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Introduction
The topic of graph representation learning and its impact on related analysis tasks in 
network data has attracted great attention over the past few years, leading to one of the 
fastest growing subfields of research in deep learning. Graph Neural Networks (GNNs) 
are powerful deep learning tools that have nowadays reached state-of-the-art perfor-
mances in a plethora of different tasks in graph-structured data, such as node classifi-
cation, link prediction, community detection and graph classification (Xu et  al. 2019). 
One of the main challenges addressed by these methods is to redefine basic deep learn-
ing operations, such as convolution, on structures like graph networks, where nodes 
may have neighborhoods that are unordered and of varying size (Bronstein et al. 2017). 
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The graph convolutional network (GCN) model proposed by Kipf and Welling (2017), 
where convolution on graphs is carried out by aggregating the values of each node’s fea-
tures along with its neighbors’ features, paved the way for the development of further 
methods based on GCNs, specifically for end-to-end learning tasks or focusing on the 
low-dimensional embedding generation; in the latter case, for instance, the graph auto-
encoder (GAE) model (Kipf and Welling 2016) is one of the earliest approaches for unsu-
pervised learning, clustering and link prediction on graphs based on GCNs. Another 
important advance in deep learning, namely the attention mechanism, has also inspired 
several studies that apply it to graph-structured data. The graph attention network 
model (GAT) by Velickovic et al. (2018) exploits a masked self-attention mechanism in 
order to learn weights between each couple of connected nodes, where self-attention 
allows for discovering the most representative parts of the input. It should be noted that 
the above methods work on simple networks only, i.e., networks modeling a single type 
of relation for a homogeneous set of nodes. Due to the growing interest for modeling 
and mining multilayer networks (Kivelä et  al. 2014) as well as for developing network 
embedding models for attributed or feature-rich networks (Gaito et  al. 2021; Interdo-
nato et al. 2019), in the last few years a significant effort has been put in studying repre-
sentation learning models and techniques specifically conceived for multilayer networks 
with associated attribute information at node level. Nevertheless, representation learn-
ing becomes even more challenging for multilayer networks because of the presence of 
intra-layer and inter-layer relations, different layer characteristics, as well as node fea-
tures. In particular, these approaches must be able to obtain new latent node represen-
tations based on intra- and inter-layer dependencies. For example, in a cross-platform 
multilayer network one might want to predict a user’s gender based on the relationships 
and properties that users and relating contacts have on each platform.

A further source of complexity also relates to the partial knowledge that we may have 
about the attributes associated with the nodes in one or multiple layers of the multilayer 
network in input. Moreover, for the purpose of a classification or prediction task, it is 
often the case in a real scenario that the labels for a given target concept (i.e., class) are 
available for few nodes only.

The aim of this work is to revise main GNN approaches to address both representation 
learning and prediction problems in a multilayer network. Our focus is on how to model 
properties of the multilayer network topology and of the available node attributes, so 
to learn an effective representation of the node features within and across the multiple 
layers of the input network. Furthermore, the aim is also to exploit the learned represen-
tations to predict the class labels of the entities (or actors) in the network. A key require-
ment in our proposed approach is also its flexibility to multilayer networks characterized 
not only by arbitrary node-coverage and number of layers, but also by the presence of 
inter-layer relations that are not constrained to link node instances of the same entity 
over the layers.

We summarize our contributions as follows: 

1. To cope with partial knowledge on attributes as well as class labels at node-level, 
which is usually encountered in real scenarios, we address the end-to-end learning 
problem of embedding and classification for the entities in a multilayer attributed 
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network following a transductive semi-supervised learning approach. In this context, 
class labels are known at training time only for a relatively small amount of nodes in 
the multilayer network, while all available structural information and node attributes 
can be exploited for learning, and the goal is to predict the labels of the unlabeled 
nodes.

2. We propose a representation learning and node classification framework based on 
GNN models and designed for arbitrary multilayer attributed networks. In accord 
with the significant trend in literature whereby graph convolutional and attention-
based approaches are by far the most widely used, the core GNN component of our 
framework is instantiated both as GCN and GAT .

3. Unlike existing GNN approaches for multiplex or multirelational graphs, we propose 
to aggregate topological neighborhood information from different layers directly into 
the propagation rule of the GNN component, i.e., during its forward learning phase, 
in order to make the embedding of an entity in a particular layer depending on both 
its neighbors in that layer (dubbed within-layer neighborhood) and on its neighbors 
located in other layers where the entity occurs (referred to as outside-layer neighbor-
hood). Therefore, by K sequential applications of our multilayer designed GNN com-
ponents, the K-hop within-layer and outside-layer neighborhood structural informa-
tion for each entity is incorporated in the embedding process.

4. Our designed GNN components in the proposed framework are able to incorporate 
external information associated with the multilayer network, in the form of attrib-
utes that can be available at entity-level or at node-level for each particular layer of 
the input network.

5. Experimental evidence from widely used multiplex networks and from a real-world 
attributed multilayer network dataset has shown that both the GAT  and the GCN 
instances of our framework represent effective and efficient solutions to the prob-
lem of entity classification in multilayer attributed networks. Our methods were also 
compared with two recently proposed methods for multirelational networks based 
on a GAT model, named GrAMME-SG and GrAMME-Fusion (Shanthamallu et al. 
2020): our methods are able to achieve accuracy as good as or better than the com-
petitors (up to 13% of accuracy improvement), while outperforming them in terms 
of efficiency (with a training time which is two orders of magnitude lower than 
GrAMME methods in most cases).

Background
In this section we provide background notions on deep learning approaches based on 
Graph Neural Networks (GNNs). For a better comprehension, we first introduce some 
preliminary notations.

Preliminary notations. We are given a graph G = (V ,E) , where V is the set of nodes, 
with |V | = n , and E is the set of edges. Besides the adjacency matrix A that represents 
the graph structure, a further matrix is provided in input, X , which stores the feature 
descriptions of the nodes, i.e., each node vi is provided with a vector xi ∈ R

f  , where f is 
the number of input features. The general goal for GNNs is to learn a function that takes 
in input the above matrices and yields an output feature representation of the nodes 
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Z = [z1, . . . , zn]
T , where zi ∈ R

d denotes the embedding or output feature vector for 
node vi ∈ V  and d is the size of the embedding space. Every GNN layer can be modeled 
as a non-linear function H(k+1) = g(H(k),A) , where k is an index for a neural network 
layer, H(0) = X and H(K ) = Z , with K total number of neural network layers. Table  1 
summarizes the main notations that will be used throughout this paper.

Deep graph learning. Deep learning frameworks such as convolutional neural networks 
(CNNs) (LeCun and Bengio 1995), recurrent neural networks (RNNs) (Hochreiter and 
Schmidhuber 1997) and autoencoders (AEs) (Vincent et al. 2010) have been extremely 
successful in several machine learning tasks and for a variety of domains, including 
grid-structured data (e.g., images), sequences, and text data (LeCun et al. 2015). How-
ever, they cannot be straightforwardly applied to graph-structured data as well because 
several operations (e.g., convolution) need to be revised to be well suited for such type 
of data. Indeed, graph-structured data show complexities at different and more levels 
than other types of data, which include the lack of natural orderings of the nodes and/or 
edges, variability in the size and topology of a node’s neighborhood, and the opportunity 
for modeling different types of node relations (Wu et al. 2021).

Table 1 Summary of notations and their description

Notations Description

G A simple (i.e., monoplex) network graph

V, E Set of nodes and set of edges in G

GL A multilayer network graph

V Set of entities in GL
L, ℓ, Ll Set of layers, number of layers, l-th layer of GL
VL , EL Set of nodes and set of edges in GL
i Index of node vi in G, resp. entity vi in GL
Ŵ(i) Neighborhood of node vi in G

Ŵ(i, l) Within-layer neighborhood of vi in layer Ll of GL
�(i, l) Outside-layer neighborhood of vi in layers of GL different from Ll
X,Xl Attribute (input feature) matrix in G, resp. in the l-th layer of GL
xi , x(i,l) Attribute (input feature) vector for node vi in G, resp. entity vi in layer Ll of GL
Z,Zl Embedding (output feature) matrix in G, resp. in the l-th layer of GL
zi Embedding (output feature) vector for node vi

Z̃ Embedding (output feature) matrix for the entities in GL

hi Hidden-layer vector for node vi

h
(k)
(i,l)

Hidden-layer vector at the k-th layer of the GNN for entity vi in layer Ll of GL

f Number of attributes (input features)

d Size of the embedding

K, k Number of GNN layers, index of layer

Q, q Number of attention heads, index of attention head

W,W(k) Weight matrix of a generic, resp. k-th, layer of a GNN

A,Al Adjacency matrix in G, resp. in the l-th layer of GL
A
sup Supra-adjacency matrix in GL

Ã, Ãsup Adjacency matrix, resp. supra-adjacency matrix, with self-loops

σ(·) Activation function

eij Attention coefficient for edge between nodes vi and vj
αij Normalized attention coefficient for edge between nodes vi and vj
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In recent years, the trend of using deep learning techniques to analyze graphs has 
contributed to the birth of connectionist models called Graph Neural Networks 
(GNNs), which aim to extend deep learning on graph-structured data, exploiting 
its dependencies through a message passing scheme between the nodes (Zhou et al. 
2019). In contrast to random walk approaches, which consider only nodes co-occur-
ring in a random walk and optimize the embeddings to encode random walk statistics 
(Grover and Leskovec 2016; Perozzi et al. 2014), GNN carries out a scheme for which 
each node iteratively combines both the neighbors and its own features to obtain a 
new representation. After k iterations (i.e., k-th layer of the GNN), node represen-
tations have a non-linear relation with their k-hop away neighborhood information. 
Interestingly, the neighborhood aggregation scheme is strictly connected to a random 
walk process: in fact, as studied in Xu et al. (2018), in a K-layer GNN, the influence 
distribution of node vi (i.e., how much a change in the initial features of any node vj 
affects the final embedding of vi ) is equivalent, in expectation, to a random walk of 
length K starting from node vi , therefore the influence of vi by vj is proportional to 
the probability of visiting node vj in a random walk of length K starting from node 
vi . Moreover, it should be noted that using a high number of iterations (i.e., K) could 
lead to an over-smoothing problem, i.e., representations of nodes could become very 
similar to one another after several iterations, as this would be an effect of an overly 
expanded range of the node influences.

GNNs are end-to-end trainable, i.e., they can be trained in a supervised or unsu-
pervised manner depending on the task to be performed, and they are designed to 
compute the new embedding state using both structural information of the graph and 
properties of nodes and edges, through an iterative neighborhood properties aggre-
gation scheme. This final embedding state can be used to produce an output such as 
the node labels, or even to obtain the representation of an entire graph through pool-
ing, for example, by summing the representation vectors of all nodes in the graph (Xu 
et al. 2019).

Two of the most successful approaches are Graph Convolutional Networks (GCN) 
(Kipf and Welling 2016) and Graph Attention Networks (GAT) (Velickovic et  al. 
2018), both convolutional-style GNNs, but with different assumptions regarding the 
contribution of the neighborhood. More specifically, the former model adopts a spec-
tral approach in which the convolution is defined by signal theory filters, while GAT 
aims to incorporate the attention mechanism in the propagation step, learning the 
importance of the neighborhood of each node through a masked self-attention strat-
egy. In the following, we briefly review the above two approaches.

Graph convolutional network. A GCN is the counterpart of a convolutional neural 
network model for graph-structured data that uses a graph spectral approach to con-
volution. Specifically, it operates through a first-order spectral approximation of the 
graph by restricting the filters (limiting the order of the Chebyshev polynomial) to 
operate in the neighborhood at one step away from each node.

Equation (1) shows the propagation rule of a GCN layer, which is the building block 
of the model, as it aims to learn a function capable of generating new feature repre-
sentations for each node vi ∈ V  by propagating and transforming its own features and 
those of its neighbors:
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Above, Ŵ(i) denotes the set of neighbors of node i, σ(·) is a non-linear activation func-
tion (e.g., ReLU(·) = max(0, ·) ), W is a layer-specific trainable weight matrix, and 
D̃ii =

∑

j Ãij is the degree matrix derived from Ã = A + In , where A is the adjacency 
matrix of the input graph G, and In is the identity matrix of size n.

Note that self-loops are added to the graph, and the adjacency and degree matrices 
are built accordingly (this is known as renormalization trick), so that each node can also 
consider its own features, and potential numerical issues can be controlled; specifically, 
symmetric normalization is used because repeated applications of the propagation rule 
can lead to numerical instability and problems in the calculation of the gradient when 
used in the deep neural network.

GCN plays a central role in building many complex models of GNNs, which also 
includes unsupervised learning architectures such as the Graph Auto-Encoders (GAEs) 
(Kipf and Welling 2016; Zhou et  al. 2019). A GAE is a framework for unsupervised 
learning that leverages GCN to encode node information into low-dimensional vectors. 
Specifically, the encoder that calculates the embeddings consists of two GCN layers with 
a non-linear activation function, whereas the decoder to reconstruct the original adja-
cency matrix from node embeddings, is a simple inner product decoder. The model is 
hence trained by minimizing the similarity between the original adjacency matrix and 
the reconstructed one.

Graph attention network. Graph Attention Network (GAT) (Velickovic et al. 2018) is 
a graph neural network architecture that uses the attention mechanism to learn weights 
between connected nodes. In contrast to GCN, which uses predetermined weights for 
the neighbors of a node corresponding to the normalization coefficients described in 
Eq.  (1), GAT modifies the aggregation process of GCN by learning the strength of the 
connection between neighboring nodes through the attention mechanism (Wu et  al. 
2021).

The building block is a Graph Attention Layer (GAT layer) which generalizes the atten-
tion model on graph structured data and is agnostic of the particular choice of attention 
mechanism. Stacking GAT layers several times allows one to develop deep neural net-
work architectures.

In order to learn the weighting factor of each node’s features, attention coeffi-
cients are computed based on the features of the connected nodes using a function 
a : Rd × R

d �→ R . Equation (2) indicates the importance of node j’s features to node i:

The graph structure is taken into account as for each node vi , its neighborhood is con-
sidered in performing a masked attention mechanism. In Velickovic et  al. (2018) the 
attention mechanism is a feed-forward neural network, which utilizes the non-linear 
activation function LeakyReLU: instead of outputting a 0 for all negative values as ReLU 
does, LeakyReLU outputs a value of −βx for any input x that is negative (where β is an 
hyperparameter that determines the amount of leak, usually set between 0.01 and 0.2), 
whereas for positive values of x, it simply outputs x. By allowing non-zero gradient for 

(1)zi = σ

( ∑

j∈Ŵ(i)∪{i}

1
√

D̃iiD̃jj

hjW
)

.

(2)eij = a(hi,hj).
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negative values, LeakyReLU overcomes the issue of dying neurons that affects the ReLU 
function.

Then, the attention coefficients are normalized through Softmax function as in Eq. (3), 
so that the attention weights sum up to 1 over all neighbors of a node, eventually obtain-
ing the normalized attention coefficients α:

As next step, each node updates its hidden state by weighting the features of the neigh-
borhood nodes with the attention coefficients according to Eq. (4):

Note that the learnable weight matrix W is pre-applied to every node in order to trans-
form the input features into higher-level features.

To stabilize the learning process of self-attention, the mechanism has been extended 
similarly to Vaswani et al. (2017) by employing multi-head attention. The operations of 
the layer are independently replicated Q times (with different parameters) and outputs 
are feature-wise aggregated. Equation  (5) shows the computation of a linear combina-
tion of the features by concatenating the Q attention heads, where α(q)

ij  is normalized 
attention coefficient computed by the q-th attention mechanism:

where ‖ denotes the concatenation operator. For the combination of the Q independ-
ent heads, Velickovic et al. (2018) suggests to concatenate them in the hidden layers and 
to average them in the final layer; in the latter case, the application of the σ function is 
delayed.

Limitations of GNNs. Although GNNs can exploit node attributes and topology of the 
input graph, their learning power for a node classification task could be limited when 
there is a misaligment between features, graph and class label. While combining graph 
and feature information generally leads to an improvement in classification performance, 
the study in Qian et al. (2021) has shown the importance of graph and feature alignment 
in GNN models such as GCN, highlighting that when features and graph subspaces 
associated with the data are not aligned, the GCN approach can exhibit a performance 
degradation, being even outperformed by an MLP model learned from data features 
while discarding the network topology. More specifically, if the node connections in the 
network are not consistent with the associated node-features (e.g., two adjacent nodes 
having significantly different features), then the node-neighborhood aggregation scheme 
could not be beneficial. As a matter of fact, typical schemes of neighborhood aggrega-
tion in GNNs inherently assume the homophily principle, i.e., connected nodes have 
the same class label or similar features. Another study proposed in Zhu et  al. (2020) 
has shown that learning on networks with low homophily (i.e., connected nodes have 
different class labels) is a challenging task for GNNs, which could perform worse than 

(3)αij =
exp(LeakyReLU(eij))

∑

t∈Ŵ(i) exp(LeakyReLU(eit))
.

(4)zi = σ

( ∑

j∈Ŵ(i)

αijWhj

)

.

(5)zi = ||
q=1...Q

σ

( ∑

j∈Ŵ(i)

α
(q)
ij W(q)hj

)

,
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MLP. However, as reported in other studies, such as Ma et al. (2021), GCN models can 
still achieve good performance on low homophily networks, provided that nodes with 
the same class have similar neighborhoods, and different classes have distinguishable 
patterns.

Although investigating the aforementioned limitations is not a focus of this work, we 
shall take into account them in our experimental evaluation. In particular, we measure 
the homophily score of evaluation networks (cf. "Data" section), and we investigate on 
the impact of not using real-world features for our evaluation networks, where class 
assignment is based exclusively on graph topology (cf. "Evaluation with competing 
methods" section).

Related work
In order to contextualize our proposal with respect to existing literature, we here discuss 
some of the recently proposed GNN methodologies specifically designed for multilayer 
networks.

One of the first frameworks that considers inter-layer edges for embedded rep-
resentation learning is MANE (Li et  al. 2018). However, the optimization problem of 
node embedding solved in MANE does not account for node attributes, and its overall 
approach is not end-to-end. By contrast, approaches that aim to extend deep-learning 
based methods for single-layer graphs such as GCN and GAT are well-suited for mod-
eling both within- and inter-layer dependencies to generate embeddings for nodes that 
are associated with input features, and in addition they have the advantage of being 
designed to learn node embedding and a classifier simultaneously via an end-to-end 
approach. Indeed, node classification approaches for multilayer networks have been 
recently proposed.

Ghorbani et al. (2019) proposed MGCN to extend the GCN model to multilayer net-
works. The method builds a GCN for each layer of the network, by utilizing only links 
between nodes of the same layer, while discarding the inter-layer relations. To consider 
inter-layer dependencies, the method uses an unsupervised term in the loss function, 
which calculates the ability of reconstructing the network through the inner product 
of the embeddings. Our proposed method shares with MGCN the design for solving 
a semi-supervised classification problem where label information is smoothed over 
the graph structure via regularization, according to Kipf and Welling (2017). However, 
unlike MGCN, our proposed ML-GCN method is able to incorporate the inter-layer 
edges within the GCN propagation rules, as well as in the loss function.

While MGCN is an extension of GCN, the GrAMME method in Shanthamallu et al. 
(2020) extends GAT for multilayer networks. The peculiarity of this approach is the 
way the Q attention heads are combined: instead of concatenating or averaging them 
as suggested in Velickovic et al. (2018), in GrAMME a mechanism called fusion-head is 
applied, which consists in a weighted combination of the attention heads with learnable 
parameters. Specifically, in Shanthamallu et  al. (2020) two approaches are developed, 
namely GrAMME-SG and GrAMME-Fusion. The former explicitly builds the inter-layer 
edges between each node in a layer and its counterpart (referred to as pillar edges) in a 
different layer, and applies a series of GAT layers with the fusion-head method, exploit-
ing the inter-layer dependencies. The GrAMME-Fusion approach deals with inter-layer 
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dependencies in a different way, as it builds layer-wise attention models and introduces 
an additional layer that exploits inter-layer dependencies using only fusion heads. In the 
case of nodes with missing attributes, both methods employ random initialization (using 
a standard normal distribution). The empirical evaluation reported by the authors with 
several multiplex networks showed that the GrAMME-Fusion method performs better 
than GrAMME-SG.

Our proposed GAT extension to multilayer networks shares the multi-head attention 
mechanism with the GrAMME methods, although our approach is closer to GAT as it 
does not need the fusion-head strategy to integrate the inter-layer dependencies. More 
importantly, our approach involves both within-layer and outside-layer neighborhoods 
when computing the embedding of an entity in each layer, while GrAMME-SG involves 
only pillar edges (in addition to the local neighborhood) in the propagation rule, and 
GrAMME-Fusion integrates the inter-layer dependencies using only fusion heads. Note 
that, given its declared superiority with respect to convolutional approaches, in our 
experimental evaluation, we have referred to the GrAMME methods as main competi-
tors of our proposed methods.

Proposed framework
Given a set V of N entities (e.g., users) and a set L = {L1, · · · , Lℓ} of layers (e.g., user rela-
tional contexts), with |L| = ℓ ≥ 2 , we denote a multilayer network with GL = �VL,EL,V , 
L〉 , where VL ⊆ V × L is the set of entity-layer pairings or nodes (i.e., to denote which 
users are present in which layers), and EL ⊆ VL × VL is the set of undirected edges 
between nodes within and across layers.1

We represent a multilayer network by a set of adjacency matrices A = {A1, · · · ,Aℓ} , 
with Al ∈ R

nl×nl ( l = 1..ℓ ), where nl = |Vl | . Entities are assumed to be associated with 
features stored in layer-specific matrices X = {X1, · · · ,Xℓ} , with Xl ∈ R

nl×fl and fl the 
number of node features in the l-th layer. We will also use symbol x(i,l) to denote the fea-
ture vector of entity vi in layer Ll.

Note that in our multilayer network model there is neither prior assumption about the 
set of valid couplings between the layers, nor about the structure of the layers. Indeed 
our framework is theoretically able to consider networks with different coupling con-
straints between the layers, e.g. temporal networks or cross-platform networks.

It is also worth noticing that the sizes fl may differ in principle, however they all must 
be bounded with respect to a maximum size, say f; truncation, resp. zero-padding, apply 
for those layers having a greater, resp. lower, number of features than f. Moreover, to 
avoid numerical scaling issues, all feature matrices are assumed to be row-normalized 
within a common interval of values. Furthermore, in case no node attributes are avail-
able for GL , each layer-specific feature matrix is assumed to be the identity matrix 
Il ∈ R

nl×nl . Also, for partially complete feature matrices, value imputation and matrix 
completion methods can certainly be used, however this goes beyond the scope of this 
work.

1 In this work we will use the term layer to denote either a constituent of a multilayer network or a constituent of the 
neural network model, while the exact meaning is assumed to be clear as within the particular context where the term is 
used.
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Node embedding in multilayer network. Given a multilayer network GL = �VL,EL,V , 
L〉 , we define the multilayer network embedding as the problem of learning low-
dimensional latent representations for each node (i.e., entity-layer pair), that is, learn-
ing a function g : VL �→ R

d that maps each node into a d-dimensional space, with 
d ≪ N  , so that nodes that are similar in GL have embeddings close to each other.

The above definition resembles the classic one of node embeddings, with adaptation 
to multilayer networks. Moreover, to model similarity of nodes in the multilayer net-
work, we follow the general idea adopted in representation learning on graphs, that 
is, node embeddings are generated based on neighborhoods, upon the intuition that 
nodes aggregate information from their neighbors by using a GNN.

However, a major question becomes how to consider a node’s neighborhood in the 
multilayer network to properly generate the embeddings. In this regard, we notice 
that a major requirement for our proposed framework is to account for node links 
that are internal as well as external to a particular layer where the nodes occur. To 
this purpose, our key idea is to incorporate in the GNN propagation rules aggrega-
tion over node features—both topological and exogenous to the network, i.e., node 
attributes—that are computed not only w.r.t. the node’s neighbors in the same layer 
but also w.r.t. the node’s neighbors in the other layers.

In this regard, we define two functions, denoted as Ŵ and � , that for each pair entity-
layer, i.e., node, return the neighborhood of the entity that is internal and external to 
that layer, respectively. Formally, given an entity vi in a layer Ll , we define the set of 
within-layer neighbors of vi in layer Ll as:

Similarly, we define the set of outside-layer neighbors of vi in layers different from Ll as:

Figure 1 shows an illustration of multilayer network that our framework is able to 
deal with: in fact, more generally than multiplex networks, inter-layer edges can be 

(6)Ŵ(i, l) = {(j, l) ∈ VL | ((j, l), (i, l)) ∈ EL}.

(7)�(i, l) = {(j,m) ∈ VL | ((j,m), (i, l)) ∈ EL,m �= l}.

Fig. 1 Example multilayer network handled by our framework, with color codes mapping nodes of the same 
entity: in addition to within-layer edges (solid thick lines), note the presence of both inter-layer pillar edges 
(dashed thin lines) and inter-layer edges connecting nodes of different entities (solid thin lines)
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formed to link not only nodes of the same entity but also nodes of different entities. 
Both types of inter-layer edges are indeed considered in our definition of outside-
layer neighbors (cf. Eq. 7).

Let us now consider the key constituents in our proposed GNN models, precisely a 
GCN model and a GAT model for multilayer networks. First, we denote with h(k)

(i,l) the 
hidden state at the k-th layer of the neural network for entity vi in layer Ll , and with 
z(i,l) = h

(K )

(i,l) the final embedding of entity vi in Ll , eventually used for a downstream 
task, such as entity classification. Using the message passing paradigm (Gilmer et al. 
2017), we abstract the aggregation scheme of our framework in Eq. (8):

where the φe function, named message function, is edge-wise defined to generate mes-
sages across the edges obtained by combining the edge properties xe , and the state of its 
two end-nodes, i.e., h(i,l) and h(j,m) ; φv , named update function, is a node-wise function 
useful to update the state of a node; 

⊕
 is the aggregation (or reduce) operator, which is 

usually summation, or alternatively a pooling operator or even a neural network (Wang 
et al. 2020). Note that in our formulation a node updates its state considering both intra-
layer and inter-layer dependencies within the aggregation stage, so that the embedding 
of each layer is related to the other layers. If the framework is instantiated based on a 
GAT approach, the message φe of each edge (i, l), (j, m) received by node vi corresponds 
to the normalized attention coefficient α(i,l),(j,m) multiplied by the hidden state of node vj.

Our contribution is to incorporate the above representation models into the propa-
gation rules of both GCN and GAT frameworks, in order to make them suitable for 
the multilayer network context. Our resulting methods are dubbed ML-GCN and 
ML-GAT , respectively.

ML-GCN propagation rules. Given a node vi in a layer Ll , the first propagation rule 
is defined as:

where h(0)
(i,l) = x(i,l) , σ(·) is the ReLU activation function, and W(0) is the initial weight 

matrix of shape (f,  d), shared across all nodes of the multilayer graph. Note that the 
degree matrix D̃ is built considering both inter-layer and intra-layer connections of 
nodes using the supra-adjacency matrix of the graph, which can be defined as:

where Al,m is an inter-layer adjacency matrix built upon the inter-layer connections 
between layer l and layer m (i.e., 1 if there exists an edge between (i, l) and (u, m) with 
l  = m , and 0 otherwise). Moreover, D̃ii =

∑

j=1 Ã
sup
ij  , where Ãsup is the supra-adjacency 

matrix with self-loops added.

(8)h
(k+1)
(i,l) = φv

(

h
(k)
(i,l),

⊕

(j,m)∈Ŵ(i,l)∪�(i,l)

φe(xe,h
(k)
(i,l),h

(k)
(j,m))

)

,

(9)h
(1)
(i,l) = σ




�

(j,m)∈Ŵ(i,l)∪�(i,l)

1
�

�Dii
�Djj

W(0)Th
(0)
(j,m)



,

(10)Asup =

{
Al ∈ A if diagonal block
Al,m otherwise (i.e., off-diagonal block)

,
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The above equation is then adapted to produce the propagation rule at the generic k-th 
layer of the GNN (with 1 ≤ k < K ):

Note that, for k = K − 1 , the above equation produces the output feature vector for 
entity vi in layer Ll . Also, the weight matrix W(k) shape is (d, d), for every k ≥ 1.

ML-GAT  propagation rules. Given a node vi in a layer Ll , the first propagation rule is 
defined as:

where α((i,l),(j,m)) is the normalized attention coefficient for any edge ((i, l), (j,m)) ∈ EL . 
Note that we integrate the attention mechanism both on intra-layer and inter-layer 
edges, so that our model can selectively integrate the information received from the 
inter-layer and intra-layer neighbors.

Similarly to the solution proposed for ML-GCN, the initial propagation rule equation 
is generalized for any k-th layer of the GNN (with 1 ≤ k < K  ). In addition, a mechanism 
of multi-head attention is used to stabilize the learning process of self-attention. There-
fore, given Q attention heads, we define two variants of the generic propagation rule, 
where either the output features of the heads are concatenated:

or the heads are averaged before applying the activation function:

Above, h(q,k)(j,m) denote the embedding of node (j, m) for the q-th head of the k-th layer of 
the neural network. Moreover, in our setting, we averaged the Q attention heads in order 
to save memory occupation; therefore we set σ as the exponential linear unit (ELU) acti-
vation function, i.e., for positive values of input b, the function simply outputs b, whereas 
if the input is negative, the output is exp(b)− 1.

Entity classification. As downstream task, we consider the problem of classifying 
the entities of a multilayer network graph in a transductive setting, i.e., class labels are 
only available for a small subset of entities, however the whole network graph contain-
ing both labeled and unlabeled data is used during the learning process, and the goal 
of the trained model is to predict the labels of the unlabeled entities. As previously dis-
cussed in "Introduction" section, this setting complies with the realistic assumption of 
lack of knowledge on a target concept corresponding to the class, for most of the nodes 
in a network. However, the transductive setting is also challenging as it requires that our 

(11)h
(k+1)
(i,l) = σ




�

(j,m)∈Ŵ(i,l)∪�(i,l)

1
�

�Dii
�Djj

W(k)Th
(k)
(j,m)



.

(12)h
(1)
(i,l) = σ




�

(j,m)∈Ŵ(i,l)∪�(i,l)

α(i,l),(j,m)W
(0)Th

(0)
(j,m)



,

(13)h
(k+1)
(i,l) =

�
�
�
�
q=1...Q

σ




�

(j,m)∈Ŵ(i,l)∪�(i,l)

α
(q)
(i,l),(j,m)

W(q,k)Th
(q,k)
(j,m)



,

(14)h
(k+1)
(i,l) = σ




1

Q

�

q=1...Q




�

(j,m)∈Ŵ(i,l)∪�(i,l)

α
(q)
(i,l),(j,m)

W(q,k)Th
(q,k)
(j,m)







.
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GNN-based learning framework must be able to learn representation not only of nodes 
with labels but also of nodes without labels. We define this type of (multiclass) classifica-
tion task with partial supervision, i.e., semi-supervised classification task, as follows:

Problem  1 (Entity classification in multilayer network) Given a multilayer network 
GL = �VL,EL,V , L〉 , and associated input feature matrix X  , let Y ∈ R

N×C denote the 
binary matrix storing the class labels assigned to each entity in V , where C is the number 
of a predetermined set of classes. Given a small subset of entities Vtrain ⊂ V that we refer 
to as training set, we denote as Ytrain ∈ R

|Vtrain|×C the corresponding class label matrix. 
The goal is to predict the label of the entities in V\Vtrain using both the multilayer graph 
structure based on the supra-adjacency matrix and the entity features stored in X  . That 
is, we want to obtain the probability distribution matrix Ŷ ∈ R

N×C so to derive 
Ŷ = arg max

c
Ŷ that assigns class labels to the entities in V\Vtrain.

In order to predict the class label for each entity v ∈ V , we combine the node embed-
dings obtained from each layer. Given Zl ∈ R

nl×d as the learned embeddings for layer Ll , 
we obtain the entity representation through the following cross-layer aggregation:

where Z̃ ∈ R
N×d is the final entity embedding matrix, and µ ∈ R

ℓ is a vector of non-
negative values that can be either pre-determined (e.g., uniform distribution, or any 
arbitrary user-provided distribution), or learned during the training through an optimi-
zation procedure. In our setting, we used the configuration with trainable parameters, as 
described in the following paragraph on parameter learning.

The last step is the application of a feed-forward neural network to the matrix Z̃ is pro-
vided in input to a feed-forward neural network, whose output is a matrix Ẑ ∈ R

N×C . 

(15)Z̃ =

ℓ∑

l=1

µlZl ,
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The final step consists in applying the row-wise softmax function onto Ẑ to yield the 
class prediction of an entity. Algorithm 1 sketches the pseudo-code of our classification 
framework, whereas Fig. 2 depicts an illustration of the framework.

Parameter learning. With the exception of the cross-layer parameters µ , which are 
initialized by a uniform distribution (i.e., µl =

1
ℓ
 , for all l=1 . . . ℓ ), all other parameters 

are initialized through Glorot (also known as Xavier) initialization (Glorot and Bengio 
2010); this initialization technique is widely used in deep learning tasks and has proven 
to be effective in several applications (Mishkin and Matas 2016). Particularly, the traina-
ble weight matrix W in ML-GAT  and ML-GCN is subjected to Glorot initialization with 
normal distribution and with uniform distribution, respectively. Moreover, in ML-GAT , 
each layer of the multilayer network is also parametrized with a weight vector Qa ∈ R

2d of 
the single-layer feed forward neural network used as the attention mechanism (accord-
ing to Velickovic et al. 2018).

All the above parameters, jointly with those of the neural network downstream of 
the cross-layer aggregation (cf. Eq.  15), are then updated during the training through 
an optimization strategy. That is, after the forward step of our learning framework, we 
calculate the loss function over all labeled examples Vtrain . Then the gradient of the loss 
with respect to all parameters is calculated, which are finally updated through the opti-
mization strategy (cf. "Experimental evaluation" section). We use the cross-entropy as 
supervised loss function shown in Eq. (16):

Note that, like Kipf and Welling (2017), we avoid explicit graph-based regularization 
in the loss function, while our GNN models are learned through the supra-adjacency 
matrix of the multilayer network that allow the models to learn representation for nodes 
instances of unlabeled entities.

In order to show the outcomes of the representation learning process, a two-dimen-
sional projection of the embeddings produced by the proposed approaches is reported in 
Fig. 3 (ML-GAT ) and Fig. 4 (ML-GCN). The representation is obtained via the t-distrib-
uted stochastic neighbor embedding (t-SNE) method, which is a widely used nonlinear 
dimensionality reduction technique for embedding high-dimensional data for visualiza-
tion in a low-dimensional space (van der Maaten and Hinton 2008). More specifically, 

(16)−
∑

v∈Vtrain

C∑

c=1

Yv,c log Ŷv,c.

Fig. 2 Illustration of our proposed framework for node embedding generation and entity classification in a 
multilayer network
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the plots show the embeddings produced by t-SNE on Z̃ for the training entities ( 25% 
of total entities), i.e., the entity representation obtained through the cross-layer aggre-
gation defined in Eq. (15). The embeddings refer to the Koumbia-2 network including 
its real-world node-attributes (cf. "Data" section); different colors in the figures corre-
spond to the two different node labels. Left side of the figures shows the embeddings 
obtained after one training epoch of t-SNE, while the right one shows the final embed-
dings obtained after 1000 training epochs, extracted downstream of the second (i.e., last) 
hidden layer. It is easy to see how the embedding is already significant after only one 
training epoch, with a relatively good separation between the two classes (slightly more 
evident for ML-GAT ). The embeddings get clearly better after 1000 training epochs, 
with an evident separation between the representations of entities belonging to the two 
classes.

Experimental evaluation
We evaluated our framework for semi-supervised entity classification tasks on several 
real-world multiplex and multilayer networks from different domains.

In the following we provide details on the evaluation network datasets, on the exper-
imental settings of our proposed methods, and on that of competitors (GrAMME-SG 
and GrAMME-Fusion (Shanthamallu et al. 2020)) and baselines (GCN and GAT ).

Data

We considered 9 network datasets, from which we derived a total of 19 networks for 
evaluation (plus their monoplex flattened versions). These datasets come from differ-
ent domains and present very different structural characteristics. Moreover, all datasets 
are publicly available and most of them have been previously exploited as benchmarks 
for a variety of network analysis tasks, including node classification and link prediction. 
This is a major criterion for our choice, since it allows comparison of our results with 
the ones reported in previous literature. Eight of such datasets are originally provided as 
multiplex networks, i.e., networks in which inter-layer connections are coupling edges 
only, connecting a node and its counterparts in other layers. These networks also do not 
provide attributes associated to the entities. Therefore, in order to stress the ability of 
our framework of dealing with generic multilayer attributed networks, we introduced 
the Koumbia network dataset (Interdonato et al. 2020), which comes with unconstrained 
inter-layer connections and real-world properties associated to the entities. In the fol-
lowing we briefly describe our evaluation network datasets.

Balance (Siegler 1976) models psychological experimental results on a set of individ-
uals. According to Shanthamallu et al. (2020), four attributes characterize the subjects 
(left weight, the left distance, the right weight, and the right distance). The classes cor-
respond to the balance scale of the subjects (tip to the right, tip to the left, or being 
balanced).

CKM-Social (Coleman et al. 1957) contains social information from physicians (enti-
ties) in four towns in Illinois, Peoria, Bloomington, Quincy and Galesburg. It consists 
of 3 directed layers generated from different sociometric matrices, where the cities are 
used to label the entities.



Page 16 of 36Zangari et al. Appl Netw Sci            (2021) 6:87 

Congress (Schlimmer 1987) models the results of bills obtained from the 1984 United 
States Congressional Voting Records Database. The network has 16 layers corresponding 
to votes, where for each layer two congressmen are linked if they voted the same. Each 
congressman is labeled as either democrat or republican.

DKPol (Magnani et al. 2021) (Dansk Politik) is a network with three types of online 
relations between Danish Members of the Parliament on Twitter. It comes with a ground 
truth corresponding to affiliations to 10 political parties, that we used as labels.

Leskovec-Ng (Chen and III 2016) is a 4-layer temporal collaboration network, which 
contains coauthors of Prof. Jure Leskovec or Prof. Andrew Ng over 20 years, partitioned 
into 4 different 5-year intervals. Entities are researchers, and on each layer there is an 
edge between two researchers if they co-authored at least one paper in the 5-year inter-
val. Each researcher is labeled as Leskovec’s collaborator or Ng’s collaborator.

Starwars2 is comprised of 6 layers, each corresponding to interactions between Star-
wars characters in the first 6 episodes of the saga. We manually labeled each character as 
male, female or droid and used this information as entity labels. Note that the resulting 
class distribution is very unbalanced as there are 76 males, 12 females and 4 droids.

Terrorist (Everton 2012) models interactions between 79 terrorists drawn from the 
Noordin’s Network dataset. Similarly to Liu et al. (2017), we built a 4-layer network from 
the following relation types: trust, communication, operational, business and financial 
ties. We derive two different types of entity labels: (i) 2-class labels corresponding to 
membership of an individual to the Noordin’s splinter group (member or non-member), 
and (ii) 3-class labels corresponding to the current state defined as the physical condi-
tion of the individual (dead, alive, jail). The two versions are dubbed Terrorist-Noordin 
and Terrorist-status, respectively.

Vickers (Vickers and Chan 1981) is a 3-layer directed multiplex network modeling the 
social relations between 29 seventh grade students in a school. We use the gender as 
entity labels; there are 12 boys and 17 girls.

Koumbia (Interdonato et al. 2020) is a multilayer network extracted from a Sentinel-23 
satellite image time series, centered on an agricultural landscape in the Koumbia area 
in Burkina Faso. In this dataset, entities represent segments of the satellite image, and 
classes correspond either to crop (i.e., segments containing pixels related to cultivated 
area) or no-crop (i.e., segments containing pixels related to uncultivated areas, such as 
forests) segments. The network is originally associated with inter-layer edges and real-
world attributes for the entities, corresponding to the segment statistics of the radiomet-
ric bands of the satellite images. We created the input feature matrix by concatenating 
the average values of ten different radiometric bands for 21 timestamps, obtaining a fea-
ture vector of size 210 for each entity. Fig. 5a displays the feature distribution obtained 
by linearizing the input feature matrix. Note that the geo2net framework4 presented in 
Interdonato et al. (2020) is designed to build a multilayer network with an arbitrary num-
ber of layers, which model the association of nodes to an arbitrary number of functional 
classes (e.g., temporal radiometric profiles) by producing fuzzy layer memberships using 

2 https:// github. com/ eveli nag/ StarW ars- social- netwo rk/ tree/ master/ netwo rks.
3 https:// senti nel. esa. int/ web/ senti nel/ missi ons/ senti nel-2.
4 https:// gitlab. irstea. fr/ raffa ele. gaeta no/ geo2n et.

https://github.com/evelinag/StarWars-social-network/tree/master/networks
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://gitlab.irstea.fr/raffaele.gaetano/geo2net
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the fuzzy c-means algorithm (Ross 2009). In our case study, we exploit this functionality 
in order to take into account versions of the network with a varying number of layers 
(i.e., 2, 5, 10, 15, 20). We denote each of these networks as Koumbia-l (e.g., Koumbia-5 
will denote the version with 5 layers). Figure 5 shows Koumbia-2 (b) and Koumbia-5 (c) 
graphs, whereas Table 4 reports detailed information about inter-layer edges. Since the 
competitors are specifically designed for multiplex networks, for a fair comparison with 
those methods we will also use a multiplex version of this dataset (i.e., obtained discard-
ing inter-layer connections other than coupling ones), named Koumbia-l-mpx.

Table  2 summarizes the structural properties of the all network datasets, plus the 
multiplex versions of Koumbia. For the latter, inter-layer edge information is reported 
in Table  4. Note that the graph homophily in Table  2 corresponds to the fraction of 
edges in a graph connecting nodes with the same class label (Zhu et al. 2020), formally 
|{(vi, vj) : (vi, vj) ∈ E ∧ yi = yj}|/|E|, with vi, vj ∈ V  and yi , yj class labels of vi , vj , respec-
tively. This statistic was calculated excluding the inter-layer edges, which otherwise 
would lead to biased homophily scores. Also, average entity frequency corresponds to 
the fraction of layers on which each entity appears, averaged over all entities. Moreo-
ver, Table 3 summarizes information on the monoplex, flattened versions of the network 
datasets, that will be used for evaluation of baseline methods designed for monoplex 
networks.

Experimental settings

We conducted all experiments under a transductive learning setting whereby, given an 
input multilayer network, only a fixed portion of the set of entities for each class were 
used as labeled data for the training of a GNN model. Recall that, due to the transductive 
setup, the learning process is nonetheless able to use all node attributes and topological 
information. For those networks without external information, node attributes were ini-
tialized by sampling each attribute from either a Gaussian, an Exponential, or a Uniform 
distributions; more precisely, for a given choice of number f of node attributes, either 
we randomly generated each attribute values from a Gaussian distribution, or we ran-
domly generated one third each of the attributes from Gaussian, Exponential and Uni-
form distributions.

We used two main settings for the training set size, namely at 25% and 5% of the set of 
entities (we will refer to the setting with 25% of training set size unless otherwise speci-
fied). All GNNs were trained using the Adam optimization algorithm (Kingma and Ba 
2017) with full batch size, for either 1000 epochs, or at convergence when the early-stop-
ping regularization technique was used (with patience value of 50 epochs), learning rate 
set to 0.005, L2 weight regularization set to 0.0005, and dropout regularization technique 
with p = 0.6 applied to the hidden layers and to the normalized attention coefficients of 
GCN and GAT based methods, respectively. Note that this introduces stochasticity since 
we sample the within-layer and outside-layer neighborhood of each node. It should also 
be noted that, since all our evaluation networks fit into the GPU memory, we performed 
full batch training (Kipf and Welling 2017, 2016), where the parameters are updated after 
processing the whole network. Also, regarding the cross-layer aggregation (cf. Eq. 15), 
the parameters µ were initialized with uniform distribution. Both our ML-GAT  method 
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and GAT  use multi-head attention with Q = 2 attentions heads for each layer where the 
heads are averaged in order to save memory resource. Furthermore, the negative slope 
β for LeakyReLU function was set to 0.2 (cf. "Background" section). We set K = 2 with 
d = 32 features, and number of input features to f = 64.

Concerning the setting of baseline methods, the original GAT  and GCN methods 
were trained over the flattened networks (cf. Table  3), since they were conceived 
for single-layer graphs. Moreover, since the GrAMME (Shanthamallu et  al. 2020) 
framework can deal with multirelational/multiplex networks only, in our compara-
tive experiments we used the multiplex versions of the Koumbia-l networks, named 
Koumbia_mpx , thus discarding inter-layer edges connecting nodes representing dif-
ferent entities.

For GrAMME-SG and GrAMME-Fusion, we set learning rate to 0.01, f = 64 , d = 32 , 
5 fusion heads for GrAMME-Fusion, and used dropout regularization technique.

Note that we used the publicly available software implementations for all the 
competitors.5

Results
We present the results of the experimental evaluation of the proposed framework, which 
are organized into two evaluation stages: 

1. In "Evaluation with competing methods" section, we compare the proposed meth-
ods and competitors (i.e., GrAMME-SG, GrAMME-Fusion, GAT  and GCN), on the 
multiplex networks introduced in "Data" section, in terms of prediction performance, 
impact due to the setting of the training set size and early-stopping technique, and 

Table 3 Summary of structural characteristics of the flattened (monoplex) versions of the 
evaluation networks: number of nodes (n), number of edges (e), average density (den), and average 
node degree (deg)

Network n e den deg

 Balance 625 115,000 0.590 368.000

 CKM-Social 241 1848 0.032 15.336

 Congress 435 93,327 0.989 429.090

 DKPol 490 19,638 0.164 80.155

 Leskovec-Ng 191 511 0.028 5.351

 Starwars 92 380 0.093 8.352

 Terrorist 79 1246 0.207 31.949

 Vickers 29 376 0.463 25.931

 Koumbia-2 2246 6011 0.001 5.353

 Koumbia-5 2246 11,404 0.002 10.155

Koumbia-10 2246 17,545 0.003 15.623

Koumbia-15 2246 22,533 0.004 20.065

Koumbia-20 2246 25,748 0.005 22.928

5 The GrAMME, GAT  and GCN source codes are publicly available at https:// github. com/ udays hanka rs/, https:// github. 
com/ Diego 999/ pyGAT, and https:// github. com/ tkipf/ pygcn, respectively.

https://github.com/udayshankars/
https://github.com/Diego999/pyGAT
https://github.com/Diego999/pyGAT
https://github.com/tkipf/pygcn
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of the initial input node-features. We also analyze the training execution times of the 
methods, and we discuss aspects of their computational complexity.

2. In "Evaluation on real-world node-attributes and arbitrary inter-layer edges: the 
Koumbia multilayer network testbed" section, we conduct a thorough analysis of the 
Koumbia dataset, focusing on the impact of using real node-features. We focus on 
this network since it is the only one including real-world attributes for the entities 

Table 4 Inter-layer edge information of Koumbia multilayer networks for different number of layers 
(Interdonato et al. 2020): number of inter-layer edges (e), inter-layer average degree (deg)

ℓ e deg

2 3788 3.37

5 22,918 20.41

10 99,084 88.23

15 225,540 200.84

20 406,254 361.76

Fig. 3 t-SNE 2D visualization of the entity embeddings learned from ML-GAT  over Koumbia-2: a after one 
epoch, b after 1000 epochs

Fig. 4 t-SNE 2D visualization of the entity embeddings learned from ML-GCN over Koumbia-2: a after one 
epoch, b after 1000 epochs
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and arbitrary inter-layer edges, thus allowing to evaluate to what extent the proposed 
framework is able to exploit such characteristics.

Evaluation with competing methods

Table 5 reports the average accuracy scores achieved by the proposed ML-GAT  and ML-
GCN approaches, and the competing methods (GrAMME-SG, GrAMME-Fusion, GAT  
and GCN). For each network and method, the average accuracy was computed over 10 
independent runs, where each run corresponded to a different train-test split, with 25% 
of training entities, and the input features of the entities were randomly initialized with a 
normal distribution for all the networks.

At a first glance, our proposed methods are able to achieve very high, or even nearly 
optimal accuracy, on most networks. This also mostly holds for GrAMME-Fusion and, 
to a less extent, for GrAMME-SG. Moreover, the results obtained by the baselines on 
the corresponding monoplex versions of the network datasets reveal some situations in 
which the flattening process is actually beneficial for the entity classification task: par-
ticularly, as it can be observed in Fig. 6, CKM-social and Leskovec-Ng layers are mostly 
structured with disconnected components, where each component in a layer contains 
nodes belonging to a specific label, so that the monoplex flattened network can better 

Fig. 5 Feature distribution of Koumbia entity attributes (obtained by linearizing the input feature matrix) and 
visual representation of Koumbia-2 and Koumbia-5 with inter-layer and intra-layer edges
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contextualize each node with respect to neighbors of different classes. Note also how the 
attention-based approaches (i.e., ML-GAT  and GrAMME) do not suffer from the same 
issue, and obtain performances close to or even better than the ones of the baselines.

By contrast, multilayer approaches always obtain the best performances on networks 
with very high values of average entity frequency (i.e. the average percentage of layers on 
which each entity appears, cf. Table 2), such as Vickers (ML-GAT ), Congress (GrAMME-
Fusion) and Balance (ML-GCN); an exception is represented by CKM-Social, which is 
explained since in this network the nodes in every layer are associated with the same 
label. The latter case is also interesting as it is the only one where ML-GCN outper-
forms not only the competitors but also ML-GAT  (which is nonetheless the second best 
performer). This might be ascribed to the peculiar structure of the Balance network, 
where each layer is composed by 5 disjoint complete connected-components and the 
various node labels are distributed over the components. In fact, ML-GAT  has worse 

Fig. 6 Leskovec-Ng and CKM-Social networks before and after the flattening process. In Leskovec-Ng, blue 
nodes and red nodes correspond to Leskovec’s collaborators and to Ng’s collaborators, respectively. In 
CKM-Social, color codes correspond to different cities
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performance than ML-GCN for both the Balance and Congress networks, which are the 
two with highest combination of average degree and average density (cf. Table  2). As 
already observed in Mohan (2021), for networks with high average degree and dense 
supra-adjacency matrix, GCN-based methods may perform better than random-walk 
based approaches and GAT based ones due to the stochasticity introduced by the atten-
tion mechanism. Furthermore, according to Zhu et  al. (2020) and Qian et  al. (2021), 
all models have relatively low performance on the network with the lowest homophily 
score, i.e., Terrorist-status (0.469). Likewise, all models have good performance on net-
works with strong homophily, such as Leskovec-Ng (0.994) and CKM-Social (1.0). On the 
other hand, note how multilayer models can still perform well on networks with lower 
homophily.

Finally, a major remark that stands out from Table 5 concerns the results obtained on 
Koumbia networks, for increasing number of layers. Note that Koumbia is the network 
dataset including the highest number of entities (2246), and that the Koumbia-2 net-
work has no edge overlap between the two layers (i.e., the node set on the two layers 
is completely disjoint). Notably, our ML-GAT  followed by ML-GCN outperform all the 
competitors, with GrAMME-SG performing even worse than baselines GAT  and GCN. 
Note also that GrAMME revealed to be sensitive to the number of layers, at the point 
that for 10 layers (i.e., Koumbia-10-mpx) both variants of our major competitor run 
out-of-running-time.

Impact of training set size and early‑stopping

We investigated a more challenging scenario for the training of the GNN models under 
study, by using only 5% of the entities as training instances, and the remaining ones for 
testing. Results are reported in Table  6. As expected, the classification performances 
of the various methods tend to decrease in almost all the networks. Two particular 
situations occur with the Starwars and Terrorist-status networks: on the former, only 

Table 9 Accuracy (mean and standard deviation over 10 runs) obtained by initializing the entity 
features with mixed distributions

Bold values refer to the best results on each network

Network ML-GAT ML-GCN GAT GCN

Balance 0.8377± 0.0567 0.9053± 0.0168 0.6362± 0.0346 0.6714± 0.0489

CKM-Social 0.9473± 0.0231 0.8066± 0.0399 0.9962± 0.0069 0.9786± 0.0075

Congress 0.8900± 0.1294 0.9468± 0.0165 0.5458± 0.1108 0.6146± 0.0000

DKPol 0.7935± 0.0245 0.8205± 0.0323 0.7956± 0.0646 0.7919± 0.0424

Leskovec-Ng 0.9944± 0.0085 0.9208± 0.0297 0.9951± 0.0087 0.9861± 0.0131

Starwars 0.7435± 0.0438 0.7217± 0.0625 0.7782± 0.0493 0.7202± 0.0552

Terrorist-Noordin 0.7133± 0.0680 0.7550± 0.0643 0.7017± 0.0337 0.6983± 0.0569

Terrorist-status 0.4883± 0.0629 0.4700± 0.1018 0.5417± 0.0568 0.5183± 0.0678

Vickers 0.9773± 0.0321 0.9636± 0.0469 0.7727± 0.1071 0.8590± 0.0452

Koumbia-2-mpx 0.7162± 0.0395 0.7634± 0.0092 0.7006± 0.0171 0.7020± 0.0200

Koumbia-5-mpx 0.8497± 0.0092 0.8046± 0.0212 0.7759± 0.0301 0.7702± 0.0143

Koumbia-10-mpx 0.8579± 0.0148 0.8228± 0.0159 0.8361± 0.0123 0.8052± 0.0110

Koumbia-15-mpx 0.8551± 0.0075 0.8223± 0.0105 0.8539± 0.0053 0.8181± 0.0121

Koumbia-20-mpx 0.8561± 0.0157 0.8305± 0.0053 0.8549± 0.0155 0.8312± 0.0125
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GrAMME-Fusion and GCN have worse performance, while on the latter, GrAMME 
methods even improve w.r.t. Table 5. These can be explained as both network datasets 
have highly unbalanced distribution of class labels, therefore for the least covered class 
(i.e., ‘droid’ for Starwars and ‘dead’ for Terrorist-status) the number of selected training 
instances does not significantly change as the percentage of training set size decreases 
from 25 to 5%. More interestingly, on the largest networks other than Koumbia, i.e., 
Congress and Balance, ML-GCN and ML-GAT  outperform the other competing models. 
In general, it turns out to be that ML-GCN and ML-GAT  tend to be less sensitive than 
the other methods when the percentage of training set size changes from 25% to 5%.

Another important aspect that we have not considered so far is the opportunity of 
using the early-stopping regularization which, with the use of a validation set, can be 
helpful to mitigate over-fitting of the GNN models. To this purpose, we carried out a 
further stage of evaluation where each GNN model was equipped with early-stopping 
and a patience value of 50 epochs, i.e., the training of a GNN model was terminated 
if the validation accuracy had not increased for 50 consecutive epochs. Tables 7 and 8 
show results corresponding to 25% and 5% of training set size, respectively. Consider-
ing first the effect of early-stopping with training set size of 25%, we observe that our 
ML-GAT  and ML-GCN and their monoplex counterparts improve their performance 
w.r.t. the scenario without early-stopping (i.e., Table  5) in most of the networks. For 
instance, ML-GAT  and ML-GCN increase their accuracy on Starwars, from 0.70 to 
0.817 and from 0.714 to 0.815, on Terrorist-status, from 0.477 to 0.570 and from 0.502 
to 0.545, on CKM-Social, from 0.954 to 0.962 and from 0.824 to 0.921, respectively. 
Moreover, on Koumbia networks, ML-GAT  and ML-GCN achieve comparable or even 
better results (i.e., ML-GAT  on Koumbia-5-mpx) than those corresponding to non-
early-stopping, while the monoplex counterparts, especially GAT , decrease their perfor-
mance significantly. By contrast, GrAMME methods tend to benefit less from the use of 
early-stopping.

Finally, from the comparison between Tables 6 and 8 corresponding to 5% of train-
ing set size, we draw analogous remarks to the above discussed for the scenario 
with 25% of training set size. Although the variations between results in Table 8 and 
corresponding results in Table  6 are in general relatively small, some cases are still 
remarkable, such as the improvement of ML-GAT  and ML-GCN on the two Terrorist 
networks, Koumbia-5-mpx and Koumbia-10-mpx.

Table 10 Comparison of training time (minutes) between ML-GAT , ML-GCN, GrAMME-SG and 
GrAMME-Fusion 

The training was performed on Google Colab with Tesla T4 GPU with the same hyperparameter setting described in 
"Experimental settings" section

Network ML-GAT ML-GCN GrAMME-SG GrAMME-Fusion

Balance 0.2935 0.1270 12.9228 12.7558

CKM-Social 0.2465 0.1275 3.0005 2.6893

DKPol 0.2626 0.1798 7.2329 6.2134

Leskovec-Ng 0.2632 0.1269 3.1790 2.4235

Vickers 0.2663 0.1255 0.3158 0.3242

Koumbia-2-mpx 0.2705 0.1727 52.3738 44.1908
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Impact of the attribute matrix

To better assess the robustness of our proposed methods, and also to gain insights 
into those cases in favor of monoplex-based baselines, we replicated the previous 
analysis by initializing the entity features with mixed distributions, following the 
other, more realistic approach described in "Experimental settings" section, i.e., one 
third of the attributes are modeled as normal distributions, one third as uniform dis-
tributions, and one third as exponential distribution.

Results of these experiments are reported in Table 9. While GAT  and GCN are still 
the best performing methods on Leskovec-Ng and CKM-Social—due to the peculiar 
structural characteristics described in the above section, that makes the monoplex 
version better suited for the task at hand than the multilayer network—it can be 
noted that their relative performances on DKPol are significantly decreased (about 
0.79) w.r.t. the ones observed in Table  5; by contrast, on this network, ML-GCN 
is the best performing method (0.82). Also, the accuracy of GAT  (0.77) and GCN 
(0.67) worsens significantly for Vickers and Balance, respectively. By contrast, ML-
GCN achieves better accuracy than the corresponding values in Table 5 on DKPol, 
Congress, and Koumbia-2-mpx, while both ML-GAT  and ML-GCN improve on Vick-
ers and Starwars.

Overall, comparing the methods’ accuracy values averaged over the networks, 
from Table 9 w.r.t. Table 5, GAT  and GCN show a more evident decrease percent-
age (resp., about − 2% and −1.5%) than ML-GAT  and ML-GCN. To sum up, while 
the performances of the monoplex-based baselines change drastically in some cases, 
indicating more sensitivity to the characteristics of the node attributes, our pro-
posed methods turn out to be more robust, even benefiting from a mixed, thus more 
realistic, distribution of values for the node attributes in some networks.

Computational complexity aspects and training time analysis

In this section, we first discuss the computational complexity of our methods, ML-
GAT  and ML-GCN, assuming sparse supra-adjacency matrix and that the total num-
ber of nodes in a multilayer network is O(Nℓ).

Table 11 Performance of ML-GAT  over the Koumbia multilayer networks with varying number of 
layers, and different types of input features

Bold values correspond to best performances

ℓ Koumbia-Fon Koumbia-Foff Koumbia-normal

Accuracy MRR Accuracy MRR Accuracy MRR

2 0.9082± 0.0113 0.9541± 0.0057 0.7426± 0.0200 0.8713± 0.0100 0.7556± 0.0164 0.8778± 0.0082

5 0.9373± 0.0054 0.9687± 0.0027 0.7656± 0.0117 0.8828± 0.0059 0.8355± 0.01153 0.9193± 0.0076

10 0.9385± 0.0073 0.9693± 0.0036 0.7588± 0.0126 0.8794± 0.0063 0.7874± 0.0116 0.8937± 0.0058

15 0.9355± 0.0089 0.9687± 0.0044 0.7522± 0.0125 0.8761± 0.0063 0.7723± 0.0133 0.8826± 0.0067

20 0.9404± 0.0069 0.9702± 0.0035 0.7488± 0.0167 0.8744± 0.0084 0.7706± 0.0091 0.8853± 0.0046



Page 30 of 36Zangari et al. Appl Netw Sci            (2021) 6:87 

The time complexity of ML-GCN with K layers results from the addition of two 
terms, the one corresponding to the propagation steps, which is O(Knonzero(Asup)f ) , 
where nonzero(Asup) is the number of non-zero entries in the Asup matrix, and the 
other one corresponding to the feature transformation steps, which is O(KNℓf 2) . 
Therefore, the total cost of ML-GCN is O(Knonzero(Asup)f + KNℓf 2) . The time com-
plexity of ML-GAT  also takes into account the computation of the attention coeffi-
cients. Given Q attention heads, the time complexity of ML-GAT  with K layers is 
O(KQNℓf 2 + KQ|EL|f ) , where the first term concerns the feature transformation 
steps, and the second term corresponds to the cost of a general attention mechanism. 
Note that the computation of the attention coefficients can be parallelized both for the 
intra-layer and inter-layer edges, as well as the computation of the Q attention heads.

Concerning the spatial complexity, modeling inter-layer dependencies in the propa-
gation rule has the overhead of storing the whole supra-adjacency matrix. Moreover, 
we need to take into account the hidden states and the weight matrices. More precisely, 
the memory requirement during the training stage for ML-GCN is O(Kf 2 + KNf ) , 
whereas for the multi-head attention ML-GAT , this cost is multiplied by a factor Q. 
Furthermore, the attention functions value requires an overhead of O(Q|EL|) . It is also 
worth noticing that, to improve scalability of our implementations, we could learn 

Table 12 Performance of ML-GCN over the Koumbia multilayer networks with varying number of 
layers, and different types of input features

Bold values correspond to best performances

ℓ Koumbia-Fon Koumbia-Foff Koumbia-normal

Accuracy MRR Accuracy MRR Accuracy MRR

2 0.8520± 0.0863 0.9260± 0.0431 0.7444± 0.0172 0.8722± 0.0086 0.7503± 0.0186 0.8751± 0.0093

5 0.9370± 0.0063 0.9685± 0.0032 0.6880± 0.0273 0.8411± 0.0136 0.8163± 0.0143 0.9082± 0.0071

10 0.9359± 0.0085 0.9679± 0.0043 0.6540± 0.0200 0.8270± 0.0100 0.8237± 0.0157 0.9118± 0.0082

15 0.9358± 0.0089 0.9679± 0.0044 0.6378± 0.0215 0.8189± 0.0108 0.8238± 0.0216 0.9119± 0.0108

20 0.9363± 0.0067 0.9681± 0.0033 0.6282± 0.0116 0.8141± 0.0058 0.8221± 0.0153 0.9111± 0.0077

Fig. 7 Graphical representation of the performance of our framework on the Koumbia multilayer network
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our models with mini-batch training in combination with neighborhood sampling 
approaches (e.g., Hamilton et al. 2018), which we leave it as for future work.

We now present the results reported in Table  10, which shows the training times 
obtained by the proposed ML-GAT  and ML-GCN methods, compared to those by 
GrAMME-SG and GrAMME-Fusion. We observe that our methods are extremely 
efficient, especially ML-GCN, with training times under 0.3 minutes on all networks. 
Remarkably, similar training times on all networks are observed for ML-GAT  and 
ML-GCN, respectively, thus hinting at their scalability. Both our methods signifi-
cantly outperform GrAMME-SG and GrAMME-Fusion: indeed, except for Vickers, 
the training time of the GrAMME methods is always one or two orders of magni-
tude higher than that of our methods, also showing to have scalability issues (training 
times range from the 0.3 minutes of Vickers to 52 minutes on Koumbia for GrAMME-
SG and GrAMME-Fusion, respectively).

The outperforming behavior of our methods against GrAMME ones is however quite 
surprising, since all the methods share a theoretical computational complexity that is 
linear in the number of nodes and in the number of edges of the multilayer network. 
In fact, as reported in Shanthamallu et  al. (2020), while the cost of GrAMME-SG is 
actually more sensitive to the number of entities and layers in the network (i.e., linear 
in the number of entities and edges, but quadratic in the number of layers), the cost 
of GrAMME-Fusion, thanks to a simplified attention mechanism, is declared as linear 
in the number of entities and edges of the multilayer network, which is analogous for 
our methods. Therefore, we tend to ascribe such a performance gap of the competitors 
to a less efficient implementation w.r.t. our methods, which were developed under the 
DGL framework6 that has become a widely recognized software tool for deep learning 
on graph data (Wang et al. 2020).

Fig. 8 Accuracy obtained by ML-GAT  and ML-GCN, for increasing number of hidden layers K, and with 
d = {32, 128}

6 https:// www. dgl. ai.

https://www.dgl.ai


Page 32 of 36Zangari et al. Appl Netw Sci            (2021) 6:87 

Evaluation on real-world node-attributes and arbitrary inter-layer edges: the Koumbia 

multilayer network testbed

A major strong point of the proposed ML-GAT  and ML-GCN approaches is that they 
are designed to deal with general multilayer networks, i.e., with arbitrary inter-layer 
edges, and to exploit external information in the form of attributes associated to the enti-
ties. In this section, we present a further evaluation stage that aims to stress our methods 
by evaluating them on a real-world attributed multilayer network, i.e., the Koumbia mul-
tilayer network (Interdonato et al. 2020). By focusing on this network, we delve into the 
understanding of the impact of using real-world attributes about the entities (cf. "Data" 
section and Fig. 5a) on the entity classification task in a practical application contexts. 
Moreover, based on the technique described in Interdonato et al. (2020), we take into 
account different versions of the network with varying number of layers (i.e., 2, 5, 10, 15, 
20) and, since the networks include inter-layer edges between each couple of layers, we 
will also evaluate how the proposed approach is able to manage an increasing number of 
inter-layer edges.

To this purpose, we compare the performance of our methods on three different sce-
narios relating the input features associated with various Koumbia with different num-
ber of layers: the real attributes originally associated with Koumbia entities, attributes in 
the form of identity matrix, and attributes modeled as normal distributions. The three 
modalities will be denoted with suffix Fon, Foff, and normal, respectively. Note that the 
experiments with the normal distributions have different results with respect to the ones 
reported in Table 5, since in that case the multiplex version of the network was taken 
into account (i.e., without considering inter-layer edges).

Tables 11 and 12 show the average accuracy and mean reciprocal rank (MRR), aver-
aged over 20 runs, obtained on the Koumbia networks with Fon, Foff and normal types 
of attributes, for ML-GAT  and ML-GCN, respectively. A detailed plot on the variations 
of accuracy with respect to the number of layers is also shown in Fig. 7. It can be noted 
that the Fon versions always obtain significantly better result than the Foff and normal 
ones for both methods, thus confirming that exploiting real-world node-attributes is 
indeed beneficial for the entity classification task and, more importantly, that the pro-
posed framework is able to correctly exploit such external information in the form of 
node attributes.

ML-GAT  and ML-GCN obtain similar performances on the Fon networks (accuracy 
around 0.94 and MRR around 0.97). The performance scores also show robustness 
with respect to the number of layers, and hence of inter-layer edges, in the network. 
Note that the slightly lower performance obtained for Koumbia-2 is actually not sur-
prising, as in that case the two layers have disjoint node-sets, which negatively affects 
the performance of the multilayer approaches.

It is also interesting to notice that, while ML-GAT  performs similarly on the Foff 
and normal versions (thanks to the attention mechanism), ML-GCN shows signifi-
cantly better performance on the normal version than on the Foff one. This result is in 
line with previous studies (Kipf and Welling 2017; Velickovic et al. 2018), and, in this 
specific case, it can also be explained by the fact that the normal distribution can be a 
relatively good approximation of the real one (cf. Fig. 5).
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In order to further analyze the benefit of the attention mechanism exploited by 
ML-GAT , against the convolutional approach used in ML-GCN, we perform a fur-
ther analysis stage, where we evaluate the performance of the two approaches w.r.t. an 
increasing number of hidden layers K in the neural network (i.e., not to be confused 
with the layers of the multilayer network). Figure 8 shows the accuracy achieved by 
ML-GAT  and ML-GCN by increasing K, and with different dimensions of the embed-
ding space, i.e., d = {32, 128} . It can be noted that, while for K = {1, 2} all methods 
obtain similar performance, ML-GCN tends to decrease in accuracy for higher K val-
ues; particularly, ML-GCN accuracy decreases of about 7% when increasing K from 
2 to 3, with d = 32 , and from 5 to 6 with d = 128 . We tend to explain this behavior 
since a higher number of convolutional layers would smooth the difference between 
intra-layer and inter-layer neighborhoods, which hence might be treated equally in 
this process. Conversely, the attention mechanism in ML-GAT  is way more robust to 
this phenomenon, as revealed by the nearly constant performance by ML-GAT  even 
with high values of K.

Conclusions: discussion and future work
We proposed a GNN framework for representation learning and semi-supervised clas-
sification in multilayer networks with attributed entities, and with arbitrary number 
of layers and intra-layer and inter-layer connections between nodes. We instantiated 
our framework through two new formulations of GAT and GCN models, specifically 
designed for the above general, attributed multilayer networks. We evaluated our ML-
GAT  and ML-GCN methods on real-world network datasets coming from different 
domains and with different structural characteristics. Our results showed that ML-
GAT  and ML-GCN models are significantly faster learners than the competitors, and 
they outperform in accuracy both the competitors and baseline methods especially on 
arbitrary multilayer networks, with large number of entities and layers. Furthermore, as 
demonstrated by the evaluation on Koumbia multilayer networks, derived from satellite 
images, our methods are able to take advantage of the presence of real attributes for the 
entities, in addition to arbitrary inter-layer connections between the nodes in the vari-
ous layers.

Comparing the GAT and GCN approaches, we observed that, unlike ML-GCN, ML-
GAT  performance is not affected when networks are structured as disconnected lay-
ers or when most layers tend to contain nodes of the same label. By contrast, ML-GCN 
tends to be more robust than ML-GAT  when the network shows relatively high density 
and average degree.

Nevertheless, the approach of integrating within-layer and outside-layer neighbor-
hood shared by both ML-GCN and ML-GAT  might not be well-suited to effectively 
learn from multilayer networks where the various layers would show assortativity dif-
ferent to each other according to the entity class labels; e.g., a 2-layer network with gen-
der as entity class, such that the first layer is assortative by gender and the second layer 
shows reverse assortativity by gender. To overcome this limitation, it would be interest-
ing to revise the cross-layer aggregation component in terms of a GNN model as well, 
and investigate how this approach would be more effective than simply weighing the 
embeddings from each particular layer of the network. As a related aspect, the above 
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would also raise the opportunity of evaluating a transfer learning task across the layers 
of a network: for instance, given one or more selected layers, our methods would train 
a model on those layers which would then be fine-tuned on other layers, e.g., for a task 
of node classification. Moreover, measuring the similarity between the different layers of 
a multilayer network (e.g., via the subspace alignment measure proposed in Qian et al. 
2021), and more in general, multilayer network simplification approaches (Interdonato 
et al. 2020) could be consider in order to improve the quality of the final embeddings by 
reducing the quantity of redundant or noisy content in each layer.

Further developments of our framework might concern two aspects. The first aspect 
refers to an extension to heterogeneous, attributed multilayer networks, which are rap-
idly growing attention also thanks to a renewed interest to knowledge graphs in many 
application domains. The second aspect instead refers to the adaptation of our frame-
work to inductive learning tasks, in order to generalize to unseen (portions of ) graphs. 
This would also enable it to deal with dynamic networks, particularly for understand-
ing the growth of a multilayer network in terms of changes on the status and properties 
of its entities and their connections, or for updating a GNN model on a time-evolving 
multilayer network without having to learn it from scratch at each new timestamp. In 
this regard, while the adaptation of our defined methods’ propagation rules is relatively 
easy to achieve for an inductive learning task, it would also be meaningful to introduce 
an unsupervised term in the loss function as a form of regularization to account for the 
structural information of the unseen portions of a network.
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