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Introduction
Infrastructure networks are critical to the functioning of modern societies, with a sig-
nificant and growing dependence on them for everyday activities and quality of life (Boin 
and McConnell 2007; Cabinet Office 2010; Sterbenz et al. 2011). Despite this, they are 
often found to be vulnerable to failures, with numerous incidents reported which have 
led to widespread disruption at large economic costs (Rinaldi et  al. 2001; Andersson 
et al. 2005; Royal Academy of Engineering 2014; OFCOM 2018; OFWAT 2018; National 
Infrastructure Commission 2020; OFGEM 2020). The vulnerability of critical infrastruc-
ture networks has been an important research topic for many years and, despite many 
efforts to try and improve the resilience and robustness of these infrastructure systems 
to disruptions, large scale failures still occur. Better understanding the structure of such 
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modern infrastructure networks is critical to learning their behavioural characteristics 
and thus ensuring their continued operation during disruptive events.

Real world infrastructure systems can be represented using network models, built 
fundamentally from a set of nodes (vertices) and edges (links), combining to create a 
graph or network (Newman 2003b; Boccaletti et al. 2006) with different characteristics 
dependent on the way these are connected. The desire to gain a greater understanding 
of real world networks led to the discovery of a power-law in the degree distribution of 
many real world networks, knowledge which evolved into the creation of more realistic 
graph models such as the small-world model by (Watts and Strogatz 1998) and the scale-
free model by (Barabasi and Albert 1999). The scale-free model is characterised by a low 
average path length and a high clustering coefficient, metrics which are reliant on the 
topological structure of the network. Real world networks, however, should be charac-
terised not only on their topology but also on how they function in terms of the passage 
of data or goods over the network (Luca et al. 2006). This can result in a different set of 
characterisation methods being required, with the potential for new network organisa-
tional features to be identified.

In the decade or so following the introduction of the small-world and scale-free mod-
els, much analysis has been done comparing these models to real world systems (Bassett 
and Bullmore 2006), with many finding similarities between networks and either model 
(Amaral et al. 2000; Jeong et al. 2000; Latora and Marchiori 2002; Bassett and Bullmore 
2006). Further research, in part due to increased availability of datasets and greater com-
putational power (Boccaletti et al. 2006), has shown a hierarchical organisation exists in 
certain networks, with vertical levels of communities of nodes within the hierarchy that 
are dependent on a set of key parent nodes (Barabasi et al. 2003; Caldarelli et al. 2004; 
Costa and Silva 2006; Costa et al. 2007; Shekhtman and Havlin 2018). A number of criti-
cal infrastructure networks have been regarded as hierarchical, such as road networks 
(Yerra and Levinson 2005) and other transport systems (Leu et al. 2010), with the later 
suggested to be represented by a tree network, a simple hierarchical structure (Ravasz 
et  al. 2002; Costa and Silva 2006), similar to natually-occuring river networks (Dodds 
and Rothman 2000). Other networks inlcuding language, actor, food webs and meta-
bolic systems (Barabasi et al. 2003; Clauset et al. 2008; Ravasz et al. 2002) have all been 
found to display a hierarchical nature. It has since been shown that a hierarhical net-
work structure can make a network more vulnerable to failures (Jenelius 2009), though 
the embedded community structure improves resilience at a community level (Shai et al. 
2015; Shekhtman and Havlin 2018), such as found within the hierarchical communites 
model proposed by Ravasz and Barabasi (2003), to represent the structure of metabolic 
networks, a hierarchical model with communities of nodes embedded within. A study 
by Shai et al. (2015) using graphs with a 2-level hierarachy has suggested the commu-
nity structure within a network can result in a hierarchical graph behaving like random 
graphs, though it has also been suggested that infrastrucutre networks can have a greater 
number of levels (Yerra and Levinson 2005).

These studies provide insights for particular networks but no broader analysis of the 
charachteristics of these hierarchical networks, or comparison of such networks against 
each other, or the original graph models (scale-free and small-world), has been pre-
sented. This paper will therefore present a more detailed comparison between these 
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hierarachical networks and non-hierarchical examplars, including scale-free and small-
world graph types, which will facilitate a detailed investigation into not only the charach-
tertistics which make these classes of networks different, but also how these affect their 
robustness to failures. Using a suite of 42 real world spatial infrastructure networks, 
the presence of hierarchically-structured infrastrcutre networks will also be explored, 
along with the trade-offs between hierarchical and non-hierarchical network strcutures 
including the effect on the robustness to perturbations.

Method
Two suites of networks were used to explore the extent of similarities between synthetic 
graph models and real world infrastructure networks; a synthetic network suite and a 
suite of real world infrastructure examples. Through the inclusion of synthetic hierarchi-
cal models, the characteristics of hierarchical networks are learned and applied to the 
suite of real world infrastructure networks. The robustness of both suites to perturba-
tions is analysed to provide an insight into the response of hierarchical networks com-
pared to non-hierarchical networks.

Synthetic network suite

To generate a clear understanding of the characteristics of existing and emerging 
graph models, a suite of eight graph models has been generated, culminating in a total 
of 6038 graphs. The suite extends from networks generated with random graph mod-
els (2000 realisations), through scale-free (1000 realisations) and small-world models 
(1000 realisations), to hierarchical models (2038 realisations). These have been gener-
ated using a combination of previously-developed algorithms to create a range of com-
mon graph models including the Erdos–Renyi (ER) model (Erdos and Renyi 1959) 
for random networks, the Watts–Strogatz (WS) (Watts and Strogatz 1998) model for 
small-world networks, the Barabasi–Albert (BA) model (Barabasi and Albert 1999) for 
scale-free networks, and the balanced tree model for Tree networks (Fig. 1a); all avail-
able in the employed python NetworkX library (NetworkX 2020). For hierarchical net-
works, three further algorithms have been implemented. Firstly to capture the presence 

Fig. 1  a A connected tree network of seven nodes. This vulnerability of the tree graph can be seen if 
we consider the graph with the top most node removed; resulting in the graph fragmenting into two 
components. b A hierarchical community network, with each of the communities connected to the central 
node in the inner community (Ravasz and Barabasi, 2003)
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of community structure as found within some hierarchical networks (Ravasz et al. 2002; 
Yerra and Levinson 2005; Shai et al. 2015; Shekhtman and Havlin 2018), a model devised 
by Ravasz et al. (2002) and Ravasz and Barabasi (2003) (Fig. 1b) has been implemented. 
This captures the greater complexities and hierarchical levels compared to the stochas-
tic block model used Shekhtman and Havlin (2018) and that used by Shai et al. (2015) 
as mentioned earlier which are limited in their number of hierarchical levels. Two fur-
ther models, variations on the tree model, known as the HR and HR+ models have 
been developed for this research, with these generating a less structured tree network 
through the addition of edges to the structure, with the HR model adding edges ran-
domly between nodes and the HR+ model only adding the extra edges between nodes 
in the same or adjacent levels of the hierarchical tree structure. In both cases, new edges 
can neither be self-loops or duplicate existing edges. The number of new edges to add is 
calculated using Eq. 1, where E is number of nodes and p a multiplier between 0 and 1.

A limit of 2000 nodes has been set for the node count of each graph realisation 
( N = 2000 ), with realisations from 2 nodes to 2000 being generated so a clear variation 
on graph structure and complexity is seen within the resultant ensemble. For each graph 
model 1000 realisations are generated where possible. Those graphs with a more defined 
structure (such as the Tree and HC models) have no random exponent in their genera-
tion, so a limited number of realisations is possible within the set constraints. As a result 
there 1000 realisations of each model except for the HC model, which has 7 realisations, 
and the Tree model, which has 31. Examples of each of the models are shown in Fig. 2, 
where (a) to (d) are to be referred to as non-hierarchical, and (e) to (h) as hierarchical as 
they all have a tree structure.

These synthetic networks are referred to as ‘graphs’ in the remainder of the paper.

Real world infrastructure networks

A suite of real world infrastructure networks has been employed covering sectors includ-
ing road, rail, air, electricity, gas and rivers (Table  1). Spatial network models (Fig.  3) 
have been developed using a range of geographic datasets for each sector with a suite of 
spatial tools (see Barr et al. (2013) for more details) used to generate topologically-valid 
networks and correct any errors (overshoots and undershoots at intersections). These 
real world examples are referred to as ‘networks’ in the remainder of the paper.

Seven road networks have been generated using the Ordnance Survey Meridian 2 vec-
tor dataset covering Great Britain, with more detailed subsets for cities/regions including 
Tyne and Wear, Leeds, and Milton Keynes. Versions have been generated with differ-
ent road classes; one only includes motorways, and one includes motorways, A-roads, 
B-roads and minor roads. Open Street Map (Open Street Map 2012) has also been used 
to generate road networks covering Ireland, with two versions; one with motorways and 
trunk roads ( N = 3521 ), and a second with primary roads added ( N = 4444 ). All road 
networks have been created with nodes with a degree of two removed and the edges dis-
solved giving a representative topology of the network.

(1)Eadd =
∑

E × p
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Fig. 2  The topology of the eight graph models in the suite of synthetic networks, each with 15 nodes, except 
the HC model (g) which has 16, shown using a circular layout
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Rail networks have been generated for the UK from the Ordnance Survey Meridian 2 
vector dataset, with nine networks created. As well as a national network, smaller light 
rail networks have been created for suburban systems including the Tyne and Wear 
Metro ( N = 60 ), Manchester Metrolink ( N = 65 ) and those overseen by Transport for 
London (TfL) as a composite network ( N = 399 ). Open Street Map data has also been 
used to generate 7 networks for a range of other rail systems outside of Great Britain, 
including Ireland ( N = 201 ) and light rail in the cities of Boston (USA) ( N = 120 ) and 
Paris (France). These have been validated using system maps freely available online from 
the respective operators.

Six air networks have been generated using data available from OpenFlights (Open 
Flights 2012), as used in previous studies (Wilkinson et  al. 2012; Verma et  al. 2014). 
This set of networks includes those for Europe ( N = 643 ), the UK ( N = 48 ), the USA 
( N = 601 ) and North America ( N = 889 ) as well as operator networks, for British Air-
ways ( N = 198 ) and EasyJet ( N = 125).

Energy networks are also represented, with data from the National Grid for England 
and Wales used to build three versions of the network with varying levels of detail, from 
N = 23, 787 to N = 2218 . A synthetically-generated distribution network has also been 
used (ITRC 2013), to create a transmission and distribution network ( N = 170, 667 ). 
The national gas network for Great Britain ( N = 1486 ) is also included.

Using Ordnance Survey Meridian 2 data four river networks have been generated for 
rivers across Great Britain; Tyne ( N = 616 ), Severn ( N = 1944 ), Dee ( N = 896 ) and 
Eden ( N = 302).

Finally a network representation of the JANET network (Jisc 2015), a network pro-
viding high speed digital connections for UK academic institutions, has been created 
( N = 38).

Quantifying network structure

Network structure has traditionally been characterised from a topological perspective 
using metrics such as the degree distribution, clustering coefficient and the average 

Table 1  Summary of the six infrastructure sectors which constitute the suite of networks

Sector Number of 
network 
instances

Mean N Mean E Min N Min E Max N Max E Source

Air 6 417 2202 48 135 889 573,7 OpenFlights

Communication 1 NA NA 38 58 38 58 JANET

Energy 5 41,228 41,950 1486 1739 170,669 173,039 National grid/ord-
nance Survey/
ITRC​

Rail- regional 14 187 203 45 46 467 519 Ordnance survey/
open street map

Rail - national 3 2799 2967 201 203 7995 8490 Ordnance survey/
open street map

Rivers 4 930 946 302 301 1905 1966 Ordnance survey

Road - regional 7 4072 5827 42 51 15,249 21,817 Ordnance survey/
open street map

Road - national 2 14,258 28,152 4444 6011 24,071 50,292 Ordnance survey/
open street map
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shortest path length (Watts and Strogatz 1998; Barabasi and Albert 1999; Newman 
2003b). These metrics have also been used as reference for the subsequent development 
of graph models such as those for graphs with small-world (Watts and Strogatz 1998) 
and scale-free (Barabasi and Albert 1999) characteristics. Higher level metrics, such as 
those beyond the traditionally-used measures above, are more relevant to the function-
ing of infrastructure networks as they may tell us more information about a network’s 
behaviour and organisation, potentially helping to characterise real world networks with 
greater realism (Rozenfeld et al. 2005). For example, statistics about the cycles found in 
a graph are shown by Rozenfeld et al. (2005) to highlight useful properties of networks 

Fig. 3  Example spatial layouts for the six infrastructure sectors
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with regard to their connectivity which are otherwise missed by traditional metrics, such 
as the degree distribution.

The continued development of graph algorithms alongside greater computational 
resources also allows more complex metrics to be computed over large graphs than 
has been previously possible. These advancements allow for the dynamics of a net-
work to be considered, and not just the topological structure, key when considering 
infrastructure networks (Luca et  al. 2006). For the purpose of this research, three 
higher-level metrics, detailed in the following paragraphs, have been chosen due to 
their applicability for characterising graphs/networks.

Characterising how a network may function, or how its structure allows movement 
and flows to pass over it, provides an insight to how it may operate in delivering a ser-
vice. Betweenness centrality, first introduced by Freeman (1978), is a measure of the 
proportion of all shortest paths which pass through each node, providing details on 
how well connected the network might be (Barthélemy 2004). This measure also pro-
vides an insight into the way flows of information or goods may pass over the network 
(Crucitti et al. 2006; Barthelemy 2011). Betweenness centrality is defined by Brandes 
(2001) as:

where V is the set of nodes, v being the node of interest, σ(s, t|v) being the number of 
shortest paths through node v and σ(s, t) the number of shortest paths in the network. 
The value for each node, between zero and one, is an indicator of the importance of the 
in the connectivity of the networks, and although the distribution of these values across 
the network is a useful indicator of how central nodes are to a network (Crucitti et al. 
2006), the maximum value GmaxCB

 (Eq. 3) alone provides an insight into the connectivity 
of the graph. Where the maximum value is high, tending close to one, the network can 
be expected to be reliant on a single node for the network to remain connected, with 
a high proportion of the shortest paths passing through it. Where the value is close to 
zero, this suggests that there is much more even distribution of shortest paths across the 
network indicating a better-connected structure.

Both the number and distribution of cycles has been used previously as a higher-
level metric to identify structural characteristics of graphs or networks, allowing new 
insights to be learned (Watts and Strogatz 1998; Rozenfeld et  al. 2005; Costa et  al. 
2007). A cycle is defined as a path formed of a set of edges, which starts and finishes at 
the same node, but does not visit the same node or edge more than once (Dolan and 
Aldous 1993; Caldarelli et al. 2004). Indicating a connected set of nodes, the greater 
the number of cycles the better connected the graph is likely to be. A tree network, 
an example of poorly connected graph, has no cycles (Albert and Barabasi 2002). 
The length and propensity of cycles can give an indication of the characteristics of a 
graph, with a greater frequency of short cycles alone suggesting a better connected 
graph, while longer cycles suggest a lesser connected topological structure (Lind et al. 
2005; Klemm and Stadler 2006). In this paper we adopt the measure of cycle basis, the 

(2)CB(v) =
∑

s,tǫV

σ (s, t|v)

σ (s, t)

(3)GmaxCB
= maxv∈V (CB(v))
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fundamental set of cycles from which all cycles can be formed (Paton 1969; Diestel 
and Kühn 2004), to characterise the connectedness of the graph accounting for cycles 
of all lengths. To accommodate for the different cardinality of graphs or networks, 
the count of the number of cycle basis ( 

∑

CB ) is normalised by the number of nodes 
( 
∑

N  ), to give a value for comparison across all graphs ( CB ), Eq. 4.

The final metric used is the assortativity coefficient, a global measure of the similar-
ity of the degree of neighbouring nodes in a graph, characterising how the network 
is connected at a neighbourhood level (Newman 2003a). This is defined by Newman 
(2003a) as

where eij is the fraction of all edges which join nodes with degree x and degree y, ai and 
bj are the fraction of edges that start and end at nodes with degree x and y respectively 
and σa and σb are the standard deviation of the distributions ai and bj. A returned value, 
between − 1 and 1, which is closer to one indicates an assortative network where nodes 
are connected to those of a similar degree, indicative of a regular structure, compared to 
those near negative one which suggest a hub and spoke structure (Newman 2003a). The 
ability of the metric to distinguish the characteristics of the underlying structure also 
allows it to be applied as an indicator of network robustness (Newman 2002; Foster et al. 
2010).

The three metrics described above (the maximum betweenness centrality, the num-
ber of cycle basis and the assortativity coefficient) give insights into the characteristics 
of networks from different perspectives, providing measures of how well connected a 
graph is, how the structure of the graph affects flows over it and how robust the graph 
may be to perturbations. It is important to select those metrics which are important to 
answering the aim of this work (Newman 2003b), and this combination of higher-level 
metrics provide more details on the structure, characteristics, and potential behaviour 
than possible through some more traditional methods, such as the aforementioned 
degree distribution and shortest average path length, while also providing other insights, 
and thus we use these three metrics alone for our analysis.

Following the computation of the metrics described, the similarity of the distribution 
of the values for each graph type was statistically tested using the multivariate trans-
formed divergence statistic which assesses the amount of overlap between the distribu-
tions of the values. Singh (1984) defines this as

where

(4)CB =

∑

CB
∑

N

(5)r =

∑

ij

(

eij − aibj
)

σ aσ b

(6)TDij = 100

(

1− eDij/8
)

(7)Dij =
1

2
tr
[

(

Ci − Cj

)

(

C−1
i − c−1

j

)]

+
1

2
tr
[(

C−1
i − C−1

j

)

(

ui − uj
)(

ui − uj
)T

]
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where i and j are the two data classes, Ci is the covariance matrix of i, ui the mean vec-
tor of i, tr the trace function and T the transposition function. Where TD = 100, the 
distributions are statistically different, where TD = 0, the distributions are statistically 
identical. Typically, where TD ≥ 85, the distributions are said to be statistically different 
(Swain and Davis 1978).

Modelling network robustness

To further understand the characteristics of the suite of synthetic and infrastructure 
networks, their robustness to failure is explored to give further insights into their topo-
logical structure. Using common iterative failure methods, such as those employed by 
Albert et al. (2000) and Holme et al. (2002) where at each iteration a node is selected to 
be removed, the ability of each synthetic graph type to topologically withstand the per-
turbations can be compared, along with the responses from the infrastructure networks.

Three common node selection methodologies are used (Albert et al. 2000; Holme et al. 
2002; Luca et al. 2006; Lordan et al. 2014); a random node selection method where at 
each iteration a node is randomly selected to be removed; a node degree-based method 
where the node with the greatest degree (or one with the joint greatest degree) is 
removed at each iteration; and the third where the node with the greatest betweenness 
centrality is removed at each iteration. Please see Albert et al. (2000), Holme et al. (2002) 
or Luca et al. (2006) for more information. For the latter two methodologies the values 
are recalculated at each iteration to ensure the greatest impact (Luca et al. 2006), and in 
all three cases the graphs/networks are perturbed until E = 0.

To explore the characteristics of both the graphs and networks, an ensemble analysis is 
performed where five simulations for each failure methodology are performed for every 
graph or network to account for the random exponent in the failure models; the random 
selection of a node in the random model, or the random selection of a joint highest rated 
node in the other two models. A total of fifteen simulations are therefore run for each 
graph or network, where the performance is recorded using graph metrics, averaged 
across the five simulations.

The failure of the graph or network is measured with respect to how quickly it becomes 
disconnected and fragments into subgraphs or communities of nodes. Therefore, the 
more robust a graph is the fewer subgraphs would be expected to form. Other meas-
ures could be considered, such as the size of the giant component (the largest connected 
subgraph) (Holme et al. 2002), as an alternative measure of the effect perturbations have 
on a graph/network (Albert et al. 2000; Holme et al. 2002). This measure, however, only 
provides an indicator as to how large the largest component of the network remains, and 
does not give an indication as to the state of the remaining aspects of the network. In an 
infrastructure context, any connected components outside the giant component could 
still provide a service to users and thus should not be ignored entirely from an analysis of 
the resilience of a network. Where there is a high number of subgraphs, it suggests the 
network has fragmented into many small subgraphs, where these may remain of use to 
geographical areas local to such parts of the graph or network.
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Fig. 4  Multi-variate plots comparing the relationships between the three pair-wise combinations of graph 
metrics (AC, MBC and CB), with standard deviation ellipses showing the distribution of values for each of the 
eight graph models and values for each individual spatial infrastructure network located using point markers
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Results
Graph metric comparisons

The three graph metrics described earlier were calculated for each of the graphs and 
networks in the study. The results show that there is distinguishable difference in met-
ric values between the synthetic hierarchical and non-hierarchical graph models (Fig. 4). 
This was most apparent when the distributions of the assortativity coefficient (AC) were 
plotted against the maximum betweenness centrality (MBC). Here the single standard 
deviation ellipses for each of the graph models for the distribution of the metric val-
ues indicate a clear separation between the hierarchical and non-hierarchical models 
(Fig.  4a). This is also shown statistically, where there is also no statistical similarity in 
the distributions of the metric values for the AC/MBC for each pair-wise combination 
of graph models (Table 2). The same pattern and statistical separation between the non-
hierarchical and hierarchical models is also shown through the distributions for the 
other two metric combinations though with less clarity.

Table 2  Matrix showing results from transformed divergence analysis for all pairwise combinations, 
testing the overlap between the graph models for three metric combinations

Results in the top-right quadrant show the results comparing hierarchical to non-hierarchical networks. A value of 100 
indicates no overlap between the distributions, 0 indicates the distributions are identical. *Values cannot be computed as 
TREES have zero cycle basis resulting in invalid matrices

ER GNM WS BA HR HR+ HC TREE

ER

AC –MBC – 99.91 84.78 99.58 100.00 100.00 100.00 100.00

AC-CB – 53.22 70.14 27.90 100.00 100.00 100.00 –*

MBC-CB – 99.96 75.43 72.62 100.00 100.00 100.00 –*

GNM

AC –MBC – – 100.00 100.00 100.00 100.00 100.00 100.00

AC-CB – – 95.81 98.99 100.00 100.00 100.00 –*

MBC-CB – – 100.00 100.00 100.00 100.00 100.00 –*

WS

AC –MBC – – – 14.13 97.79 99.55 99.99 100.00

AC-CB – – – 43.86 100.00 100.00 100.00 –*

MBC-CB – – – 43.98 100.00 100.00 100.00 –*

BA

AC –MBC – – – – 75.24 83.36 99.81 99.90

AC-CB – – – – 100.00 100.00 100.00 –*

MBC-CB – – – – 100.00 100.00 100.00 –*

HR

AC –MBC – – – – – 39.84† 98.85 90.23

AC-CB – – – – – 27.34† 99.37 –*

MBC-CB – – – – – 6.53† 99.76 –*

HR+
AC –MBC – – – – – – 99.99 94.71

AC-CB – – – – – – 100.00 –*

MBC-CB – – – – – – 99.72 –*

HC

AC –MBC – – – – – – – 100.00

AC-CB – – – – – – – –*

MBC-CB – – – – – – – –*
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With the AC-MBC distributions the hierarchical models, AC≤ − 0.17 and MBC  ≥ 0.25, 
are distinct from the non-hierarchical, − 0.04 ≤ AC  ≤ 0.0 and 0.01 ≤ MBC  ≤ 0.08, with 
the TREE and HC models especially shown to disparate in structure,MBC  ≥ 0.5. This 
relationship can be explained by the number of cycle basis per nodes (CB) present in 
the different networks, with a tendency to be more prevalent in non-hierarchical graphs, 
CB > 7 , than hierarchical graphs, 0 > CB < 1 , where a low CB count suggests a greater 
MBC value (Fig. 4c). Due to the lower number of CB, there are fewer connections and 
thus a greater dependency on those nodes with connections, generating a greater MBC 
value. This can be seen with the values returned for the TREE and HC models where 
CB < 2 and MBC  = 0.765. The effect of the extra edges being added to the TREE graph 
for the HR and HR+ models reduces the CB value, CB < 1, and therefore the resultant 
MBC value.

The statistical relationship between the hierarchical and non-hierarchical model 
groups is disparate (Table 2), with the pair-wise relationships between these two groups 
all returning values over 97, when a value above 75 indicates no similarity in the distri-
butions. A small number of the relationships between graph models, such as between 
the hierarchical HR and HR+ models, show similarity for all three metric distributions 
(39.84, 27.34, 6.53, indicated by † in Table 2) from which we can infer a degree of similar-
ity in the characteristics of the models. This relationship was expected as both models 
have their origins in the TREE model and the generation algorithms only varying slightly. 
The other greatest similarity between graph models is found to be for the non-hierarchi-
cal BA-WS models, returning a set of values (14.13, 43.86, 43.98) indicating a clear simi-
larity when considering the MBC-AC metric distribution, but less so for the alternative 
two distributions. Both models, one with a small-world (WS) structure and the other 
scale-free (BA), are regarded to generate graphs with different characteristics, however 
these results suggest a degree of similarity when using the MBC and AC metrics.

For the same metrics, the suite of infrastructure networks have also been analysed and 
plotted against the single standard deviation ellipses of the graph models for context 
and comparison (Fig. 4). For all three metric distributions, the infrastructure networks 
exhibit a tendency to lie in or near the standard deviation ellipse for the hierarchical 
graphs. Of the infrastructure networks examined, the river networks exhibit values clos-
est to the graphs with a hierarchical organisation, with the rail networks also showing 
a likeness to the hierarchical models, especially for the AC-CB (Fig. 4b) and MBC-CB 
(Fig. 4c) distributions. The energy networks are shown to return values throughout the 
three distributions between those expected of a tree network and those of a random net-
work. The values, however, are more suggestive of a hierarchical structure, with values 
most similar to the HR and HR+ models. Similarly, the road networks exhibit metric 
characteristics which are most like those of the HR and HR+ models, again suggesting 
they have a hierarchical structure. The air networks, conversely, exhibit a different set of 
characteristics, with the AC-MBC distribution being similar to the hierarchical graphs, 
while appearing as outliers for the AC-CB and MBC-CB distributions and not lying 
close to any of the graph model or other infrastructure networks analysed. This could 
be a result of these networks not being constrained by geography, with no limit on the 
number of connections a single node can have, resulting in highly disproportionate node 
degrees in comparison to other networks and not captured by the employed models.
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Graph failure behaviour

The greater robustness of the non-hierarchical graph models when compared to the 
hierarchical graph models is shown (Fig.  5a), where nodes are removed at random 
sequentially (one after the other) (see Sect. 2.4 for method details). The non-hierarchical 
models fail following the removal, on average, of 94% of the nodes, whereas the mean for 
the hierarchical models is 76%, failing 19% quicker. The results from both targeted fail-
ure mechanisms (node degree and node betweenness centrality) show thy have a similar 
impact (Fig. 5b, c), with in both scenarios the hierarchical models failing on average after 

Fig. 5  Percentage of nodes removed from the eight graph models realisations for the Random (a), degree 
(b) and betweenness (c) failure methods for the networks to become disconnected
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54% of nodes have been removed and the non-hierarchical models once 80% of nodes 
have been removed. Through all failure methods the HC graph model exhibits a differ-
ent behaviour to the other hierarchical models, failing 18% slower for the random strat-
egy and 48% slower for the targeted strategies. This greater robustness to perturbations 
results in the HC graph model appearing just as robust as the non-hierarchical models, 
suggesting it possess a hierarchical structure yet behaves more like the non-hierarchical 
models.

The behaviour of the graphs generated by each graph model when exposed to the three 
failure models (Figs. 6, 7 and 8) indicates that the non-hierarchical models (plots (a), (b), 
(c) and (d)) fragment into multiple components (y-axis) much later than the hierarchical 
models. Failure for non-hierarchical models generally doesn’t occur until around 50% of 
the nodes have been removed (where the x-axis shows the % of nodes removed, from 0 
to 100), irrespective of the failure model. The behaviour of the random models (plots (a) 
and (b)) exhibit a similar behaviour to all failure models with regard to when they start 
to fragment, though the number of components they then fragment into is much higher 
for the two targeted methods, degree and betweenness (Figs. 7 and 8), increases from 
20 and 40 to ~ 140 and ~ 210 for degree and betweenness failure methods respectively. 
The behaviour of the other two non-hierarchical models, WS and BA (plots (c) and (d)), 

Fig. 6  The response of the eight graph models to the random node selection failure model method. 
Each response is plotted with the y-axis showing the number of components and the x-axis showing the 
% of nodes removed from the graph, and thus the most robust graphs would show a small number of 
components, with any increase shown to the right of plots as x tends away from 0. Plots (a)–(d) show clear 
increase in the number of components to the right of the plots suggesting a robust response, whereas plots 
(e)–(h) show peaks much closer to the left and centre of the plots, suggesting a less robust response
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shows a more pronounced change, with the graphs not only starting to fragment earlier 
to the targeted methods, but also fragmenting into more components, from a maximum 
around 140 for the random failure model to 270 and 350 respectively for the two tar-
geted models.

It is clear that the hierarchical models, plots (e), (f ), (g) and (h), are more vulner-
able to failures than the non-hierarchical models, as indicated by the number of com-
ponents increasing much earlier when exposed to any of the three failure models. 
The tree model (plot (h)) starts to fragment after < 5% of nodes have been removed, 
with the peak in the number of components appearing after ~40% and ~10% of nodes 
have been removed for the random and targeted failure models respectively. The tree 
model graphs also fail much quicker with no components remaining left in the graphs 
quicker than any of the other models analysed. The hierarchical HR/HR+ models 
exhibit a similar behaviour with these also fragmenting as soon as a few nodes are 
removed, though are more robust to the failure models with the peak for the number 
of components being later (45–55% and 15–25% for the random targeted failure mod-
els) and for graphs remaining with some components for longer.

Fig. 7  The response of the eight graph models to the degree based node selection failure model method. 
Each response is plotted with the y-axis showing the number of components and the x-axis showing the 
% of nodes removed from the graph, and thus the most robust graphs would show a small number of 
components, with any increase shown to the right of plots as x tends away from 0. Plots (a)–(d) show clear 
increase in the number of components to the right of the plots suggesting a robust response, with a small 
number of exceptions in (c) and (d) where the targeted analysis results in a small number of 1000 graphs 
failing much more quickly. The other four plots (e), (f) and (h), show peaks much closer to the left of the 
plots, suggesting a less robust response, and plot (g) shows a unique response pattern, suggesting a greater 
robustness than in (a)–(d), but more than shown in (e), (f) and (h)
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Of significance is the behaviour exhibited by the HC graph model (plot (g)), which 
exhibits a very different behaviour to the other hierarchical models. For the random 
failure model the HC graphs fragment differently, with all but one simulation for the 
model showing it to be more robust with fewer components forming and no large 
increase as seen in the other models. However, for the targeted failure models the 
graphs instead fragment immediately into a large number of components, but then 
unlike all the other models they then don’t fail quickly and instead appear to be robust 
to further failures with these not causing further fragmentation of the graphs. After 
reaching a peak in the number of components the HC graphs don’t fail at least until a 
further 50% of the nodes have been removed, whereas in the other hierarchical mod-
els this value is much closer to 20%.

Infrastructure network failure

The infrastructure networks are more robust to the random perturbation method 
(Fig.  9a) than the targeted methods, node degree and node betweenness centrality 
(Fig. 9b, c). Across all infrastructure sectors, for the random method the networks fail 
once 63% <> 78% of nodes have been removed, compared to 38% <> 62% for the targeted 

Fig. 8  The response of the eight graph models to the betweenness based node selection failure model 
method. Each response is plotted with the y-axis showing the number of components and the x-axis 
showing the % of nodes removed from the graph, and thus the most robust graphs would show a small 
number of components, with any increase shown to the right of plots as x tends away from 0. Plots (e), (f) 
and (h) show a lack of robustness to the node failures with peaks in component numbers to the very left of 
the plots, whereas the peaks are much further to the right in plots (a)–(d) indicating a slower rate of failure/
fragmentation of the graphs. Plot (g) shows a unique behaviour of immediate fragmentation, but appears to 
then show some resilience to further node failures
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methods. In the random method this sees a limited variation between the robustness of 
the different networks, with the river networks being the least robust, failing after 63% of 
nodes have been removed, with the mean across the 8 infrastructure sets being 71.1%. In 
contrast the air networks were the least robust when the targeted methods were applied, 
failing after 38% of nodes had been removed, with the next worst performing being the 
river networks, which failed after an average of 49% of nodes had been removed. The 
most robust infrastructure was the road networks (national and regional), returning a 
value of 57.6%, also similar to the rail networks (national and regional), 55.4%.

As with the graph models, we can also analyse not just how quickly the infrastructure 
networks failed, but also how the structure, with regard to the number of components, 

Fig. 9  Average percentage of nodes removed from infrastructure networks before failing during the random 
(a), degree (b) and betweenness (c) failure methods



Page 19 of 25Robson et al. Appl Netw Sci            (2021) 6:65 	

changed as the networks were perturbed. The behaviour of each infrastructure net-
work is shown across the three failure models (Figs. 10, 11, 12), once again highlight-
ing a greater vulnerability to the targeted failure models than the random failure model. 
Most of the infrastructure networks exhibit a peak in the number of components around 
30.3–49.0% for the random failure model (Fig.  10), though the air networks (plot (a)) 
exhibit a peak much earlier, after 17.0% of nodes of have been removed. These same net-
works then however remain connected and do not completely fail until 79.6% of nodes 
have been removed, whereas the other infrastructure networks fail after 57.6–76.3% of 
nodes have been removed. This earlier peak in the number of components is also found 
for the targeted failure methods, degree (Fig. 11) and betweenness (Fig. 12) suggesting a 
greater vulnerability for failures in the flight networks. The ability of the air network to 
not fail completely, however, and continue to have some connected components until 
a greater proportion of nodes have been removed than in the other infrastructure net-
works, indicates a similar behaviour (and hence structure) to the HC graph model. The 
network fragments into communities, but these then are individually more resilient to 
failures than the network as a whole.

All infrastructure networks, with the exception of the air networks, exhibit a behav-
iour closer to the hierarchical models, and in particular, the HR+ model. For the random 

Fig. 10  Failure behaviour of the infrastructure networks under the random failure method. The y-axis shows 
the number of components and the x-axis shows the % of nodes removed from the graph, with a more 
robust network showing a smaller peak and towards the left of the plot
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failure model the peak number of components across the air networks occurs on aver-
ages when 39.8% of nodes have been removed, compared to 46.9% for the HR+ and 
84.7% for the WS/BA models. With the targeted failure models this peak shifts to the left 
occurring after 26.0% of nodes have been removed, compared to 21.5% and 63.5% for the 
HR+ and BA/WS models respectively. This much greater similarity to the hierarchical 
graph models reflects the results given by the metric approach, highlighting once again 
the presence of a hierarchical structure in infrastructure networks.

Discussion
The results have clearly indicated that hierarchical networks are distinctive from non-
hierarchical networks, both with regard to the structural characteristics as observed 
through the assortativity coefficient, maximum betweenness centrality and the number 
of cycle basis, as well through the response to perturbations. Statistically the hierarchi-
cal networks are different, with this being centred around a reliance on a single, or set of 
critical nodes, as denoted by the greater values for the maximum betweenness centrality 
metric, as well as a smaller set of cycle basis. These values, along with the assortativ-
ity coefficient, distinguish between the networks generated by the four non-hierarchical 
models and the four hierarchical models.

Fig. 11  Failure behaviour of the infrastructure networks under the degree failure method. The y-axis shows 
the number of components and the x-axis shows the % of nodes removed from the graph, with a more 
robust network showing a smaller peak and towards the left of the plot
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It is also apparent, however, that those networks which are hierarchically structured 
are also more vulnerable to perturbations, with the hierarchical models failing (on aver-
age) 19% and 33% faster for the random and targeted methods respectively, with the 
later appearing to exacerbate the weakness of the hierarchical structure. This vulnerabil-
ity, is a reliance on a single, or a small subset of nodes, as in the case of the scale-free 
and small-world networks when compared to the random networks (Albert and Bara-
basi 2002), which makes the networks vulnerable to removal of nodes. This is indicated 
through the greater maximum betweenness centrality in the hierarchical models, sug-
gesting a significant reliance on a single node for the majority of shortest paths between 
all nodes in the network. As well this, the low number of cycle basis reduces the poten-
tial for there being alternative paths/connections across the network once key nodes are 
removed, causing the network to begin to quickly fragment.

Significantly, the hierarchical characteristics have been found to be prominent 
in the suite of 42 infrastructure networks, exhibiting values more closely related to 
the hierarchical models than the non-hierarchical. The infrastructure networks also 
behave, when perturbed, more similarly to the hierarchical graph models than the 
non-hierarchical, further confirming the greater similarity to the hierarchical mod-
els. Some of the infrastructure networks, such as the rivers and the air networks, 

Fig. 12  Failure behaviour of the infrastructure networks under the betweenness failure method. The y-axis 
shows the number of components and the x-axis shows the % of nodes removed from the graph, with a 
more robust network showing a smaller peak and towards the left of the plot
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exhibit a greater similarity to the hierarchical networks, including a lack of robust-
ness to perturbations. This is caused by a reliance on key nodes, such as hub nodes in 
the case of air networks, which make these vulnerable to the removal of such nodes. 
This makes such networks extremely vulnerable to the failure of the most connected 
nodes, though due to a degree of redundancy, as shown by the number of cycle basis, 
the networks are less vulnerable to random node failures.

The lack of robustness exhibited across the suite of infrastructure networks clearly 
indicates a need to improve how infrastructure networks respond to perturbations. Of 
the suite of graph models analysed, the HC model, one of the four hierarchical models 
analysed, exhibited a unique robustness to failures whereby it is more robust than the 
other hierarchical models. The model has a community-based structure, where com-
munities of nodes are linked hierarchically to form a hierarchical network, but with 
well-connected communities of nodes embedded within. As a result, when perturbed, 
the communities within the network become disconnected from each other, though 
remain connected within themselves. For infrastructure networks, this fragmenta-
tion behaviour could provide a beneficial structure which allows those, which are not 
dependent on a single core network, to function at a more local scale. This possible 
alternative hierarchical structure may not be suitable for all infrastructure systems, 
but raises the possibility of networks retaining a hierarchical structure at the same 
time as improving their robustness to perturbations.

Understanding the properties which influence the robustness of infrastructure net-
works can help infrastructure planners and managers assess their own networks to 
determine where interventions may be needed, in the form of a small number of addi-
tional links for example that could significantly improve robustness to failures. As the 
resilience of real world networks becomes even more important under a changing cli-
mate, the use of the graph metrics presented here could become a useful tool to analyse 
such networks and enable the most efficient use of resources.

Further work is required to identify further fundamental characteristics of hierarchi-
cal complex networks and their response to a spectrum of perturbations scenarios. This 
study has examined some of the characteristics that may help to identify and understand 
hierarchical networks and their behaviours. More work is required, however, to explore 
the extent of the role a hierarchical structure has in the characteristics of the response 
behaviour of both graphs and critical spatial infrastructure networks compared to other 
structural properties which may also have an effect, such as the community and mod-
ular structures explored by some studies (Ash and Newth 2007; Shai et  al. 2015) that 
may influence how a network responds when perturbed. The ability for networks to be 
robust to failures is critical, though within an infrastructure context it must be recog-
nised that networks do not always function in isolation, but instead are connected to one 
another, relying on each other to function creating dependencies and interdependencies 
(Rinaldi et al. 2001; Buldyrev et al. 2010; Gao et al. 2011; Reis et al. 2014; Goldbeck et al. 
2019). Such links, for example the reliance on electricity for railways for power, and the 
reverse for the delivery of raw materials, create a new dimension when considering the 
robustness of networks. Interdependencies have been shown to impact the robustness of 
synthetic hierarchical networks negatively (Shekhtman and Havlin 2018), and therefore 
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further work is required to understand in more detail the implications of such results on 
complex hierarchical spatial infrastructure networks, as identified in this study.

Conclusions
The characteristics of hierarchically organised networks have been explored, identify-
ing the key measures which can be used to begin to distinguish between hierarchical 
and non-hierarchical networks. This has led to the recognition that many real world spa-
tial critical infrastructure networks are hierarchically-structured, and as a result exhibit 
a weak robustness to perturbations, especially those which affect critical nodes within 
the network (e.g. hub nodes). More significantly, critical infrastructure networks appear 
share a greater similarity to the hierarchical models than the non-hierarchical models, 
including the inherent lack of robustness to perturbations. This study has also shown 
however that within those hierarchies where a community structure is present, such as 
in the HC model, there is a resilience where these communities are more robust than 
the network as a whole, allowing some degree of connectivity and potential functionality 
even when these communities may become disconnected from each other through the 
failure of the hierarchical structure. This improved understanding both highlights a sig-
nificant weakness in the infrastructure networks which we rely upon, while also promis-
ing insights into the characteristics which would enable such infrastructure systems to 
be more robust to node failures.

This research has used a number of novel methods, including the use of both large 
suites of graphs and real word spatial infrastructure networks in the characterisation of 
hierarchies and the consequent impact on robustness to perturbations. Building further 
on this, future work will explore the ability to adapt existing infrastructure networks to 
improve their ability to withstand perturbations through adopting some the characteris-
tics found within more robust network models such as the HC model. Further analysis 
will also explore the robustness of infrastructure networks to the explicit geographical 
hazards, and how the hierarchical structure of such networks affects their ability to con-
tinue to function.
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