the different number of “repeats” used for each cardinality of the 
removed vertex sets for the different removal regimes, specifically, 100 repeats in the 
targeted removal cases and 1000 repeats for the random removal case. Preliminary sim-
ulations showed that the results generally converged within 50–60 repeats for targeted 
removal and within 400–600 repeats for random removal. We attribute the difference in 
convergence rate to the “double randomness” of the random removal case.

Removing vertices from the graph is analagous to ‘closing’ airports and all associated 
routes. As we do this we compute the passenger carrying capacity of the remaining net-
work as measured by passenger-kilometers  (pkm). Our experiment is to investigate the 
relationship between capacity and Re using these different schema, with the objective of 
identifying improved methods for network restriction whilst preserving the network’s 
capacity.



Page 13 of 26Harper and Tee ﻿Applied Network Science            (2021) 6:94 	

Simulations and results
In the following section we present the results of our simulations and highlight the 
key observations. Our primary objective is to study the impact of seven different node 
removal regimes on epidemic propagation, specifically: random removal of nodes repre-
senting large airports, targeted removal based on the weighted and unweighted forms of 
degree, vertex entropy, and betweenness centrality. All other free-parameters and simu-
lation techniques such as the transmission mechanism, random walk stopping criteria, 
route selection, etc., remained the same as described in “Materials and methods”.

We begin the presentation of our results by demonstrating the estimation of Re . The 
data shown in Fig. 1, is representative of all of our simulations, and in this case repre-
sents the aggregation of data across multiple random walks over the complete airline 
route graph with no nodes removed. The number of random walks used to extract aggre-
gated metrics, such as Re , and capacity etc., depends upon the node removal regime 
under consideration, as described in the  “Simulation Detail”  subsection of “Materials 
and methods”. For the case show in Fig. 1 the results have been aggregated over 1000 
random walks.

The dependant variable in each simulation is the number of new infections per time-
step. In the early stages of the epidemic, infections grow exponentially, peaking in this 
case, at time-step 13. The behaviour of the new infection count, and the cumulative pro-
portion of the graph that has become infected, are characteristic of the SIR model of 
epidemic spread (Kermack and McKendrick 1927).

We estimate the instantaneous value of Re at each time-step by finding the line of best 
fit to the log of the new infection count using a simple least-squares regression cen-
tred on the time-step of interest. The instantaneous rate reduces from its peak in the 
early part of the epidemic, dropping below 1.0 after the peak of new infections. As the 

Fig. 1  Aggregated metrics for the spread of an epidemic on the complete airline route graph. The metrics 
presented are the number of new infections per time-step, the total proportion of the GC that has become 
infected and the effective transmission rate. The results are the average of 1000 repeats of a random walk, 
each walk starting at a randomly chosen node. The results exhibit the same characteristics of the well-know 
SIR compartmental model of epidemic spread
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epidemic continues, Re reaches a minimum of approximately 0.75, before asymptotically 
increasing to a value of approximately 0.95 as the graph-infection threshold of 80% is 
approached.

Of course, for an epidemic, the Re metric characterizes the exponential growth of the 
infection, and has validity in the early phase of the epidemic spread. As can be seen from 
Fig. 1, there is a plateau where the growth in infected individuals is strongly exponential 
at Re = 1.950 , and it is this value that we record for this experiment. To extract the value 
of Re for a given experiment, we identify the early plateau and use the corresponding 
value of Re . The results of each experiment are presented as individual data points on the 
figures presented later in this section.

Figure 2 shows the qualitative impact of three different node removal strategies. Fig-
ure 2a shows the map of all airports and routes in the global network prior to any node 
removal. Each dot represents an airport and each line a route. Figure  2b–d show the 
impact of reducing the size of the original network by 20% using degree, betweenness 
centrality, and weighted vertex entropy respectively. Red dots represent airports that 
have been removed from the network, while orange dots indicate airports that have sub-
sequently become disconnected from the core of the graph.

In all removal scenarios the impact on global routes is profound with large reduc-
tions in open routes across the world. It is interesting to note that the different removal 
regimes have impacted different geographical regions. One of the most obvious dif-
ferences is the reduced volume of open routes between Northern Europe and North 
America. While all removal regimes cause a substantial reduction in this region, 
the degree-based removal regime retains the fewest open routes and the BC removal 
regime the most. As has been previously remarked the airline route graph is intention-
ally structured around hubs so as to reduce the graphs diameter. This structural fea-
ture of the graph would explain the tendency of degree based removal to reduce routes 
more quickly than say BC. Other regions of note include Alaska and the South Pacific 
Islands. For BC-based removal, the entirety of Alaska has become disconnected follow-
ing removal of the key hubs of Anchorage and Fairbanks International airports. Con-
trast this with the degree and weighted VE-based case where all of the Alaskan airports 
remain connected. Similarly the BC regime disconnects many of the airports serving 
the South-Pacific Islands. Comparison of the BC and weighted VE-based regimes shows 
there is a broad similarity in the retained routes across Africa, with some minor, but 
noticeable differences across Europe, South America, Western Australia and India. More 
significant differences can be observed across the Middle-Eastern region and South-East 
Asia with the weighted VE regime removing many more routes than BC.

The quantitative impact of the different removal strategies on the network metrics 
when the GC is reduced to 80% of its original size is shown in Table 1. Comparison 
of the unweighted degree and VE cases with BC-based removal shows that approxi-
mately 50% more nodes need to be removed in the VE-based case and in the degree-
based case more than twice the number of nodes must be removed to achieve the 20% 
reduction in the size of the GC. This is consistent with both the objective of VE as 
an efficiently computable metric to identify single points of failure more accurately 
than degree and the previously observed effectiveness of BC as a network disman-
tling metric. However, we highlight that that the objective of this work is to assess 
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Fig. 2  The global airline route maps under different network dismantling regimes. a Shows the complete 
graph with no nodes removed. b–d Show the route graph when the GC has been reduced to 80% of its 
original size using degree, betweenness centrality and weighted vertex entropy respectively. Open airports 
are represented by blue dots, removed airports by red dots and disconnected airports by orange dots. A high 
resolution version of this figure is available at https://​doi.​org/​10.​6084/​m9.​figsh​are.​14994​246

https://doi.org/10.6084/m9.figshare.14994246
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the impact of these metrics on restricting epidemic spread rather than their efficacy 
as network dismantling metrics. We move now to the number of retained edges. For 
both the degree and VE removal regimes, the number of edges falls, very roughly, by 
two-thirds with a corresponding, and approximate, 90% collapse in network capacity. 
The number of retained edges and the retained capacity of the network for the BC 
removal regime is considerably higher. Capacity falls by approximately 75% and the 
number of edges by only 40% . These results suggest that BC retains higher capacity 
routes than both the unweighted degree and VE-based removal regimes.

The results for the weighted variants of degree and VE are closer to each other 
than for their unweighted forms. Comparison of the weighted degree and weighted 
VE variants show that weighted VE requires approximately 7% fewer nodes to be 
removed, however, the number of edges in the resulting graph differs by only 1% . This 
would suggest a higher degree of similarity between the sets of removed nodes in 
the weighted cases than for the unweighted case, we revisit this observation below. 
In regard to capacity, the overall reduction is slightly higher at approximately 93% . 
The high-level observations made above regarding the number of removed nodes 
and retained edges for the unweighted cases also hold for the weighted cases. To 
achieve the 20% reduction in GC, weighted VE and weighted degree require signifi-
cantly more nodes to be removed than for weighted BC. And the number of retained 
edges in the weighted BC case is higher than for weighted degree, weighted VE, and 
its unweighted counterpart. There is however a key difference when we examine 
the retained capacity. For weighted VE and weighted degree, the network capacity 
reduces when compared with the impact of their unweighted forms, a result that may 
be expected given that the weighted removal strategies use metrics based upon pas-
senger counts. For weighted BC however, we see the opposite, the retained capacity 
of the network increases by approximately 20% to 2.40×109 pkm . The impact of this 
result is two-fold. Firstly it that shows that while the average capacity of a retained 
route decreases under the weighted degree and weighted VE regimes, it increases 
under weighted BC. It also reinforces our earlier observation that BC-based regimes 
retain higher capacity routes than degree and VE-based regimes.

The impact of different strategies on network capacity as nodes are removed can be 
seen in Fig. 3. With a corresponding enumeration of some specific capacities in Table 2. 

Table 1  Network metrics under different node removal strategies when the GC has been reduced 
to 80% of its original size

Node removal strategy Removed 
nodes

Disconnected 
nodes

Retained nodes Retained edges Retained 
capacity 
×109 pkm

None 0 0 3661 24683 9.74

Degree 191 540 2930 7805 0.80

Vertex entropy 140 592 2929 9774 1.06

Betweenness centrality 91 636 2934 14491 2.01

Weighted degree 165 567 2929 10011 0.65

Weighted vertex entropy 154 576 2931 9938 0.63

Weighted betweenness 
centrality

85 625 2951 15477 2.40
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For the case of random removal, capacity initially reduces almost linearly until approxi-
mately 15% of the original route graph has been removed. As more nodes are removed 
and the size of the network reduces further, the rate of reduction in capacity flattens. 
The degree of scatter in the data also increases at this point, owing to the smaller sample 
sizes inherent in the random removal process as the graph reduces to 80% of its original 
size.

In the early part of the network dismantling process, specifically up to approxi-
mately 5% of the GC being removed or disconnected, all of the targeted removal strate-
gies exhibit similar characteristics. The very steep reduction in capacity for only small 
reductions in network size is particularly apparent. In fact a reduction in the size of the 
network of only about 3–4% can reduce its capacity by half. This dramatic reduction is 
consistent with the well understood resilience and attack tolerance properties of scale 
free graphs (Albert et al. 2000). As the proportion of removed nodes increases beyond 
5% , the capacity characteristics for both BC-based removal regimes diverge from the 
other removal techniques. For these other removal regimes, the rate at which capacity 
drops is reduced, but in all cases, when 20% of the original graph has been removed, 
capacities lie in the range 0.66–1.06×109 pkm . For unweighted BC there is a distinct 

Table 2  Retained network capacity ( ×109 pkm ) for different proportions of removed and 
disconnected nodes under different node removal strategies

Node removal strategy Proportion of original graph removed or disconnected

2% 4% 6% 8% 10% 15% 20% 25%

Degree 6.47 3.80 2.68 2.17 1.82 1.35 0.80 0.51

Vertex entropy 6.66 4.77 3.20 2.59 2.29 1.40 1.06 0.90

Betweenness centrality 6.16 4.76 4.70 4.69 3.68 2.52 2.01 1.66

Weighted degree 5.15 3.75 2.90 2.13 1.82 1.00 0.66 0.44

Weighted vertex entropy 6.62 4.19 3.01 2.42 1.88 1.09 0.62 0.45

Weighted betweenness centrality 6.05 4.65 4.09 3.90 3.90 2.76 2.40 1.87

Fig. 3  The reduction in passenger carrying capacity of the global airline network as it is dismantled under 
different node removal regimes. Random node removal causes a smaller reduction than targeted methods. 
Under targeted removal the network capacity reduces by half when only approximately 3–4% or the network 
has been removed or disconnected



Page 18 of 26Harper and Tee ﻿Applied Network Science            (2021) 6:94 

and sudden reduction in the size of the GC from approximately 4.5% to approximately 
8% while the capacity of the network remains constants at about 4.7×109 pkm . Further 
examination shows that this occurs when Fairbanks International airport is removed, 
resulting in approximately 150 airports in Alaska becoming disconnected from the GC. 
These airports serve a very remote part of the world with routes that carry very few pas-
sengers. Consequently their removal has a large impact on the size of the GC but virtu-
ally no impact on network capacity. A similar feature is seen for weighted BC between 
GC sizes of approximately 7% and 10.5% . In common with unweighted BC, this is caused 
by the airports in Alaska becoming disconnected. Another intriguing, but certainly less 
dramatic feature of Fig. 3, is the small plateau in capacity using the VE removal scheme 
near 2.5% . For this case, and in contrast to the BC regimes, the nodes that get removed 
are significant international hubs, including Denver and Minneapolis International air-
ports. However, and in addition to their function as international hubs, these airports 
also serve many small regional airports with routes that carry relatively few passengers. 
These regional airports exist either as leaf nodes or nodes of very low degree in the net-
work and become disconnected when the hub they connect into is removed. As a result, 
there is a significant reduction in the size of the GC and a comparatively small reduction 
in network capacity.

We investigate the similarity of the removed node sets for the targeted removal 
regimes in Fig. 4, which shows how the size of the GC changes as we remove nodes and 
in Fig.  5, which compares specific node sets using the well-known Jaccard similarity 
coefficient (JC).

Figure  4 shows that the rate at which the GC collapses is similar for the weighted 
degree and both of the VE strategies. The rate of collapse is slowest for unweighted 
degree and fastest for weighted BC. For both BC regimes, it is worth noting that with-
out the sudden collapse in the size of the GC after 25 and 35 nodes have been removed, 

Fig. 4  The reduction in the size of the giant component of the airline route graph as the number of removed 
nodes increases under targeted node removal strategies. Note that the removed node count does not 
include disconnected nodes. The rate of GC dismantling is fastest for Weighted Betweenness Centrality and 
slowest for degree. Weighted degree and both forms of Vertex Entropy show similar behaviour with the GC 
reducing marginally more quickly for unweighted Vertex Entropy
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which corresponds to the isolation of Alaska, as described above, the rate at which the 
GC collapses is much closer to the other regimes.

More interesting is the variation in the similarity of the removed node sets. Figure 5a, 
shows the Jaccard similarity for all combinations of the unweighted removal regimes. 
The similarity of the degree and VE node sets show considerable variation with multiple 
peaks and troughs across the full range of removed nodes. The largest variations in JC 
occurs up to about 75 removed nodes, these variations suggest that while the similarity 
of the sets is ultimately quite high with a JC of approximately 0.7, the ordering of those 
nodes is markedly different between the two regimes. Interestingly, the trough in JC at 
about 25 nodes corresponds to the plateau in network capacity observed in Fig. 3 when 
2.5% of the nodes have been removed. The comparison of both the degree and VE node 
sets with BC show a much more consistent profile. Additionally, the nodes identified 
by BC are more similar to those identified by VE having a JC of approximately 0.475 for 
a removed node set of cardinality 200, whereas the comparable node set identified by 
degree has a lower JC of approximately 0.35.

The similarity of the removed node sets for the weighted removal regimes are com-
pared in Fig. 5b. The behavior of JC for weighted degree and weighted VE shows a clear 
variation in the node sets for about the first 50 nodes to be removed but apart from 
the small peak at about 25 nodes the JC exhibits a consistent upward trend to a limit of 
about 0.8 for node set cardinalities up to 200. The variation in JC for weighted degree 
and weighted VE with weighted BC are broadly similar. The smallest node sets exhibit 
very little overlap, with JC values increasing from 0 to about 0.3 for node sets of cardi-
nality up to 10. As the size of the node sets increase towards 50, JC increases to a peak 
of approximately 0.6 for weighted VE against weighted BC and approximately 0.5 for 
weighted degree against weighted BC. Beyond this point the similarities for both cases 
plateau at approximately 0.47 and 0.42 for the weighted VE and weighted degree cases 
respectively.

The main conclusions to draw from this analysis is that in both its weighted and 
unweighted forms, VE identifies node sets that are a hybrid of those identified by degree 

Fig. 5  The Jaccard similarity coefficient of the node sets removed from the airline route graph under 
targeted node removal. a Compares the unweighted forms of degree, vertex entropy and betweenness 
centrality. b Compares the weighted forms of degree, vertex entropy and betweenness centrality
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and those identified by BC. Additionally, for cardinalities of about 50 and above, the pla-
teaus in all the JC values suggests that all the removal regimes identify a common subset 
of nodes and the relative size of that subset remains roughly constant.

Until now our analyses have looked primarily at the network dismantling character-
istics of the different node removal regimes. We now shift our focus to how epidemic 

Fig. 6  The reduction in effective transmission rate as the capacity of the airline network reduces under 
random and targeted node removal. a Compares random removal with all unweighted regimes, b compares 
random removal with the weighted regimes, and c compares all regimes with capacity on log scale. Targeted 
node removal regimes retain a higher network capacity for a given transmission rate when compared with 
random node removal. Above a network capacity of 3.0×109 pkm the behavior of all targeted regimes 
behave similarly. Below 3.0×109 pkm the behaviors diverge with the unweighted regimes exhibiting a lower 
transmission rate for a given network capacity
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transmission is impacted by those different regimes. Figure  6 shows how the effec-
tive transmission rate on the network varies with its passenger carrying capability. For 
clarity, we have split Fig. 6 into three subfigures. Figure 6a shows the results from the 
random and unweighted removal regimes, Fig. 6b compares the random and weighted 
removal regimes, and finally Fig. 6c show all simulations but with the network capacity 
displayed using a log scale. In all removal scenarios, a reduction in the capacity of the 
network reduces the transmission rate. Unsurprisingly, random node removal has the 
least impact. Indeed, even when network capacity is reduced by two-thirds, the reduc-
tion in Re is only 7.5% at 1.85. At this same network capacity, all of the targeted node 
removal regimes show a far more substantial drop in transmission rate to about 1.7, 
an overall reduction of about 15% , double the reduction achieved by random removal. 
Interestingly the behaviour of Re for both BC-based removal regimes is within the per-
formance bounds of all the other targeted removal regimes, despite the superior net-
work dismantling capabilities discussed earlier in this section. The large reduction in the 
size of the GC when the Alaskan region of the airline route network gets disconnected 
has no material impact upon the characteristics of the epidemic spread.

An alternative analysis is to examine the capacity of the network at a target transmis-
sion rate. On inspection of Fig. 6 and for random node removal, a reduction of 0.15 in Re 
corresponds to a reduced network capacity of 3.2×109 pkm . For targeted node removal, 
that same reduction of 0.15 in Re corresponds to a capacity of about 5.0×109 pkm , a sig-
nificant improvement given our objective of maximizing capacity whilst minimizing rate 
of transmission. We conclude that we can achieve the same Re but retain about 50% more 
capacity using targeted node removal. Cross-referencing these capacities with Fig. 3 and 
Table 2 shows that about 650 nodes need to be removed or disconnected using random 
removal. Under targeted removal, and depending upon the specific regime, only about 
70–140 nodes need to be removed. However, if we extend our analysis and hypothesise 
that we need to achieve a value of 1.7 for Re the picture changes dramatically. Examina-
tion of Fig.  6 shows that for all targeted regimes a network capacity of approximately 
3.2×109 pkm corresponds to the desired Re = 1.7 . Further cross-referencing with Fig. 3 
and Table 2 shows that in order to reduce network capacity to the required level, about 
180–220 nodes need to be removed or disconnected for the weighted and unweighted 
forms of degree and VE. However, for the two BC-based removal regimes approximately 
440–475 nodes need to be removed or disconnected, a remarkable difference. The rea-
son for this large disparity is the sudden collapse in the GC brought about by the dis-
connection of the Alaskan airports with no corresponding drop in network capacity, a 
reason that is only valid for this experimental scenario. A more general conclusion is 
that despite the apparent superiority of BC as a network dismantling metric with regard 
to network size, a much more important consideration is the reason you wish to dis-
mantle the network in the first place. It therefore seems reasonable to assume that the 
network feature you need to optimize must feature in the dismantling process.

Further examination of Fig. 6 shows that for capacities below about 3.0×109 pkm the 
behaviours of the targeted removal regimes diverge a little, with the unweighted forms 
giving larger reductions in transmission rate. This behavior is consistent with our ear-
lier observation regarding weighted regimes retaining more flights and hence provid-
ing more opportunity for transmission to occur. We also observe that at the lowest 
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capacities, both VE-based regimes produce larger reductions in transmission than their 
degree-based counterparts.

An interesting feature in the relationship of Re with capacity is revealed by Fig. 6c. For 
all regimes apart from VE there appears to be an inflection point at a capacity of around 
3.0×109 pkm . For capacities greater than this, all regimes show the same behaviour; Re 
increases with capacity but at a decreasing rate. Below 3.0×109 pkm , a slightly different 
pattern emerges. For all targeting regimes, with the exception of VE, Re reduces with 
capacity, but at a decreasing rate. For VE however, the rate at which Re reduces appears 
to remain constant. This behavior could be explained by VE specifically targeting nodes 
that do not have a locally clustered neighborhood. Removing such nodes will preferen-
tially isolate portions of the network with less sensitivity to the degree of the node, and 
therefore the likelihood of the node being a hub. This would tend to select for a more 
consistent reduction in capacity than targeting high capacity hubs.

The final part of our analysis examines the distribution of effective transmission rate 
against stratified bins of network capacity for each node removal regime, and is shown in 
Fig. 7. Network capacity is stratified using bins of size 0.5×109 pkm . We use a standard 
box and whisker plot format; the whisker lines show the range of values, the box shows 
the inter-quartile range, and the line shows the median value. For capacities below 
3.0×109 pkm there is considerable variability in the values of Re with the unweighted 
and weighted VE regimes showing a wider distribution than the degree-based regimes. 
It must be noted that only the degree-based and VE-based regimes support all capacities 
of this magnitude, both BC-based regimes have a minimum capacity of 2.0×109 pkm . 
Above capacities of 3.0×109 pkm , the degree-based regimes exhibit the highest degree 
of variability. Apart from a small number of notable exceptions, for example at a capacity 
of 7.75×109 pkm , the VE and BC-based regimes generally display similar levels of varia-
bility. As has been remarked before, the airline route network has been expressly built to 
include hubs. In the early stages of network dismantling, which corresponds to networks 
of relatively high capacity, the small-world effect is stronger and so the rate of transmis-
sion is dominated by the macro structure of the route network. Even if a walk begins in 
a remote part of the world, the small-world effect means that infected individuals will 
relatively quickly find their way to a hub within the network. The result of each simu-
lation is therefore largely unaffected by the the starting point of the random walk. As 
dismantling continues, leaving networks of lower capacity, the impact of the small-world 
effect diminishes and the local structure of the route network dominates and dictates the 
spread of the epidemic. For example, if our walk begins in a remote location the relative 
absence of hubs will cause it to take longer for the epidemic to escape its starting neigh-
borhood and spread to the rest of the network. The consequence being that the random 
choice of initial location for each walk becomes more important to the spread of the epi-
demic and introduces the higher levels of variability we observe in Fig. 7. Even with the 
increase in variability at low capacity, the performance of BC and VE, in both weighted 
and unweighted varieties is more clearly visible from these plots.
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Conclusions
In our analysis we have demonstrated that it is possible to choose a scheme for route 
restriction in transport networks that optimizes capacity whilst restricting the rate 
of epidemic spread. In particular, by using either a weighted vertex entropy or degree 
scoring of airports we are able to reduce the effective reproduction rate of an epidemic 
spread whilst preserving capacity much more effectively than with a random airport and 

Fig. 7  Boxplots of effective transmission rate stratified by capacity for random node removal and each of the 
targeted node removal regimes. a Shows the random removal scenario, b–d show the unweighted versions 
of degree, VE and BC respectively, and e–g show the weighted versions of those regimes. At capacities below 
3.0×109 pkm there is considerable variability in the data, where it is available. The degree-based regimes 
exhibit the highest degree of variability. Above 3.0×109 pkm the VE and BC-based regimes generally display 
similar levels of variability
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route closure approach. Owing to simplifications in the model, we should not place too 
much reliance upon the absolute values of Re . In relative terms, and for a reduction in 
Re of 0.15, targeted node removal yielded networks with 50% more capacity than those 
restricted by random selection.

For scale free networks it is well understood that the ‘friendship paradox’ (Feld 1991) 
exploits high degree hubs to propagate spreading phenomena. As noted in “Theoreti-
cal considerations”, the key fact is that the airline network contains such hubs, and as 
the degree distribution is not homogeneous the ‘friendship paradox’ still holds. Fur-
ther, although vertex entropy is defined as a function of degree, the entropy based route 
restriction has a very different effect upon the capacity and epidemic in the low restric-
tion regime. Our result may expose a subtle interplay between network function and 
structure.

Our experimentation also encompassed the unweighted and weighted forms of 
betweenness centrality, a measure that in its unweighted form has well understood effi-
cacy in network dismantling. The results here are somewhat complicated by the modular 
nature of the airline network, where large and low capacity subgraphs can be discon-
nected by the removal of a single high betweenness centrality node. While this behav-
iour has a dramatic impact from the perspective of network dismantling, its impact 
on epidemic spread is negligible. Consequently the results need to be interpreted with 
care. A highly efficacious network dismantling regime, does not necessarily lead to cor-
responding reductions in the rate of epidemic spread rate. Coupled with the fact that 
vertex entropy can easily, and more naturally, incorporate a weighted network and is 
equally effective, we believe it is more generally applicable as a metric to optimize capac-
ity and suppress infection.

The purpose of our work is to motivate a discussion on how we can moderate our 
approach to extreme shutdown measures as a way to manage the public health chal-
lenges of COVID-19. We believe there are many ways to improve the robustness of our 
model, and in further work we intend to refine our results by taking a route by route 
approach to restrictions and also implementing a finer grained spreading model. In 
addition, there are other approaches to analyzing the effect of graph structure on epi-
demic spread, such as spectral radius of the adjacency matrix (Draief et al. 2006). It is 
possible that these results could provide further analytical tools to link the dismantling 
metrics directly to epidemic thresholds, which we anticipate could be interesting lines 
of further inquiry. In particular, we have not constrained the route restriction by other 
criteria such as retaining, or conversely severing, communications between particular 
geographic regions. These additional constraints would likely change radically the con-
clusions of our experiments. Despite the acknowledged shortcomings, we feel that our 
result justifies further exploration.
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