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Introduction
Previous work in the field of network science on COVID-19 has demonstrated the posi-
tive effect that robust testing and contact tracing can have on preventing infections and 
keeping coronavirus cases within hospital capacity (Reyna-Lara et al. 2021; Aleta et al. 
2020). Successful contact tracing and subsequent testing is, however, arduous, expen-
sive, and requires extensive research into an individual’s contacts. To better tackle this 
problem, we introduce a novel method of group testing for infectious disease when 
limited information is known about the underlying interaction network. Our method 
outperforms three benchmarks by reducing disease spread while requiring fewer tests 
overall, reduces the attack rate and effective reproduction rate, and is robust to varying 
prevalence levels and other changes in parameters.

Group testing

Governments around the world rely on testing for Covid-19 to identify and contain an 
outbreak. The nature of polymerase-chain reaction (PCR) testing, however, suffers from 
limited throughput and high cost. Group testing, a method developed to test a pool of 
multiple samples simultaneously, has been proposed as a strategy to increase the effi-
ciency of testing in populations with a low prevalence rate (Gollier and Gossner 2020; 
Crozier et  al. 2021). If implemented correctly, a group test is positive if at least one 
sample within the pool is positive. In minipool testing for SARS-CoV-2, nucleic acid is 
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extracted from respiratory samples; a sample of each nucleic acid preparation is then 
combined into pools of samples. SARS-CoV-2 specific real-time RT-PCR is then used on 
the minipools. Individual testing is used for a minipool if it tests positive (Eis-Hübinger 
et al. 2020).

Multi-stage group testing can be defined as a variant of group testing in which the 
pool size N is divided into x groups and there exist k stages where k > 1 . N = xk−1 is the 
initial pool size, “which is divided by x in each subsequent stage, resulting in pool sizes 
xk−1 , xk−2, . . . , x0 = 1 in stages 1, 2, . . . , k ” (Eberhardt et al. 2020). In this paper, we study 
the two-stage group test, i.e. k = 2 . In the first stage, n samples are pooled and tested. If 
no virus is detected, then all samples are uninfected. If the pool tests positive, we pro-
ceed to the second stage where every individual is tested. The two-stage technique was 
successfully used in Wuhan, China where 6.5 million residents were tested within a few 
days (Wee and Wang 2020).

Mobility networks

Mobility networks have been used for predicting disease outbreaks (Salathé et al. 2010; 
Chang et al. 2021). Similar to our paper, Chang et al. (2021) construct a mobility network 
map individuals to places with cellphone data and run an SEIR model. The resulting 
simulation accurately predicts Covid-19 dynamics, such as the disproportionate effect 
of super-spreader events and the unequal impact of the disease on minorities. Deckert 
et al. (2020) apply simulations to evaluate pooled testing with homogenous groups and 
find substantial efficiency gains. However, we differ from Deckert et al. (2020) by focus-
ing on college towns, initializing our simulation from mobility data, and proposing a 
group testing method that requires minimal contact tracing.

Group testing can also be applied in way to exploit the network structure of human 
interaction. Since disease spreads through interaction, outbreaks often happen within a 
community. Testing a group whose infections are correlated is more efficient than ran-
domly sampling groups i.i.d. Our contribution is analyzing the efficacy of group test-
ing strategies compared to other testing strategies in a setting where we have limited 
knowledge of the underlying interaction graph. In terms of resource efficiency, our 
method compares favorably to centrality-based strategies that rely on ranking all agents 
by betweenness centrality or node degree; these methods require surveying every per-
son and recording a vast amount of data. In dense, complex environments like colleges, 
determining the global structure of students’ interactions is nearly impossible. Hence, 
we propose a testing strategy that randomly selects individuals and pools their con-
tacts. The friendship paradox states that on average, most individuals’ friends have more 
friends than the individual. Cohen et al. (2003) show that vaccinating random acquaint-
ances of randomly selected nodes is an effective immunization strategy. A social net-
work study indicated that selecting people at random and tracing their contacts makes it 
possible to recognize contagion outbreaks earlier (Christakis and Fowler 2010).

Epidemiology at colleges

In general, college students are under the age of 30 and in the demographic with fewer 
risk factors for SARS-CoV-2. Many students may believe that they are less likely to be 
affected by the disease, and thus less compliant with shelter-in-place (Levin et al. 2020). 
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Devising effective, cost-efficient strategies for detecting outbreaks at colleges will be cru-
cial as schools around the country seek to reopen in the near future. College campuses 
are unique epidemiological environments for a few reasons. First, college students come 
from diverse geographical and socioeconomic backgrounds. During the semester, stu-
dents normally travel frequently between campus and their hometown. Second, mobility 
data gathered in college towns can be assumed to be a statistically representative sample 
of the population, given the high degree of cell phone use. Third, college administrations 
can more easily observe interactions between students. Students and staff consent to a 
central administration logging personal records, enabling targeted contact tracing and 
surveillance testing.

Walke et  al. (2020) find that Covid-19 cases spiked by 62.7% among those aged 18 
through 22 during the arrival of students at universities for the start of the fall term. 
They mention that there were “more than 26,000 Covid-19 cases at more than 750 col-
leges across the nation by August 26... and more than 130,000 cases at 1300 colleges by 
September 25”. Paltiel et al. (2020) use analytic modeling of a hypothetical college stu-
dent group (n=5000) to conclude that a low-sensitivity, high-specificity test occurring 
once every 2 days might be required for sufficient control and prevention of outbreaks. 
Using an SEIR model and Bayesian learning, Lu et al. (2020) find that college campuses 
contain a high risk of Covid-19 infections relative to nationwide averages and may have 
super-spreader potential for surrounding communities. They conclude that robust test-
ing and other measures will be needed to contain spread.

Methodology
Data

We rely on mobile device data from SafeGraph Inc. to simulate a transmission net-
work. SafeGraph Social Distancing Metrics record the movement of anonymized mobile 
devices on the census block group (CBG) level. SafeGraph’s data has already been used 
to construct mobility networks for studying Covid-19 (Klise et al. 2021). Previous work 
has also found SafeGraph data to be generally representative of the U.S. population 
(Chen et al. 2019). We select a single date, October 15, 2020, to initialize the network. 
Though any date would be mostly arbitrary, we chose October 15 because all colleges 
start their fall terms by October and the date is prior to fall or winter breaks.

For the sake of focusing on college towns, we select only CBGs with an undergraduate 
population greater than 40% as determined by the 2016 American Community Survey 
(ACS). Run by the U.S. Census Bureau, the ACS contacts over 3.5 million households 
every year to collect social, economic, and demographic information (Bureau U.C. 2017).

To analyze the distribution of devices across the country, we grouped the CBGs with 
an undergraduate population greater than 40% by agglomerative clustering with a dis-
tance threshold of ten miles. The resulting 533 clusters can be seen in Fig. 1. There are a 
concentration of smaller college towns in New England. Large colleges with more than 
1000 devices in our sample tend to be in the South. Figure 2 shows the nine largest col-
leges by device count and their simulated case counts over time.
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Infection model

We construct a discrete-time susceptible–latent–infected–removed (SLIR) stochastic 
model with the incorporation of additional states for SARS-CoV-2 transmission, as 
seen in Fig. 3.

Individuals begin in the susceptible (S) state. At each time step t, presymptomatic 
( Ps ), asymptomatic(Ay ), and symptomatic(Sy ) individuals have a probability β of 
infecting susceptible individuals if they come in contact. Upon initial infection, indi-
viduals enter the latent state (L) and then enter the Ps state. Presymptomatic individu-
als have a probability α of entering the Ay state and a ( 1− α ) probability of entering 
the Sy state. Those in the Sy state then have a probability δs = δ of entering the quar-
antine state (Q), while agents in Ay have a probability δa =

δ
2 of entering Q. This 

D
evice count (log10 scale)

Fig. 1  Device count and location of college clusters. Though the simulation includes a small number of 
agents located in Puerto Rico and Hawaii, they were excluded from this figure

Fig. 2  Case counts over time for the nine colleges with the largest device_counts (see “Appendix” for 
definition). The line is the median case count and the shaded areas represent the interquartile range. For all 
nine plots, q = 0.15 and δ = 0.2
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encapsulates the fact that asymptomatic individuals are less likely to self-quarantine, 
since they may not realize they have contracted the virus. δa, δs = 1 when individuals 
in any state test positive. Next, individuals in Q have a probability ε of going to the 
ICU (I) regardless of whether they entered Q from the Ay or the Sy state. This greatly 
over-simplifies the real-world disparity in outcomes for asymptomatic and sympto-
matic patients. However, we acknowledge this weakness; the difference between the 
two states in our simulation is primarily to examine the disparity in voluntary quaran-
tining δ . Individuals in I have a probability µ of dying and entering the fatal state (F). 
As a final addition, individuals in the Ay , Sy , Q, and I phases all have a probability γ of 
recovering (R). All epidemiological parameters are contained in Table 1.

Table 1 shows our model’s epidemiological parameters. Shah et al. (2020) surveys stud-
ies of secondary attack rate (SAR) and finds numbers ranging from 4.6% to 35%. (Jing 
et al. 2020), based on data in Guangzhou, China, finds that SAR may be lower among 
younger people and gives a 95% confidence interval from 2.4-9.8%. Hence, we selected 
9% for the simulation. The secondary attack rate differs from the standard attack rate 
shown in Fig. 4. SAR refers to the fraction of susceptible agents infected after contact 
with infected agents. The attack rate is simply the percentage of all susceptible nodes 
that is infected at a given timestep. In the case of our simulation, SAR distinguishes 
transmission within the system from imported cases. Though 70% may seem like a 
high proportion for asymptomatic infections, a study of Rutgers students and medical 
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Fig. 3  Flow diagram demonstrating states

Table 1  Epidemiological parameters of simulation

Description Parameter Value Reference

Secondary attack rate β 0.09 Jing et al. (2020)

L → Ps p 1/3 day−1 Backer et al. (2020)

Ps → Ay α 0.7 Barrett et al. (2020)

Ay , Sy ,Q, I → R γ 1/10 day−1 SeyedAlinaghi et al. (2021)

Q → I ǫ 0.02 Bialek et al. (2020)

I → F µ 0.02 Richardson et al. (2020)
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workers, suggests that students may have a far higher asymptomatic rate than the gen-
eral population (Barrett et al. 2020).

Network model

Based on the SafeGraph data, we construct a network which approximates the move-
ment patterns of a synthetic population. We simulate the movements of around 193,000 
agents in 1471 different CBGs across the United States. The total number of links var-
ies between 800,000 to 900,000 depending on the realization due to stochasticity. The 
network consists of three forms of interaction. First, households within CBGs are mod-
eled by cliques. Household size is assumed to follow a Gaussian distribution. For each 
CBG, the mean and standard deviation of the distribution is taken from the 2016 ACS. 
Second, we randomly connect households within a CBG according to a log-normal dis-
tribution. Third, agents travel to different CBGs, where the destinations and number of 
travelers are determined by SafeGraph’s destination_cbgs column (see “Appendix” 
for definition). If the destination CBG is within our defined set of college towns, these 
agents will interact with other nodes in the simulation. If the destination is outside the 
system, nodes are infected with probability µ . We set µ = 0.0001 since our focus is on 
the dynamics within college towns. Further information can be found in the “Appendix”.

Our model roughly follows the hierarchical metapopulation structure detailed by the 
authors of Watts et al. (2005). Agents are embedded in a hierarchy of successively larger 
contexts: individuals mix uniformly within a household, form links between households 
within a CBG according to a log-normal distribution, and travel between CBGs accord-
ing to destinations derived from the cellphone data.

Simulation

We run the simulation for 60 timesteps, where each timestep corresponds to a day in an 
epidemic. The initial prevalence rate p is 1% for most experiments, though we include a 
study varying the initial prevalence. At each timestep, we test a fraction q of the popula-
tion. Let n represent the total number of agents in the population. We define the four 
testing strategies below:

•	 Individual testing at random: Ind Testing (Random) chooses a fraction q 
from the population by selecting q ∗ n nodes uniformly at random and test each indi-
vidually. If a node tests positive, the agent moves into the quarantine state.

Fig. 4  a Final attack rate (i.e. attack rate at the last timestep) as a function of testing fraction q. δ is fixed at 0.3. 
b Attack rate over time when q = 0.2 and δ = 0.3 . c Total case counts at varying levels of initial prevalence
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•	 Individual testing with global rank: Ind Testing (Global) assigns every 
node i an importance score si , where si = deg(i)+ � ∗ num_trips(i) . num_trips(i) 
refers to the number of trips taken by i, updated every timestep, and � is a parameter 
that controls the relative importance of the two terms. In our experiments, � is set to 
0.5. All scores s are then normalized so that 

∑n
i=0 si = 1 and we select a fraction q by 

treating si as a probability.
•	 Group testing at random: Group Testing (Random) randomly selects q ∗ n 

nodes and divides them into pools of 20. We then apply the two-stage group test to 
each pool.

•	 Group testing by network: Group Testing (Graph) randomly selects 
(q ∗ n)/20 nodes. For every node i in the sample, we construct a pool from neighbors 
with size max(deg(i), 20) and apply the two-stage group test. The original node i is 
not included in the group test.

Though we focus on the setting where we have limited knowledge of the underlying 
interaction network, we include the strategy Ind Testing (Global) to study the 
usefulness of collecting information on the underlying global network.

Though our simulation is not a perfect replica of the real world, there is value in study-
ing testing strategies in a simplified setting. Since we can precisely control epidemio-
logical parameters and track metrics on an individual level, we hope to gain a deeper, 
mechanistic insights into the dynamics of Covid-19 testing. Previous work has also 
relied on data-driven simulations to evaluate potential scenarios and vet disease mitiga-
tion strategies (Lu et al. 2020; Chang et al. 2021; Deckert et al. 2020).

Results
We investigate the synthetic model at varying levels of testing fraction q and voluntary 
quarantine parameter δ . For each experiment, we ran ten realizations with different ran-
dom seeds. We first investigate different levels of testing when voluntary quarantining is 
fixed ( δ = 0.2 ). Figure 5 illustrates the effectiveness of the four testing strategies at vary-
ing levels of q. When testing is low, all four strategies show the familiar spike in cases 
around timestep 20. Group testing slightly delays the curve’s peak. As q increases, the 
curve flattens. Group Testing (Graph) demonstrates a marked improvement over 
the other three methods particularly when q = 0.15 and q = 0.2 . The marginal benefit of 
increased testing diminishes sharply after q = 0.2 . At q = 0.3 , daily cases never pass 500 
for any method.

We investigate attack rate in Fig.  4a, b. Though there is little variation in the final 
attack rate, with the exception of Ind Testing (Global), attack rate differs signifi-
cantly during the course of simulation. Ind Testing (Random) and Group Test-
ing (Random) show nearly identical attack rates, while our method shows a mostly 
flat attack rate over 60 timesteps.

Surprisingly, Ind Testing (Global) results in the highest number of cases 
of all four strategies. Though the global strategy has a lower R(t) as seen in Fig. 6c, 
we hypothesize this is due to the large number of infections in the first 10 timesteps. 
After local communities are saturated, infections relative to total infected decline. 
Nevertheless, the global testing strategy results in higher case counts and attack rates 
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Fig. 5  Number of new cases at each timestep for a level of testing q. δ is fixed for all plots at 0.2

Fig. 6  a Relationship between a CBG’s mobility and total case count ( q = 0.15 and δ = 0.2 ). Visitors per 
timestep is normalized by the size of the CBG. b Each testing strategy’s total number of tests and resulting 
case count. c Effective reproduction rate R(t) when q = 0.2 and δ = 0.3

4

Fig. 7  The probability that an infected node is detected as a function of its degree
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across all levels of q. This is likely due to Ind Testing (Global) over-testing the 
high-degree nodes. Figure  7 shows that global testing has the lowest probability of 
detecting the nodes with lower degree. Calibrating the strategy to add more random-
ness to the selection process would likely improve results.

To evaluate the sensitivity of the testing fraction q δ , we ran experiments varying 
both q and δ at {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Figure 8 shows the results of Gauss-
ian process regression for interpolating the number of total cases. For all strategies, 
increasing q has a larger mitigatory effect on disease spread than increasing δ.

For a concrete look at the colleges simulated in our model, Fig. 2 shows case counts 
over time at the nine colleges with the highest device counts in our sample. These 
plots are drawn from the scenario where δ = 0.2 and q = 0.15 , i.e. approximately 15% 
of agents are tested at each timestep. In sum, these colleges have 22,162 agents and 
comprise 11.6% of the total population. Among the nine colleges, Texas A&M Uni-
versity and the University of Alabama show a mostly linear growth in cases. The other 
universities see a rapid growth in the initial timesteps, with a leveling off after t = 40 . 
The number of disease cases in a college town is strongly associated with the number 
of visitors that it receives. We can compute the number of visitors a CBG receives by 
summing all devices which have that CBG as a destination. Figure 6a illustrates the 
relationship between the number of visitors, divided by the number of devices within 
that college town, and the total disease cases. The Pearson correlation between the 
two metrics is 0.54.

Fig. 8  Each figure illustrates the effect of voluntary quarantining ( δ ) and the degree of testing (q) on total 
COVID cases, averaged across ten trials. For both axes, the experiments are conducted at intervals of 0.05 
from 0 to 0.3. Gaussian process regression is used for interpolation. The vertical lines show testing at two 
different levels, and the horizontal lines show where the two levels of testing result in similar case counts



Page 10 of 14Zhao et al. Applied Network Science            (2021) 6:93 

To analyze sensitivity to initial prevalence, we vary initial prevalence from 0.01 to 
0.09 at intervals of 0.02. Figure 4c shows that Group Testing (Graph) is robust 
to variation in the initial prevalence.

We briefly summarize the experimental results with a few observations:
Group testing requires fewer tests than individual testing to control infection. From 

Fig. 6b we see that group testing, in general, requires fewer tests to reduce infection. 
At a comparable level of infection, group testing (both at random and by network) 
requires up to 5 times fewer tests than individual testing.

Frequent testing is more effective in early stages of an outbreak. Figure  6b shows 
that the level of tests needed for group testing is roughly constant at different levels; 
interestingly, fewer tests can result in fewer cases—a counter-intuitive phenomenon 
resulting from the timing of the tests. The number of group tests varies depending 
on the prevalence rate at a given time. Figure  9 shows the number of tests at each 
timestep. When q is high, group testing suppresses the outbreak early on and lowers 
the number of tests necessary at latter timesteps since entire pools will test negative. 
If q is low, the case count rises rapidly at first and leads to additional group tests as 
pools start to test positive. This holds for both Group Testing (Graph) and 
Group Testing (Random).

Testing is most effective when paired with voluntary quarantining. Figure  8 shows 
the effect of voluntary quarantine and testing on the total number of cases. As δ 
increases to 0.3, cases remain high if q = 0 . When the two are paired together, cases 
decrease rapidly.

Group testing by network shows a slight improvement over random group testing in cer-
tain settings. From Fig. 6b, we see that our network-based approach outperforms ran-
dom group testing by a small amount. Although Group Testing (Graph) generally 
has smaller pools than the random approach because most randomly selected nodes 
have less than 20 contacts, it requires fewer tests to mitigate the outbreak. We hypoth-
esize that it has two major advantages over Group Testing (Random). First, the 
agents within the pool are more likely to be correlated. If they are all connected to a 
common node, then they are likely mostly uninfected or infected. Second, testing by net-
work allows us to identify the nodes with higher degree early on. Figure  7 shows the 
probability of detection as a function of an agent’s degree.

Fig. 9  Number of tests over time for group testing strategies at varying levels of testing, where δ = 0.3
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Individual testing by global rank requires careful tuning, unlike group testing. In our 
simulation, Ind Testing (Global) underperformed all other testing methods. 
This is not to say that globally ranking and testing significant nodes is ineffective. 
Recall how we assign scores to nodes: si = deg(i)+ � ∗ num_trips(i) . � must be tuned 
to properly balance between the two terms, which may be on dramatically different 
scales. Moreover, num_trips may not be indicative of a node’s importance, since the 
agent could be traveling to CBGs with less infection than their home CBG.

Conclusion
Vaccinations have provided governments and physicians with another tool to combat 
Covid-19. Yet a limited supply of vaccines, uncertainty about the length of immunity, 
and the ever-present danger of virus variants mean that testing must remain a core part 
of our approach to curbing disease spread. Group testing poses significant improve-
ments over individual testing, especially in densely populated environments like college 
towns where pooling samples is relatively cheap.

In this paper, we proposed a novel method for group testing by network in college 
towns. Our method suppresses disease outbreaks while requiring fewer tests. Colleges 
and universities have the unique ability to target testing toward individuals with the 
highest risk for contracting and spreading Covid-19. Though testing 30% of students 
every day may seem too high, universities have already begun implementing similar poli-
cies. At Harvard University and the University of Illinois Urbana-Champaign during the 
2020-2021 term, undergraduates living on campus must take a self-administered Covid-
19 test twice a week ( q = 0.29 ) (Services HUH  2020; U of Illinois Urbana-Champaign 
2020). Nevertheless, any targeted testing method must avoid bias and ensure that all stu-
dents are treated fairly by the administration. Any student or staff member who wants a 
test should be given reasonable avenues, outside of targeted testing.

Future work in this direction can take advantage of further simulation. As more data 
becomes available on the effectiveness of vaccines, it would be useful to model vaccina-
tion and testing as simultaneous processes. Vaccinations can be incorporated into our 

Table 2  Abbreviations

Abbreviation Definition

N Pool size for group test

x Number of groups per pool

k Number of stages per group test

SEIR model Susceptible-exposed-infected-recovered model

SLIR model Susceptible-latent-infected-recovered model

i.i.d independent and identically-distributed

R0 Base reproduction number

CBG Census block group

q Fraction of population tested at each timestep

n Total population

R(t) Effective reproduction rate at time t

All simulation parameters See Table 1
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model by adding an Immunized ( Im ) state. Moreover, a greater knowledge of Covid-19’s 
disease dynamics will improve the predictive power of data-driven simulations (Table 2).

Appendix
SafeGraph data

SafeGraph social distancing metrics are based on data going back to January 1, 2019. In 
an effort to protect the privacy of individuals, differential privacy is applied to all metrics 
except for device_count.
device_count represents the number of devices whose home is in the census block 

group (CBG) recorded during the date range. Home, for the purposes of this metric, is 
“the common nighttime location for the device over a 6 week period where nighttime is 
6 pm–7 am.” census_block_groups with count of less than 5 were excluded. Other 
important schemas for the purposes of this research include median_non_home_
dwell_time and destination_cbgs. Median_non_home_dwell_time is an 
integer value that represents the median dwell time for all devices in device_count for 
locations outside of the geohash-7 home. Dwell time for each device is calculated by 
summing the number of minutes spent outside the house throughout the day. desti-
nation_cbgs is a JSON with each key being a destination census block group and each 
value being the number of devices with a home in census_block_group that stopped 
in the destination census block group for longer than 1 min during the time period. The 
destination census block group includes the origin_census_block_group.

Basic reproductive number

In this section we compute the basic reproductive number, R0 , based on our parameters. 
Let x(t) be the fraction of infected individuals, q(t) be the fraction in quarantine, s(t) be 
the susceptible fraction, and r(t) the recovered fraction.

Let β be the probability of infection multiplied by the number of average contacts per 
agent, δ be the probability of voluntary quarantine after infection, and γ be the prob-
ability of recovery. In our network, the number of edges ranges between 800,000 and 
900,000 due to randomness. Hence, the average degree is around 4.4.

dx

dt
=βs(t)x(t)− γ x(t)− αx(t)

dq

dt
=αx(t)− γ q(t)

ds

dt
=− βs(t)x(t)

dr

dt
=γ x(t)+ γ q(t)

R0 =
β

γ + δ

R0 =
0.396

0.1+ δ
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Figure 10 assumes an entirely susceptible population at t = 0 and no testing. If γ and β 
are fixed, testing is necessary to supplement quarantine measures.
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