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Introduction
The study of spreading processes on networks has a long research history in informa-
tion diffusion in social networks (Guille et al. 2013), computer communication (Balthrop 
et al. 2004), and epidemiology (Nowzari et al. 2016). Insights in this regard are of high 
relevance for better control of spreading either for increasing influence and reach in 
social networks (Kempe et al. 2003) or for hindering the spread of viruses (Nowzari et al. 
2016).

Abstract 

The analysis of spreading processes within complex networks can offer many impor-
tant insights for the application in contexts such as epidemics, information dissemina-
tion or rumours. Particularly, structural factors of the network which either contribute 
or hinder the spreading are of interest, as they can be used to control or predict such 
processes. In social networks, the community structure is especially relevant, as actors 
usually participate in different densely connected social groups which emerge from 
various contexts, potentially allowing them to inject the spreading process into many 
different communities quickly. This paper extends our recent findings on the commu-
nity membership of nodes and how it can be used to predict their individual spreading 
capability (Krukowski and Hecking, in: Benito, Cherifi, Cherifi, Moro, Rocha, Sales-Pardo 
(eds) Complex networks & their applications IX. Springer, Cham, pp 408–419, 2021) by 
further evaluating it on additional networks (both real-world networks and artificially 
generated networks), while additionally introducing a new local measure to iden-
tify influential spreaders that—in contrast to most other measures, does not rely on 
knowledge of the global network structure. The results confirm our recent findings, 
showing that the community membership of nodes can be used as a predictor for 
their spreading capability, while also showing that especially the local measure proves 
to be a good predictor, effectively outperforming the global measure in many cases. 
The results are discussed with regard to real-world use cases, where knowledge of the 
global structure is often not given, yet a prediction regarding the spreading capability 
highly desired (e.g., contact-tracing apps).
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It is well established that network topology is a major factor governing spreading 
processes (Peng et al. 2020; Cherifi et al. 2019), and it has been shown that real world 
networks often exhibit small-world properties with scale-free degree distributions, 
which allows viruses and information to proliferate and cover large parts of such net-
works quickly (Pastor-Satorras and Vespignani 2001; Wu et al. 2004). One overarching 
goal of most studies on information diffusion in networks is to predict the efficiency 
of the underlying spreading process, i.e. how quickly and how pervasively the nodes 
in a network get infected by a spreading item (information, rumor, virus, etc.). Being 
referred to as immunisation or attack strategies, they usually examine which nodes 
exert the most influence on the information diffusion process, i.e., are the most influ-
ential spreaders, in order to either immunise or attack them and better control the 
spreading (Cherifi et  al. 2019; Magelinski et  al. 2021). In this context, topological 
properties of nodes (e.g., centrality, community membership) are of interest. Such 
properties can be discovered by using local information on the node level or by exam-
ining the global network structure. A particularly important topological feature which 
influences the efficiency of the spreading process is the community structure of net-
works and the resulting properties of nodes (Rajeh et al. 2021; Ghalmane et al. 2019a, 
b; Kitsak et al. 2010). To this end, Kitsak et al. (2010) showed that the most efficient 
spreaders within a network are not necessarily the most central nodes (i.e. nodes with 
the highest degree), but the ones located in densely connected cores of the network 
indicated by a high k-shell index. This insight was accompanied by our recent study 
on the positive effect of node membership in multiple overlapping and densely con-
nected clusters in a network (Krukowski and Hecking 2021). Here, the general idea is 
that someone who is member of many different overlapping social groups (workplace, 
sports club, friendship circles) is better capable of injecting a spreading item into var-
ious densely connected regions of the network where it further circulates. Multiple 
approaches exist to detect such overlapping clusters (Xie et al. 2013). In this paper, we 
use the link-communities algorithm by Ahn et al. (2010), where resulting clusters are 
highly interleaved and sometimes even nested. The spreading capability of a node is 
then modelled as a function of the number of such clusters in which it occurs.

The discovery of such node properties and the resulting immunisation strategies 
differ in how computationally expensive and how applicable to real-world scenarios 
they are. Strategies which use typical measures of centrality or the k-Shell index of 
nodes afford knowledge about the full network structure. For scenarios like infor-
mation diffusion in social media, such knowledge is usually given. However, this is 
not the case for real-world contacts. Especially in the light of global pandemics, such 
as the current COVID-19 crisis, it would be desirable if one could approximate the 
spreading capability of nodes only using information from their immediate neigh-
bourhood, i.e. on the node level. This would greatly improve personalised warning 
systems, for example based on contact tracing apps, without the need for collecting 
personal contact information at a central organisation.

Accordingly, this article extends the results of our previous work (Krukowski and 
Hecking 2021) on properties of the community structure as indicators for the spread-
ing capability of nodes and how well these can be approximated, yet providing a 
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more extensive evaluation particularly with regard to comparison of global and local 
approximations.

The paper is structured as follows: In  the “Background” section, we delineate the 
background and outline the necessary preliminaries. Related work on this topic will be 
described in the “Related work” section. Our global and local approaches for identify-
ing influential spreaders in networks are explained in the “Methods” section. Evaluation 
results on real-world and generated networks are reported in the “Analysis” section and 
eventually discussed in a broader scope in the “Summary and conclusions” section.

Background
Spreading processes generally describe a flow of information between actors or mem-
bers of a network (Karunakaran et al. 2017). Hence, within complex networks, spreading 
can only happen between adjacent nodes, which makes topological features important 
factors to consider when attempting to control the spreading process. For immunisation 
strategies, typically the origin of the diffusion process is of interest, as these so called 
“seeds” (Comin and Costa 2011) and their properties yield important information from 
which inferences regarding the efficiency of the spreading process (i.e., their spreading 
capability) can be drawn. For example, the degree centrality of a node is one such fea-
ture, as nodes with high degree centralities naturally have more possibilities to poten-
tially spread information to other nodes (Albert et al. 2000). Thus, these so called “hubs” 
mark efficient spreaders (Erkol et al. 2019). This is also reflected by the fact that an une-
ven degree distribution within networks (many hubs) results in more efficient spreading 
(Barabasi 2016). Apart from hubs, the community structure of graphs is another impor-
tant factor influencing spreading processes (Rajeh et al. 2021; Ghalmane et al. 2019a, b). 
Information spreads more easily within highly connected sub-communities (Stegehuis 
et al. 2016), and similarly, nodes who act as bridges or are members of multiple overlap-
ping communities might also spread information more easily between communities. As 
such, considering the community structure can improve the prediction of the spreading 
process and thus the immunisation of relevant nodes (Peng et al. 2020; Ghalmane et al. 
2019a).

Community structure and spreading

In this paper, we focus on this community structure of networks and examine, how the 
membership of nodes in different overlapping communities might help predict their 
spreading capability. To this end, we relate this property to other properties of commu-
nity structure, specifically the k-Shell index of nodes.

k‑Shell Index

Within highly cohesive subgraphs, information can spread more easily. A common 
notion in graph theory to calculate this cohesiveness is to determine the k-Core of a net-
work. This k-Core (Dorogovtsev et al. 2006) refers to the largest induced subgraph of a 
network, in which all nodes have at least a k connections with others. It can be deter-
mined by successively removing nodes from the network with degree smaller k until 
no more nodes can be removed. The k-Shell index of a node then indicates the largest 
k-Core it belongs to. Thus, nodes with a shell index of k have at least k connections to 
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other nodes within their core, meaning that high k-Shell values indicate a membership 
within highly interconnected subgraphs where information can flow easily between all 
its members (see Fig. 1). It is reasonable to assume then, that a spreading process which 
starts within those highly interconnected subgraphs is more efficient than when the seed 
node is simply highly connected (i.e., has a high degree). To this end, Kitsak et al. (2010) 
could show, that the k-Shell index of a node is indeed a superior predictor for its spread-
ing capability as opposed to its degree, specifically by sustaining infections within early 
stages and helping them reach a critical mass. However, nodes within these k-Cores also 
tend to exhibit multiple community memberships, which yields an additional predic-
tor in comparison to solely taking the node’s k-Shell index into account. Additionally, 
when multiple outbreaks happen, information can spread more easily between different 
sub-communities, whereas for different cores, the distance between them needs to be 
taken into account (Kitsak et al. 2010). Thus, another connected, but distinct topological 
feature which might impact the spreading efficiency is the community membership of 
nodes.

Link communities and influential spreaders

To examine the community structure of graphs, community detection techniques 
such as the Louvain method (Blondel et al. 2008) can be used. The Louvain method 
assigns sub-communities to nodes based on high connections within a community 
and little connections between different sub-communities, resulting in each node get-
ting assigned a unique sub-community. However, especially nodes which are part of 
multiple overlapping and nested communities, i.e., connect groups in different social 
contexts, might be capable spreaders. The underlying assumption is that information, 
diseases, etc. mainly circulate within densely connected groups. Actors in the overlap 
of such groups can be infected within one group and inject the spreading processes 
into several other densely connected groups. Similarly, nodes in overlaps are often 
neighbours of highly influential nodes (i.e., hubs) within their respective communities, 
which allows for an even more efficient spreading. In contrast to node partitioning 

Fig. 1  On the left, an example from Kitsak et al. (2010) can be seen. Nodes within the core of the network, 
i.e. with a high k-Shell index, were found to be good spreaders. On the right, the same network is shown, 
but clustered with the Link Communities approach by Ahn et al. (2010). Nodes with grey borders are nodes 
which are hypothesized to exhibit a high spreading capability
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methods such as the one mentioned above, the Link Communities approach by Ahn 
et al. (2010) was especially designed to uncover communities with pervasive overlaps. 
Based on the assumption that social groups are better characterised as a set of closely 
interrelated links instead of closely interconnected nodes, the method partitions the 
links of a network instead of the set of nodes. As a result, sub-communities can over-
lap, and single nodes can be members of multiple sub-communities. The procedure of 
link clustering is described as follows: Edges ( eik and ejk ) with a common neighbour 
k are compared pairwise. Node k is called keystone node, while the other two nodes 
are called impost nodes (see Fig. 2). It should be noted, that only the neighbours of 
the impost nodes are taken into account for the calculation, as the neighbours of k 
(except the impost nodes) are of no interest. To calculate the similarity of the nodes, 
the similarity criterion S (Jaccard- index) is applied (see Eq. 1). The set of the node i 
and its neighbours is denoted as n+ i.

For the above example in Fig. 1, this would result in S = 1
4
 . A dendrogram is then built 

through single-linkage hierarchical clustering and cut at a certain threshold according to 
the partition density, which then results in the link communities. From these link com-
munities, the community memberships of the nodes can be derived, and thus each node 
is assigned a vector of community memberships, from which the actual number of com-
munities it belongs to can be calculated.

In our recent publication (Krukowski and Hecking 2021), we could show that the 
above hypothesised relationship between the community membership of nodes and 
their spreading capability does exist, and that nodes, which are members of multi-
ple overlapping sub-communities, do indeed prove to be influential spreaders. Details 
about the utilisation of the algorithm for detecting influential spreaders will be given 
in the “Estimating spreading capability using global information” section. Before that, 
we will shortly discuss related work on spreading processes and the role of the com-
munity structure.

(1)S(eik , ejk) =
| n+ (i) ∩ n+ (j) |

| n+ (i) ∪ n+ (j) |

Fig. 2  Illustration from Ahn et al. (2010). As can be seen, only the neighbourhood of the impost nodes is 
taken into account
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Related work
In recent years, there has been a growing body of research on the role of community 
structure and how it relates to spreading processes (Cherifi et al. 2019; Tulu et al. 2018). 
Particularly, the calculation of centrality measures (e.g., degree, betweenness) in a dif-
ferentiated manner to reflect a node’s local and global influence (Rajeh et al. 2021; Ghal-
mane et al. 2019b) was shown to lead to a more accurate prediction of efficient spreaders. 
In this regard, Ghalmane et al. showed that nodes with high local centralities (i.e., high 
local or within-community influence) seem to be especially capable spreaders in net-
works with a strong community structure, while those with high global centralities (i.e., 
high global or inter-community influence) are more efficient in networks with a weaker 
community structure (Ghalmane et al. 2019b, 2018). Furthermore, network modularity, 
a major factor representing the community structure of networks, was shown to influ-
ence the speed of spreading processes (Peng et al. 2020), and the individual contribution 
of nodes to the network modularity appears to predict spreading efficiency, as nodes who 
act as bridges or hubs (and whose deletion would result in a different network modular-
ity) were shown to be especially capable spreaders (modularity vitality, see Magelinski 
et al. 2021). Thus, many immunisation strategies based on community-structure features 
of nodes exist (for an overview see Cherifi et al. 2019). These strategies differ with regard 
to the amount of information about the network structure they need. Community-aware 
centrality measures, modularity vitality and the k-Shell index of nodes presume knowl-
edge of the global network structure, and the resulting immunisation strategies can be 
characterised as global strategies (Cherifi et  al. 2019). In contrast, local immunisation 
strategies that do not rely on such global information, might be less computationally 
expensive and more applicable to real-world scenarios (Cherifi et  al. 2019). However, 
even if immunisation occurs on the node level, most algorithms still need information 
that goes beyound the immediate neighbourhood of nodes. As a typical representative of 
such local immunisation strategies, the Random-Walk Overlap Selection (RWOS) algo-
rithm requires a pre-specified list of nodes occurring in overlaps between communities, 
which needs at least partial knowlege about the networks community structure. It per-
forms a random walk on the entire network and counts how often the overlap nodes are 
encountered. In this regard our approach using a measure of local community centrality 
described in the next section is fundamentally different, since we aim to find ways how 
a node can assess its own spreading capability when only the immediate neighbours and 
the links among them are accessible. This is, for example, the case for real-world con-
tacts collected through contact tracing apps or for users of social networking platforms 
who can only observe connections between their friends.

Methods
While there are good indicators that the k-Shell index of nodes or link communities work 
well for identifying influential spreaders in networks (Krukowski and Hecking 2021; Kit-
sak et al. 2010), the drawback of the required knowledge about the global network struc-
ture warrants strategies which allow for an immunisation of relevant nodes irrespective of 
such knowledge. Especially when considering that for generated or social networks, such 
knowledge is usually given, it becomes apparent that in real-world scenarios, the complete 
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network with all nodes and their respective links is often unknown - especially in those 
cases, where the prediction of the individual spreading capability is desired. For example, 
during the current COVID-19 crisis, a risk-approximation based only on the knowledge of 
the immediate neighbourhood is both highly desirable and technologically feasible (con-
tact-tracing apps).

Thus, in addition to measures which use global information to approximate spreading 
capability, we developed a measure which relies only on local information.

Estimating spreading capability using global information

As described above in the “Link communities and influential spreaders” section, the com-
munity membership of nodes in multiple overlapping link communities might be a good 
indicator for their spreading capability. To this end, we defined a new indicator for the 
spreading capability of nodes based on the Link Communities algorithm, which is called 
global community centrality ( global_cc).

However, due to the nested nature of link communities, a node can be part of many com-
munities that share a large fraction of their nodes so that the number of communities of a 
node alone may not be sufficient to identify nodes that are able to inject a spreading process 
in several different densely connected regions of a network. Therefore, the global commu-
nity centrality of a node x participating in n link communities C1,C2, . . . ,Cn is defined as 
the union nodes in these communities (see Eq. 2).

This assigns high values to nodes that connect many large communities that do not share 
many nodes.

Estimating spreading capability using local information

As mentioned before, a drawback of global methods is that they can only be applied in use-
cases where one can view the entire (or large parts) of the network of interest at once.

To estimate the spreading capability of nodes with using local information of their neigh-
bourhood only, we developed an index that approximates global community centrality. The 
procedure of calculating the local community centrality (local_cc) of node x is at follows: 
First, an induced subgraph SG(x) containing all neighbours of x is extracted from the entire 
network. In order to approximate the number of communities in which ego participates, 
the nodes in SG are partitioned using the Louvain Method (Blondel et al. 2008). The ration-
ale behind this is that the number of non-overlapping communities found in the neighbour-
hood network of x correlates with the number of overlapping link communities in which x 
occurs. High values should be assigned to nodes with many well connected local communi-
ties in their neighbourhood. The local community centrality of node x is given as:

CSG(x) is the set of clusters in SG(x) detected by the Louvaine Method. Ec and Vc denotes 
the edges and the nodes respectively present in a neighbourhood cluster c ∈ CSG(x) . Note 

(2)global_cc(x) = |

n⋃

i=1

Ci|

(3)local_cc(x) =
∑

c∈CSG(x)

(|Ec| + 1) ∗ |Vc|



Page 8 of 17Krukowski and Hecking ﻿Appl Netw Sci            (2021) 6:84 

that if there are only isolated nodes (or single-node communities) in the SG(x), the meas-
ure reduces to the degree of x. However, if the neighbourhood of x can be partitioned 
into several densely connected clusters, x has a good chance to be a good spreader since 
it possibly is a connector of several communities on the global level.

Analysis
Modeling spreading capability

To evaluate the capability of nodes to spread information through the network, we simu-
lated spreading processes according to well-known SIR models (May and Lloyd 2001) 
(Susceptible, Infected, Recovered) using Epidemics on Networks (EoN) Python package 
(Miller and Ting 2019). In this evaluation the process starts with one initially infected 
node and all others are susceptible. This node tries to infect its susceptible neighbours 
and succeeds with a given infection rate (denoted as b). After that, it recovers and can-
not be infected again. The resulting newly infected nodes then in turn try to infect their 
neighbours. The process terminates when no new infections occur. For each node, 100 
of such simulations were conducted and of those, the average number of infected nodes 
(total infection), the maximum number of infected nodes across all simulation steps 
(peak infection), and the number of simulation steps until termination (duration) was 
measured. These measures of the true spreading capability of nodes are then compared 
to the spreading capability estimated by the different methods described above.

In the following, the results of the evaluation will be presented. All of the evaluations 
are calculated for b (infection rate) = 0.1. To increase the external and internal validity of 
our evaluations, we examine both real-world and artificially-generated networks.

The imprecision function

To quantify the importance of nodes with a high local and global community central-
ity during the spreading, we calculated an objective measure, namely the imprecision 
function. Similar to Kitsak and colleagues (Kitsak et al. 2010), this function is calculated 
for each of the relevant measures, and is denoted as, ǫdegree(p) . . . ǫCC_local(p) . For each 
subset p of nodes (here, p refers to a specific percentage of the dataset) with the high-
est spreading capability (denoted as φeff  ) and the highest value according the respective 
measure (denoted as φd . . . φcc_local ), the average spreading is calculated. Then, the dif-
ference in spreading between the p nodes with highest values in the respective measure 
and the most efficient spreaders is calculated. Formally, for ǫCC_local(p) , the function is 
defined as follows:

By subtracting the fraction from 1, higher values correspond to more imprecision, and 
smaller values for ǫ indicate less imprecision and therefore a better measure.

Real‑world networks

We chose two representatives of real-world networks to evaluate different measures 
for predicting spreading capabilities of nodes, both representing social media data and 
physical encounters between people.

ǫCC_local(p) = 1−
φCC_local(p)

φeff (p)
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The first network is a sample of a friendship network from Facebook (McAuley and 
Leskovec 2012). The dataset was assembled from a survey on social cycles on Facebook 
and is made up of the union of 10 ego networks of survey participants (connections of 
ego with all of its neighbours + connections between the neighbours). Therefore, it is 
well suited for evaluation since it can be assumed that it adequately reflects a situation 
where a node participates in several overlapping social circles. The Facebook network is 
fully connected and comprises 4093 nodes and 88234 edges.

The data of the second real-world network1 was collected during the 2009 SFHH 
(Société Française d’Hygiène Hospitalière) conference. The 403 nodes represent the par-
ticipants. Each participant wore RFID (radio-frequency identification) devices for close 
proximity contact tracking. The edges in the network represent face-to-face encounters 
between the participants for more than 20 seconds. In the following this network will 
be referred to as the SFHH network. Table 1 summarises the main properties of the net-
work including statistics of the SIR simulations with infection rate 0.1 and 100 runs per 
node. The duration column refers to time steps of the simulation. It can be seen that in 
the smaller SFHH network a much larger proportion of nodes get infected more quickly, 
which is due to the smaller diameter and higher average degree.

A first observation is that there is a medium correlation between nearly all structural 
node properties and the spreading capability of nodes, indicating that the true spreading 
capability is linked to these properties (see Tables 2, 3). The only exception is the cor-
relation of the local community centrality in the Facebook network, which appears to be 
only small. However, correlations alone do not provide enough insights into the utility of 
different immunisation strategies. Therefore, the imprecision function described in the 

Table 1  Properties of the two real-world networks

Facebook SFHH

Nodes 4093 403

Edges 88234 9565

Diameter 8 4

Avg. total infections (sd) 0.35 (0.32) 0.66 (0.4)

Avg. peak infections (sd) 0.1 (0.09) 0.33 (0.2)

Avg. duration (sd) 8.7 (7.2) 6.25 (3.8)

Table 2  Pearson correlations of the true spreading capability of nodes with the different measures 
in the Facebook network

Total infection Peak infection Duration

Degree 0.68 0.63 0.68

k-shell 0.68 0.8 0.73

global_cc 0.7 0.64 0.7

local_cc 0.2 0.17 0.19

1  http://​www.​socio​patte​rns.​org/​datas​ets/​sfhh-​confe​rence-​data-​set/.

http://www.sociopatterns.org/datasets/sfhh-conference-data-set/
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“The imprecision function” section  was calculated at different values for p (i.e. the top 
fraction of nodes according to the measures and true spreading capability).

Here, the results for the two real-world networks are mixed concerning the identifi-
cation of top spreaders in the two networks (see Fig. 3 for the total number of infected 
nodes and Fig. 4 for the peak infection). For total infection (see Fig. 3), mean imprecision 
values across all p values are 0.02 for degree, 0.02 for k-Shell, 0.04 for global_cc and 0.02 
for local_cc for the Facebook network, while for the SFHH network they are 0.06 for 
degree, 0.09 for k-Shell, 0.02 for global_cc and 0.02 for local_cc . For peak infection (see 
Fig. 4), mean imprecision values across all p values are 0.06 for degree, 0.07 for k-Shell, 
0.08 for global_cc and 0.06 for local_cc for Facebook, while for SFHH, they are 0.06 for 
degree, 0.09 for k-Shell, 0.02 for global_cc and 0.02 for local_cc . Thus, judging from the 
mean imprecision values alone, no clear picture regarding our local and global commu-
nity centrality measures emerges, although they appear to be comparable to the other 
measures in identifying top spreaders. Contrary to the findings by Kitsak et al. (2010), 
the k-Shell index is not superior to the degree and other measures for small values of the 
top fraction of spreaders p in our analysed networks. In the Facebook network, however, 
the differences between the measures are marginal in this regime and the k-Shell index 
appears to be superior for p > 0.28 . This can be attributed to the smaller variance of 
the spreading capability of nodes in the Facebook network (see Table 2). Furthermore, 
in the Facebook network there are only 75 out of 4039 nodes which have a k-Shell index 

Table 3  Pearson correlations of the true spreading capability of nodes with the different measures 
in the SFHH contact network

Total infection Peak infection Duration

Degree 0.42 0.42 0.4

k-shell 0.36 0.37 0.34

global_cc 0.63 0.63 0.61

local_cc 0.51 0.51 0.49

Fig. 3  Imprecision of identifying the top p fraction of spreaders by different measures over growing p with 
regard to the total infection
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smaller than 2, and thus, a large periphery with many star-like structures (i.e., one high 
degree node is connected to many nodes with low degrees) is not present in the network 
so that the degree of a node is a good proxy for spreading capability. In contrast to that, 
in the SFHH network, both the community centrality on the global ( global_cc ) as well as 
the local level ( local_cc ) clearly better identify the top spreaders compared to the degree 
or k-Shell index of nodes. It can be seen in Figs. 3 and 4 that both measures consistently 
show smaller imprecision values for the majority of p-values and hence identify influ-
ential spreaders with more precision. Since this network represents a real-world con-
tact network at an event, more nodes emerge who connect different densely connected 
regions of the network if they move from one group to another.

To additionally analyse how the local_cc and global_cc relate to each other, we gener-
ated a scatterplot which can be seen in Fig. 5. The plot shows the local and global com-
munity centrality for each node in the Facebook network. As one can see, the measures 
correspond to each other, especially for smaller values, confirming our intuition that the 
non-overlapping communities found in the neighbourhood network of nodes correlates 
with the number of overlapping link communities in which they occur.

Generated networks

From the previous section it becomes clear that measures of identifying top spreaders 
need a differentiated consideration in relation to properties of the underlying network. 
To this end, we generated 8 networks of 1000 nodes according to different configura-
tions of the Forest-Fire Model (Leskovec et al. 2007), as it creates networks with typical 
properties of real-world networks such as heavy-tailed degree distributions and com-
munity structure.

The model was configured in the following manner: First a forward burning probability 
pfb has to be specified. The generator adds one node at a time and it randomly connects 
to one of the already exiting nodes. For each node x that gained a new edge, a random 
number r is sampled from a geometric distribution with mean pfb/(1− pfb) . The new 

Fig. 4  Imprecision of identifying the top p fraction of spreaders by different measures over growing p with 
regard to the peak infection
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node then connects to r neighbours of x. The procedure continues for each newly estab-
lished connection until termination. For each of such new forward burning connection, a 
new triangle emerges. Consequently, forward burning creates densely connected regions 
in the network. Since pfb is chosen typically small, forward burning succeeds only for 
a small fraction of the neighbours of x and can propagate in different network regions 
that are connected by x. In this way, pervasively and nested communities emerge in a 
natural way, which makes this model particularly suited for our analysis. Furthermore, it 
is known that the Forest Fire model inherently models preferential attachments and cre-
ates communities having properties that can be observed in many real-world networks 
(Leskovec et al. 2009). Depending on the neighbourhood of the node x burning of only 
a few steps creates small and well separated communities while burning with a higher 
success rate creates large communities that merge with others eventually forming the 
network core.

We generated networks with a forward-burning probability 
p1fb = 0.05, p2fb = 0.1, p3fb = 0.15, . . . , p8fb = 0.4 . The higher the forward burning probabil-
ity, the denser the networks. Moreover, the parameter controls the number of dense and 
overlapping communities in the network, namely smaller and more separated communi-
ties for small values of pfb , while for large values several communities merge into a giant 
component (Leskovec et al. 2007).

As can be seen in Fig. 6, the average infection rate of the nodes increases, as higher 
forward burning probabilities are chosen for the generation of the networks. This can on 
one hand be attributed to increasing density of the networks, but also to the number of 
emerging overlapping communities.

By plotting the imprecision function of the top p fraction of spreaders selected by 
the different measures for both total infection and peak infection (see Fig.  7), one 
can see that the imprecision generally decreases for networks generated with grow-
ing forward burning probability. This can clearly attributed to the fact that with large 

Fig. 5  Scatterplot of the z-standardised values of the local and global community centrality for each node. 
Values deviating > 3 SDs from the mean were excluded from plotting
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values for pfb the networks are denser and several communities merge into a giant 
component during network evolution as described above. In such networks, almost 
every node is a good spreader and all measures perform similar. Across all p values, 
mean imprecision values are 0.14 for degree, 0.17 for k-Shell, .15 for global_cc and .13 
for local_cc . However, for networks created with smaller forward burning probability 
pfb ≤ 0.2 larger differences in the imprecision can be observed (0.26 for degree, 0.31 
for k-Shell, 0.26 for global_cc and 0.24 for local_cc ) showing that the local and global 
community centrality are slightly superior to the degree and definitely to the k-shell 
index for identifying good spreaders in such networks. For those generated with 
forward probability pfb > 0.2 however, differences between the measures become 

Fig. 6  Average infection and gini coefficient for the two infection measures (peak infection and total 
infection)

Fig. 7  Imprecision of estimating the infection of the p top nodes. Values on the x-axis correspond to the pfb 
value used to generate our 8 networks
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marginal. This is most probably due to the fact that these networks are quite densely 
connected and consequently, every node has good spreading capability.

To exemplify this, Fig.  6 shows the average infection rate for each of the generated 
networks, along with the normalised Gini coefficient (Dorfman 1979), which was calcu-
lated for the spreading capability of nodes (measured by total and peak infection). The 
normalised Gini coefficient measures the skewness of a distribution (or statistical dis-
persion). It was originally developed for measuring the wealth inequality of a popula-
tion. It is 1 if one person owns all and 0 if the wealth status is uniformly distributed over 
a population. The same can also be applied for the total number of infections for a SIR 
spreading process started at particular nodes. It can be seen that nodes with significantly 
higher spreading capability compared the the majority only emerge for lower values of 
pfb , which explains the little deviation between influence measures in networks gener-
ated with pfb > 0.2 , while for the other networks, almost all nodes are good spreaders.

Summary and conclusions
In this paper, we intended to complement recent findings (Krukowski and Hecking 
2021) regarding spreading processes within complex networks and the immunisation 
of nodes using topological features, specifically the community structure. In doing so, 
we approach two goals: Firstly, extend our understanding of our recently introduced 
measure of community centrality ( global_cc ), and secondly, develop a new measure to 
predict the efficiency of the spreading process which can be used without knowledge of 
the global network structure ( local_cc ). While for global_cc , the community centrality 
is calculated using link clustering (Ahn et al. 2010; Krukowski and Hecking 2021), for 
the local_cc , an induced subgraph for every node of the network is created (i.e., ego-
network), which is then clustered using the Louvain-method (Blondel et al. 2008). The 
assumption is that if the neighbourhood of a node x can be clustered into several densely 
connected sub-communities, this is an indicator that x connects different social cycles. 
From the resulting number of communities, its local community centrality is assigned. 
We showed that this assumption is justifiable by considering the correlation between the 
local and global community centrality. To approach the goals of this paper, we exam-
ined both measures in relation to already established measures used to identify influ-
ential spreaders (degree, k-Shell). Generally, our results confirm the comparability of 
the global_cc measure to the other measures in predicting a node’s spreading capability. 
The same applies to the newly introduced local_cc measure, which even performs bet-
ter than the global_cc in both our examined real-world networks as well as artificially 
generated ones. The calculated correlation coefficients show a comparable correlation 
for all of the examined measures with the spreading capability, except for the local_cc in 
the Facebook network. To extend this finding by objectively comparing the respective 
top-spreaders, we calculated the imprecision function for the p top spreaders selected by 
different measures. For the examined real-world networks, it shows that local measures 
appear to be suitable predictors for small values of p in the Facebook network, while they 
are generally more accurate in the SFHH network, irrespective of the p value (i.e., top % 
of spreaders). This applies to both peak infection and total infection. However, for bigger 
values of p (top fraction of spreaders selected by a measure) in the Facebook network, 
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the k-Shell index outperforms the other measures, although this might be attributable to 
the absence of star-like structures and real-world properties.

To increase external validity, we additionally analysed 8 artificially generated net-
works, with the generation parameter pfb , which leads to more community-structure 
and heavy-tailed degree distributions as it increases. Here, along with decreasing impre-
cision for higher pfb values (i.e., more community structure), it shows that the local_cc 
even outperforms the global_cc - for nearly all of the 8 generated networks. In conclu-
sion, the evaluations showed two things. Firstly, they deepened our understanding 
regarding topological features and their influence on spreading processes by showing 
that the global_cc measure is comparable to the others in our examined real-world net-
works. As such, it provides further evidence for the influence of community structure 
on spreading processes, and it confirms the importance community overlaps for spread-
ing processes: Nodes who are in such overlaps not only appear to be more likely in the 
vicinity of hubs (Ghalmane et  al. 2020), they might be well connected to other nodes 
in the sub-community (Yang and Leskovec 2012), allowing for an efficient spreading to 
other parts of the network. Our results add evidence to this. Secondly, they show that 
for a good approximation, knowledge of the global network structure is not necessar-
ily needed. Instead, using the global_cc measure, spreading capability can be equally 
well predicted. This confirms related research on this topic, which showed the effective-
ness of using local immunisation strategies that do not rely on global network structure 
(Kumar et al. 2018; Taghavian et al. 2017). It also shows that local information on the 
direct neighbourhood of nodes corresponds to aspects of the global community struc-
ture of networks (see Kudelka et al. 2019). In addition to that, as opposed to other com-
mon local immunisation strategies, our measure does not need any pre-calculated or 
ground-truth knowledge of the community structure, and instead infers such informa-
tion using local information only, making it computationally more efficient as well as 
more applicable to real-world scenarios.

The introduction of such a measure is important: While findings regarding topologi-
cal features and their relation to spreading efficiency are of high theoretical relevance, 
they lose practical relevance in real-world settings where knowledge of the global net-
work structure is rarely given. Accordingly, topological features such as the k-Shell 
index, modularity or global community centrality offer little inferential value for indi-
viduals who want to assess their spreading capability but have knowledge about their 
immediate local network only. Yet especially in  situations like the current COVID-19 
crisis, such local approximations of the global spreading capability of nodes could prove 
highly useful in personalised risk management (e.g. in contact tracing apps) for prevent-
ing infections.

Limitations and future works
The presented study has certain limitations that need to be considered in follow-up 
works. The results on the Facebook and SFHH networks presented in  the “Real-world 
networks” section compared to the evaluation on generated networks in  the “Gener-
ated networks” section give good indications under which conditions each measure for 
identifying top spreaders is most appropriate. Although the SFHH network represents 
an epidemiologically relevant network, more experiments on additional networks from 
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different domains and with different topologies and sizes are necessary to further consol-
idate under which conditions each measure is most appropriate. In this regard, making 
use of voluntary data donations about real-world contacts as they become increasingly 
available constitute a promising direction. For the evaluation on artificially generated 
networks, in future works we aim to develop and use new models that allow for a better 
control for the emergence of overlapping community structures than the used forest-
fire model, e.g., the LFR (Lancichinetti–Fortunato–Radicchi) model (Lancichinetti et al. 
2008). This would allow to investigate the proposed methods in more detail.
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