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Introduction
This paper is about graph matchability in practice. Specifically, when given two graphs 
and an unobserved “true” bijection (also called “true matching” or “true alignment”) 
between their vertices, will exact (i.e. optimal) graph matching and approximate graph 
matching algorithms provide us with the matching which is the “truth”? How might we 
know in actual practice whether the “truth” has been found? Our work is in response to 
the latter question. The main contribution here is our formulation of the Phantom Align-
ment Strength Conjecture in Section  “Phantom alignment strength conjecture, conse-
quences”, followed up in Sect. “Phantom alignment strength conjecture, consequences” 
with the practical implications of this conjecture in deciding when alignment strength is 
high enough to indicate truth. This conjecture is also interesting as a theoretical matter, 
completely aside from its consequences.

Abstract 

The alignment strength of a graph matching is a quantity that gives the practitioner 
a measure of the correlation of the two graphs, and it can also give the practitioner 
a sense for whether the graph matching algorithm found the true matching. Unfor-
tunately, when a graph matching algorithm fails to find the truth because of weak 
signal, there may be “phantom alignment strength” from meaningless matchings that, 
by random noise, have fewer disagreements than average (sometimes substantially 
fewer); this alignment strength may give the misleading appearance of significance. A 
practitioner needs to know what level of alignment strength may be phantom align-
ment strength and what level indicates that the graph matching algorithm obtained 
the true matching and is a meaningful measure of the graph correlation. The Phantom 
Alignment Strength Conjecture introduced here provides a principled and practical 
means to approach this issue. We provide empirical evidence for the conjecture, and 
explore its consequences.
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Graphs (networks) are a commonly used data modality for encoding relationships, 
interactions, and dependencies in data in an incredibly broad range of the sciences and 
engineering; this includes sociology (e.g., social network analysis Wasserman and Faust 
1994), neuroscience connectomics (Bullmore and Sporns 2009; Vogelstein et al. 2019), 
biology (e.g., biological interaction networks Szklarczyk et  al. 2015; Tong et  al. 2004), 
and automated knowledge discovery (Wang et al. 2017), to name just a few application 
areas.

The graph matching problem is, given two graphs with the same number of vertices, to 
find the bijection between the vertex sets that minimizes the number of adjacency “disa-
greements” between the graphs. Often there is an underlying “true” bijection that the 
graph matching is attempting to recover/approximate. Sometimes part of this true bijec-
tion is known a-priori, in which case minimizing the number of disagreements over the 
remainder of the bijection is called seeded graph matching. Graph matching and seeded 
graph matching are formally defined in Sect. “Overview: seeded graph matching, align-
ment strength”.

Graph matching and seeded graph matching are used in a wide variety of places, and 
we mention just a few. Information about the interactions amongst objects of interest is 
sometimes split across multiple networks or multiple layers of the same network (Kivelä 
et al. 2014). In many applications, such as neuroscience connectomics where, for exam-
ple, DT-MRI derived graphs can be generated by aligning scans to a common template 
before uncovering the underlying edge structure (Gray et al. 2012), the vertices across 
networks or across layers are a priori aligned and identified. These aligned vertex labels 
can then be used to create joint network inference procedures that can leverage the sig-
nal across multiple networks for more powerful statistical inference (Levin et al. 2017; 
Chen et al. 2016; Arroyo et al. 2019; Durante and Dunson 2018). In many other applica-
tions, the vertex labels across networks or across layers are unknown or noisily observed. 
Social networks provide a canonical example of this, where common users across differ-
ent social network platforms may use different user names and their user profiles may 
not be linked across networks. Discovering this latent correspondence (in the social 
network example, this is anchoring profiles to a common user across networks) is a 
key inference task (Lin et al. 2010; Yartseva and Grossglauser 2013) for leveraging the 
information across networks for subsequent inference, and it is a key consideration for 
understanding the degree of user anonymity (Ding et al. 2010) across platforms.

For a thorough survey of the relevant graph matching literature, see Conte et al. (2004), 
Foggia et al. (2014), Emmert-Streib et al. (2016).

The graph matching problem is computationally complex. Indeed, the simpler graph 
isomorphism problem has been shown to be of quasi-polynomial complexity (Babai 
2016). Allowing loopy, weighted, directed graphs makes graph matching equivalent to 
the NP-hard quadratic assignment problem. Due to its practical importance and com-
putational difficulty, a large branch of the graph matching literature is devoted to devel-
oping algorithms to efficiently, but approximately, solve the graph matching problem; 
see, for example, Fishkind et al. (2019a), Umeyama (1988), Singh et al. (2007), Zaslavs-
kiy et al. (2009), Zhou and De la Torre (2012), Vogelstein et al. (2014), Zhang and Tong 
(2016), Feizi et al. (2016), Heimann et al. (2018) among myriad others.
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Somewhat dual to the algorithmic development literature, a large branch of the mod-
ern graph matching literature is devoted to theoretically exploring the question of graph 
matchability, also called graph de-anonymization; this is the question of determining 
when there is enough signal present for graph matching to recover the “true” bijection. 
Many of the recent papers in this area have introduced latent alignment across graphs 
by correlating the edges across networks between common pairs of vertices, focusing 
on understanding the phase transition between matchable and non-matchable networks 
in terms of the level of correlation across networks and/or the sparsity level of the net-
works; see, for example, Pedarsani and Grossglauser (2011), Patsolic et al. (2014), Cullina 
and Kiyavash (2016), Lyzinski et al. (2016), Cullina and Kiyavash (2017), Sussman et al. 
(2019), Cullina et al. (2019), Fan et al. (2019), Ding et al. (2020), Mossel and Xu (2020).

In Fishkind et al. (2019b), a novel measure of graph correlation between two random 
graphs called total correlation is introduced; it is neatly partitioned into an inter-graph 
contribution (the “edge correlation” that had been the previous focus in the literature) 
and a novel intra-graph contribution. Furthermore, they introduce a statistic called 
alignment strength, which is 1 minus a normalized count of the number of disagree-
ments in an optimal/true graph match; they prove under mild conditions that alignment 
strength is a strongly consistent estimator of total correlation. Experimental results in 
Fishkind et al. (2019b) suggest that the matchability phase transition, as well as the com-
plexity of the problem, is a function of this more nuanced total correlation rather than 
simply the cross-graph edge correlation/edge sparsity that had been the previous focus 
in the literature.

Analyses mining the matchability phase transition in the literature that also have con-
sidered similarity across generative network models beyond simple sparsity have thus far 
focused on simple community-structured network models (Onaran et al. 2016; Shirani 
et al. 2018; Lyzinski 2018), or have proceeded by removing the heterogeneous within-
graph model information and simply using the across graph edge correlation (Lyzinski 
and Sussman 2020). Recently, there have been numerous papers in the literature at the 
interface between algorithm development and mining matchability phase-transitions; 
see, for instance, Barak et al. (2019), Mossel and Xu (2020), Ding et al. (2020). A common 
theme of many of these results is that, under assumptions on the across graph edge-cor-
relation and network sparsity, algorithms are designed to efficiently (or approximately 
efficiently) match graphs with corresponding theoretical guarantees on the performance 
of the algorithms in recovering the latent alignment.

However, the question remains how a practitioner knows in practice whether or not 
a graph matching has successfully recovered the truth. This issue is not resolved by 
asymptotic analysis with hidden constants. Nor, in general, are the underlying param-
eters known to the practitioner. It seems that the graph alignment statistic is a very 
natural metric to use in deciding if the truth is found. Unfortunately, when there is an 
absence of signal, an optimal (or approximately optimal) graph matching will find spuri-
ous and random alignment strength due to chance. Indeed, this meaningless alignment 
strength can be high and misleading. How do we gauge whether or not it is high enough 
to signal that truth is found?

After formally defining seeded graph matching and alignment strength in Sect.  “Over-
view: seeded graph matching, alignment strength” and defining the correlated Bernoulli 
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random graph model (and attendant parameters) in Sect.  “The correlated Bernoulli ran-
dom graph model”, we then address this issue with our Phantom Alignment Strength 
Conjecture in Sect.  “Phantom alignment strength conjecture, consequences”, and in the 
ensuing discussion in Sect. “Phantom alignment strength conjecture, consequences”. Then, 
in Sect.  “Empirical evidence in favor of the phantom alignment strength conjecture”, we 
present empirical evidence for the conjecture using synthetic and real data, and comparing 
to theoretical results; Sect. “Empirical evidence in favor of the phantom alignment strength 
conjecture” begins with a thorough summary. This is followed in Sect. “Notable mentions 
and future directions, plus caveats” by notable mentions, and future directions.

Overview: seeded graph matching, alignment strength
In the seeded graph matching setting, we are given two simple graphs, say they are 
G1 = (V1,E1) and G2 = (V2,E2) , such that |V1| = |V2| , denote the number of vertices 
n := |V1| . Let Π denote the set of all bijections V1 → V2 . It is usually understood that there 
exits a “true” bijection ϕ∗ ∈ Π which represents a natural correspondence between the ver-
tices in V1 and the vertices in V2 ; for example, V1 and V2 might be the same people, with E1 
indicating which pairs exchanged emails and E2 indicating pairs that communicated in a 
different medium. Or G1 may be the electrical connectome (brain graph) of a worm and G2 
might be the chemical connectome of the same worm, both graphs sharing the same vertex 
set of neurons. The vertex set V1 is partitioned into two disjoint sets, S “seeds” (possibly 
empty) and N  “nonseeds,” denote s := |S| and n := |N | . (When s = 0 this is the conven-
tional graph matching problem.) The graphs G1 and G2 are observed, and the values of ϕ∗ 
are observed on the set of seeds S , however the values of ϕ∗ are not observed on the non-
seeds N  , and one of several important tasks is to estimate ϕ∗.

Let ΠS denote the set of all bijections V1 → V2 that agree with ϕ∗ on the seeds S . For any 
ϕ ∈ ΠS , its match ratio is defined to be 1n |{v ∈ N : ϕ(v) = ϕ∗(v)}| , i.e. the fraction of the 
nonseeds that are correctly matched by ϕ . (It is common to multiply the match ratio by 100 
to express it as a percentage.)

For any set V, let 
(V
2

)

 denote the set of two-element subsets of V; for each i = 1, 2 and any 
{u, v} ∈

(Vi
2

)

 let u ∼Gi v and u  ∼Gi v denote adjacency and, respectively, nonadjacency of u 
and v in Gi . Next, let 1 denote the indicator function for its subscript. Given any ϕ ∈ Π , we 
define the full number of disagreements through ϕ to be

and, given any ϕ ∈ ΠS , we define the restricted number of disagreements through ϕ to be

The seeded graph matching problem is to find

(1)
D′(ϕ) :=

∑

{u,v}∈(
V1
2 )

(

1[u∼G1
v]∧[ϕ(u)�∼G2

ϕ(v)] + 1[u�∼G1
v]∧[ϕ(u)∼G2

ϕ(v)]

)

(2)
D(ϕ) :=

∑

{u,v}∈(N2 )

(

1[u∼G1
v]∧[ϕ(u)�∼G2

ϕ(v)] + 1[u�∼G1
v]∧[ϕ(u)∼G2

ϕ(v)]

)

.

(3)ϕ̂ ∈ arg min
ϕ∈ΠS

D′(ϕ),
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and the idea is that ϕ̂ is an estimate for the true bijection ϕ∗ . Unfortunately, except in the 
smallest instances, computing ϕ̂ is intractable. A state-of-the-art algorithm SGM from 
(Fishkind et al. 2019a) is commonly used to approximately solve the optimization prob-
lem in (3), and we denote its output ϕ̂SGM (∈ ΠS) , and it is an approximation of ϕ̂ and, 
hence, an approximation of ϕ∗ . For any ϕ ∈ ΠS , the full alignment strength str′(ϕ) and 
the restricted alignment strength str(ϕ) are defined as

Although the denominators of (4) have exponentially many summands, alignment 
strength is easily computed as follows. For i = 1, 2 , define the full density of Gi as 
d
′Gi :=

|Ei|

(n2)
 and the restricted density of Gi as dGi = the number of edges of Gi induced 

by N  , divided by 
(

n
2

)

 . It holds that

see Fishkind et al. (2019b) for the derivation of (5) from (4).
The importance of alignment strength to a practitioner is twofold:
First, the alignment strength of ϕ∗ (and its proxies ϕ̂ and ϕ̂SGM ) may be thought of as 

a measure of how similar the structure of the graphs G1 and G2 are through the “true” 
bijection; indeed, if the number of disagreements under ϕ∗ [and its proxies ϕ̂ and 
ϕ̂SGM ) is about equal to the average over all bijections then its alignment strength is 
near 0 (as clearly seen from the definition in (4)] and, at the other extreme, if ϕ∗ (and 
its proxies ϕ̂ and ϕ̂SGM ) is nearly an isomorphism between G1 and G2 then its align-
ment strength is near 1. It was proven in Fishkind et al. (2019b) that the full alignment 
strength of the “true” bijection str′(ϕ∗) is a strongly consistent estimator of ̺T  , which 
is a parameter called the total correlation between the two graphs G1 and G2 , defined 
in Sect. “The correlated Bernoulli random graph model”.

Another way that alignment strength is of much importance to a practitioner is in pro-
viding confidence that ϕ̂SGM or ϕ̂ is a good estimate of ϕ∗ , the “truth.” If str(ϕ̂SGM) or 
str(ϕ̂) is high enough then we may be confident that a meaningful match capturing simi-
lar graph structure has been found, and therefore ϕ̂SGM or ϕ̂ is approximately or exactly 
ϕ∗ . But, how high is high enough?

Indeed, these issues in the use of alignment strength become vastly more complicated 
by the possibility of phantom alignment strength. This is a phenomenon that occurs 
when, in the presence of weak signal, meaningless matchings have many fewer disagree-
ments than average (sometimes very substantially fewer) due to random noise, and ϕ̂ 
and/or ϕ̂SGM is one of these meaningless matchings—optimal in the optimization prob-
lem, but meaningless as estimates of ϕ∗ . Indeed, the alignment strength of ϕ̂ and/or ϕ̂SGM 
may be elevated enough to give the misleading appearance of significance when, in real-
ity, they don’t at all resemble ϕ∗ . This will be illustrated in Sect. “Empirical evidence in 
favor of the phantom alignment strength conjecture”.

(4)str
′(ϕ) := 1−

D′(ϕ)
1
n!

∑

φ∈Π D′(φ)
and str(ϕ) := 1−

D(ϕ)
1
n!

∑

φ∈ΠS D(φ)
.

(5)
str

′(ϕ) = 1−
D′(ϕ)/

(

n

2

)

d′G1(1− d′G2)+ (1− d′G1)d′G2
and

str(ϕ) = 1−
D(ϕ)/

(n
2

)

dG1(1− dG2)+ (1− dG1)dG2
;
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The purpose of this paper is to give a principled, practical means of approaching the 
decision of what level of alignment strength for ϕ̂ and/or ϕ̂SGM indicates that they are 
a good approximation of ϕ∗ , in which case the alignment strength reflects the amount 
of meaningful similar structure between G1 and G2—beyond the random similarity 
between completely unrelated graphs.

(A note on terminology: We define both full alignment strength and restricted align-
ment strength since each will end up being important at a different time. The Phantom 
Alignment Strength Conjecture of Sect. “Phantom alignment strength conjecture, con-
sequences” requires restricted alignment strength specifically; indeed, since full align-
ment strength includes the seeds, this would dilute the desired effect, falsifying the 
conjecture conclusion. However, after we have confidence that our graph matching is the 
true matching, it is then full alignment strength that will be a better estimator of total 
correlation introduced in Sect. “The correlated Bernoulli random graph model”).

The correlated Bernoulli random graph model

Definition 1  Given positive integer n , vertex set V such that |V | = n , the param-
eters  of  the  correlated Bernoulli random graph model are Bernoulli parameters 
p{u,v} ∈ [0, 1] for each {u, v} ∈

(V
2

)

 , and an edge correlation parameter ̺ e ∈ [0, 1] . The pair 
of random graphs (G1,G2) have a correlated Bernoulli random graph distribution when 
as follows: G1 and G2 each have vertex set V. For each {u, v} ∈

(V
2

)

 , and each i = 1, 2 , the 
probability of u ∼Gi v is the Bernoulli parameter p{u,v} , and the Pearson correlation for 
random variables 1v∼G1

w and 1v∼G2
w is  the  edge  correlation parameter ̺e . Other than 

these dependencies, the rest of the adjacencies are independent.

The distribution of the pair of random graphs G1,G2 is determined by the above (see 
Fishkind et al. 2019b). Of course, the identity function is the “true” matching ϕ∗ between 
G1 and G2.

(If the Bernoulli parameters are all equal, then the random graphs G1 and G2 are each 
said to be Erdos–Renyi, so the correlated Erdos–Renyi random graph model is a special 
case of the correlated Bernoulli random graph model.)

Important functions of the model parameters are as follows. The Bernoulli mean and 
Bernoulli variance are, respectively, defined as

Assume that µ is not equal to 0 nor 1. The heterogeneity correlation is defined in Fish-
kind et al. (2019b) as

it is in the unit interval [0, 1]; see Fishkind et al. (2019b). Also pointed out in Fishkind 
et al. (2019b) is that ̺ h is 0 if and only if all Bernoulli parameters are equal (i.e. the graphs 
are Erdos–Renyi) and ̺h is 1 if and only if all Bernoulli parameters are {0, 1}-valued. In 

µ :=

∑

{u,v}∈(V2)
p{u,v}

(

n

2

) , σ 2 :=

∑

{u,v}∈(V2)
(p{u,v} − µ)2

(

n

2

) .

(6)̺h :=
σ 2

µ(1− µ)
;
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particular, if ̺ h is 1 then G1 and G2 are almost surely isomorphic. The total correlation ̺ T 
is defined in Fishkind et al. (2019b) to satisfy the relationship

In the following key result, Theorem 1, which was proved in Fishkind et al. (2019b), let 
us consider a probability space that incorporates correlated Bernoulli random graph dis-
tributions for each of the number of vertices n = 1, 2, 3, . . . . Thus, the parameters are 
functions of n , but to prevent notation clutter we omit notating the dependence on n . 
The symbol a.s.−−→ denotes almost sure convergence.

Theorem  1  Suppose µ is bounded away from 0 and 1, over all n . Then it holds that 
str

′(ϕ∗)− ̺T
a.s.
−−→0.

Theorem 1 together with Eq. 7 shows that the alignment strength of the true bijection 
captures (asymptotically) an underlying correlation between the random graphs that can be 
neatly (and symmetrically, per Eq. 7) partitioned into a inter-graph contribution (edge cor-
relation) and an intra-graph contribution (heterogeneity correlation).

Next, instead of considering a sequence of correlated Bernoulli random graphs, let us dig 
down deeper one probabilistic level. Specifically, suppose that for each {u, v} ∈

(V
2

)

 there 
exists an interval-[0, 1]-valued distribution F{u,v} such that the Bernoulli parameter p{u,v} (in 
the correlated Bernoulli random graph model) is an independent random variable with dis-
tribution F{u,v} . Denote the mean of this distribution µF{u,v} , denote the variance of this dis-
tribution σ 2

F{u,v}
 , and (if we have µF{u,v} not 0 nor 1) define the heterogeneity correlation of 

the distribution to be

Theorem 2  Given an edge correlation parameter ̺e ∈ [0, 1] and, for each {u, v} ∈
(V
2

)

 , 
given a [0, 1]-valued distribution F{u,v} such that the Bernoulli parameter p{u,v} is inde-
pendently distributed as F{u,v} , then the distribution of the associated correlated Bernoulli 
random graphs (G1,G2) is completely specified by ̺e and, for all {u, v} ∈

(V
2

)

 , the values of 
µF{u,v} and ̺F{u,v}.

Proof
Consider any {u, v} ∈

(V
2

)

 ; the Bernoulli coefficient p{u,v} , call it X, has distribution F{u,v} . 
For any p ∈ [0, 1] , conditioning on X = p , the joint probabilities of combinations of u, v 
adjacency in G1,G2 are computed in a straightforward way (see Fishkind et  al. 2019b 
Appendix A) in the table:

(7)(1− ̺T ) = (1− ̺h)(1− ̺e).

(8)̺F{u,v} :=
σ 2
F{u,v}

µF{u,v}(1− µF{u,v})
.

(9)
u ∼G2 v u �∼G2 v

u ∼G1 v p2 + ̺ep(1− p) (1− ̺e)p(1− p)

u �∼G1 v (1− ̺e)p(1− p) (1− p)2 + ̺ep(1− p)
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Probabilities of these adjacency combinations, relative to the underlying distribution 
F{u,v} , are computed by integrating/summing the conditional probabilities (in table) times 
the density/mass of F{u,v} , obtaining

Then, for each i = 1, 2 , because P[u ∼Gi v] = EX = µF{u,v} we have all four adjacency 
combinations as functions of µF{u,v} and ̺F{u,v} . The result follows from the independence 
across all pairs of vertices. �

In the Phantom Alignment Strength Conjecture we assume all distributions F{u,v} are 
the same, call the common distribution F. Note that Bernoulli mean μ and heterogeneity 
correlation ̺h are now random variables, and if n is large, then μ and ̺h will respectively 
be good estimators of µF and ̺ F . A very important consequence of Theorem 2 is that the 
only information that matters regarding F is contained (well-estimated) in the quantities 
µ and ̺h.

Phantom alignment strength conjecture, consequences
In this section, we propose the Phantom Alignment Strength Conjecture, which is the 
central purpose of this paper. We then discuss its consequences; the conjecture gives us 
a principled and practical way to decide if we should be convinced that the output of a 
graph matching algorithm well-approximates the true matching.

Henceforth we use the term alignment strength to refer to the restricted alignment 
strength.

Consider correlated Bernoulli random graphs G1,G2 such that there are a “moder-
ate” number n of nonseed vertices (say n ≥ 300 ), s seeds (selected discrete uniformly 
from the n := n+ s vertices), and Bernoulli parameters are independently realized 
from any fixed [0,  1]-valued distribution with moderate mean µ′ (say .05 < µ′ < .95 ). 
The Phantom Alignment Strength Conjecture states that, subject to caveats, as discussed 
in Sect. “Notable mentions and future directions, plus caveats”, there exists a phantom 
alignment strength value q̂ ≡ q̂(n, s,µ′) ∈ [0, 1] such that str(ϕ̂) has “negligible” variance 
and is approximately a function of the total correlation ̺T and, specifically, it holds that, 
with “high probability,”

Moreover, the conjecture states that, when using the seeded graph matching algo-
rithm SGM of Fishkind et  al. (2019a), (given n, s,µ′ , as above) then there exists 
q̂SGM ≡ q̂SGM(n, s,µ′) ∈ [0, 1] such that q̂SGM ≥ q̂ , and str(ϕ̂SGM) has “negligible” vari-
ance and is approximately a function of the total correlation ̺T and, specifically, it holds 
that, with “high probability,”

P[u ∼G1
v and u �∼G2

v] = P[u �∼G1
v and u ∼G2

v]

= (1− ̺e)(EX − EX
2)

= (1− ̺e)(EX − (EX)2 − EX
2 + (EX)2)

= (1− ̺e)[µF{u,v}(1− µF{u,v}) − σ 2
F{u,v}

]

= µF{u,v}(1− µF{u,v})(1− ̺e)(1− ̺F{u,v}).

(10)str(ϕ̂) ≈

{

̺T if ̺T > q̂; in which case ϕ̂ = ϕ∗

q̂ if ̺T ≤ q̂; in which case ϕ̂ is "very different from" ϕ∗ .
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 Note that both str(ϕ̂) and str(ϕ̂SGM) are conjectured to be an approximately piecewise 
linear function of ̺T ; two pieces, one piece with slope 0 and one piece with slope 1. 
However, str(ϕ̂) is continuous and shaped like a hockey stick (see Fig. 2f ), whereas for 
str(ϕ̂SGM) there can be a discontinuity (see Fig. 2b); but the function value of the linear 
portion with slope 0 is the same for str(ϕ̂SGM) as it is for str(ϕ̂) , namely it is the phantom 
alignment strength value q̂.

There are important consequences of the Phantom Alignment Strength Conjecture 
for the practitioner. Suppose that a practitioner has two particular graphs G1,G2 with 
n nonseed vertices and s seeds that can be considered as realized from a correlated Ber-
noulli random graph model, and the practitioner wants to seeded graph match them, 
computing ϕ̂SGM as an approximation of the true matching ϕ∗ . How can the practitioner 
tell if ϕ̂SGM is ϕ∗ ? This conjecture provides a principled, practical mechanism. The prac-
titioner should realize two independent Erdos–Renyi graphs H1 and H2 with n nonseed 
vertices, s seeds, and adjacency probability parameter p equal to the combined density of 
G1 and G2 . Then use SGM to seeded graph match H1 and H2 , and the alignment strength 
of the bijection (between H1 and H2 ) is approximately q̂ ≡ q̂(n, s,µ) , since the total cor-
relation in generating H1 and H2 is 0, by design. Then, when subsequently seeded graph 
matching G1 and G2 , if str(ϕ̂SGM) is greater than some predetermined and fixed ǫ > 0 
above q̂ , then that would indicate that ϕ̂SGM = ϕ∗ and, if str(ϕ̂SGM) is less than this, then 
there is no confidence that ϕ̂SGM is ϕ∗ . Moreover, in the former case the practitioner can 
have confidence in approximating str(ϕ̂SGM) ≈ ̺T , and in the latter case there wouldn’t 
be confidence in this approximation. (In the former case, note that the full alignment 
strength str′(ϕ̂SGM) would then be an even better estimate of ̺T .)

(If some of the model assumptions are violated and the Bernoulli mean of G1 may be 
different from G2 , then it may be better not to combine their densities, but rather to real-
ize H1 and H2 as Erdos–Renyi graphs with respective adjacency parameter equal to their 
respective densities.)

Empirical evidence in favor of the phantom alignment strength conjecture
In this section we provide empirical evidence for the Phantom Alignment Strength 
Conjecture.

A summary is as follows:
We begin in Sect.  “Of hockey sticks and phantom alignment strength” with a scale 

small enough (n is just on the order of tens) to solve seeded graph matching and attain 
optimality. Although the Phantom Alignment Strength Conjecture does not apply 
because n is so small, we nonetheless see many ingredients of the conjecture. Then, in 
Sect. “Of hockey sticks and broken hockey sticks”, we use synthetic data on a scale for 
the conjecture to be applicable, and we empirically demonstrate the conjecture for many 
types of Bernoulli parameter distributions; unimodal, bimodal, symmetric, skewed, etc. 
The SGM algorithm is employed for seeded graph matching, since exact optimality is 
unattainable in practice.

(11)

str(ϕ̂SGM) ≈

{

̺T if̺T > q̂SGM; in which case ϕ̂SGM = ϕ∗

q̂ if ̺T ≤ q̂SGM; in which case ϕ̂SGM is "very different" from ϕ∗ .
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In Sect.  “Phantom alignment strength versus theoretical matchability threshold”, the 
alignment strength of completely uncorrelated Erdos–Renyi graphs (graph matched 
with SGM, using no seeds), taken as a function of n, is empirically demonstrated to be 
the same order of growth (in terms of n) as the theoretical bound for matchability (as a 
function of n), which suggests that the two quantities are the same, in excellent accord-
ance with the conjecture.

Then, in Sect. “Block settings”, we observe that when there is block structure and dif-
fering distributions for the Bernoulli parameters by block (thus the conjecture hypoth-
eses are not adhered to) then the conjecture’s claims may fail to hold, to some degree. 
Nonetheless, there is still a phantom alignment strength that allows for a procedure 
similar to what we recommend in Sect. “Phantom alignment strength conjecture, con-
sequences” to be successfully used for deciding when alignment strength is significant 
enough to indicate that the seeded graph matching has found the truth.

Real data is then used for demonstration in Sects. “Real data; matching graphs to noisy 
renditions” and “Real data; matching same objects under different modalities”.

Specifically, in Sect. “Real data; matching graphs to noisy renditions”, we use a human 
connectome at many different resolution levels, and graph match it to a manually noised 
copy of itself.

Then, in Sect. “Real data; matching same objects under different modalities”, we con-
sider several pairs of real-data graphs (titled Wikipdeia, Enron, and C Elegans) whose 
vertices are the same objects, and the adjacencies in each pair of graphs represent rela-
tionships between the objects across two different modalities.

All of these experiments serve as strong empirical evidence for the Phantom Align-
ment Strength Conjecture, and motivate its use.

Of hockey sticks and phantom alignment strength

We begin with an experiment in which the value of n is well below what is required 
in the statement of the Phantom Alignment Strength Conjecture. However, n is small 
enough here to enable us to compute ϕ̂ exactly, using the integer programming formula-
tion from Fishkind et al. (2019b). We will be able to see many features of the Phantom 
Alignment Strength Conjecture, and we will also see that phantom alignment strength is 
not just an artifact of the SGM algorithm.

For each value of ̺e from 0 to 1 in increments of .025, we did 100 independent rep-
etitions of the following experiment. We realized a pair of correlated Bernoulli random 
graphs on n = 30 vertices with edge correlation ̺e and, for each pair of vertices, the 
associated Bernoulli parameter was 0.5. (In particular, the graphs are correlated Erdos–
Renyi.) Since here σ 2 = 0 , we have that ̺h = 0 , and thus ̺T = ̺e . We discrete uniform 
randomly chose s = 15 seeds, so there were n = 15 nonseeds. For each experiment, we 
solved the seeded graph matching problem to optimality (indeed, n = 15 is small enough 
to do so), obtaining ϕ̂ . If it happened that ϕ̂ = ϕ∗ then we plotted a green asterisk in 
Fig. 1 for the resulting alignment strength str(ϕ̂) against the total correlation ̺T and, if 
ϕ̂ �= ϕ∗ , we plotted a red asterisk for the resulting alignment strength str(ϕ̂) against the 
total correlation ̺T . The black diamonds in Fig. 1 are the mean alignment strengths for 
the 100 repetitions, plotted for each value of ̺e.
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It is readily seen from Fig. 1 that the variance for the alignment strength of ϕ̂ is quite 
high, which is reason to not formulate the Phantom Alignment Strength Conjecture 
until n is much larger. Other that this, observe that if we substitute “mean of the align-
ment strength of ϕ̂ ” into the conjecture in place of “alignment strength of ϕ̂ ” then the 
conjecture would hold here. Indeed, when ̺T > ≈ 0.44 ≡ q̂ we very generally had that 
ϕ̂ = ϕ∗ , and when ̺T ≤ ≈ 0.44 we very generally had that ϕ̂ �= ϕ∗ . (This boundary is 
not sharp, but is close.) Also, note that when ̺T > ≈ 0.44 , the mean of the alignment 
strength was approximately equal to ̺T . Furthermore, when ̺T ≤ ≈ 0.44 , we see that 
the (mean) alignment strength of ϕ̂ is the phantom alignment strength (mean) of ≈ 0.44 . 
Indeed, in this latter case, the alignment strength of ϕ̂ is a misleading high value, and is 
not meaningful.

Of hockey sticks and broken hockey sticks

In this section, we use synthetic data that meets the hypotheses of the Phantom Align-
ment Strength Conjecture. Our setup was as follows. We chose the number of nonseeds 
to be n = 1000 , and we repeated an experiment for all combinations of the following:

•	 Each pair of Beta distribution parameters α,β listed in the following table: 

α β

Pair A 1 1
Pair B 0.5 0.5
Pair C 2 2
Pair D 5 1
Pair E 2 5

Fig. 1  For each ̺e from 0 to 1 in increments of .025, alignment strength of ϕ̂ for 100 independent realizations 
when all Bernoulli probabilities were 0.5 (in particular, ̺T = ̺e ), with n = 15 nonseeds, s = 15 seeds, a green 
asterisk if ϕ̂ = ϕ∗ , else a red asterisk
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Fig. 2  Alignment strength str(ϕ̂SGM) plotted against total correlation ̺ T  for the synthetic data experiments in 
Sect. “Of hockey sticks and broken hockey sticks”, separated according to the number of seeds s. The number 
of nonseeds was n = 1000 , and only the case of µ′ = 0.5 is shown here. Match ratio of each experiment is 
color coded green, blue, or red according to the legend above. Subfigures g and h are zooms into subfigures 
c and d, to increase the granularity so that the thresholding is better seen
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•	 Each µ′ =(mean of the scaled/translated Beta distribution) from .1 to .9 in incre-
ments of .1,

•	 Each number of seeds s = 0, 10, 20, 50, 250, 1000,
•	 Each value of edge correlation ̺e from 0 to 1 in increments of 0.025,
•	 Each value of δ from 0 to δmax := min{α+β

α
µ′, α+β

β
(1− µ′)} in increments of 110δmax.

For each combination of the above, we realized a pair of correlated Bernoulli ran-
dom graphs on n+ s vertices, with edge correlation ̺e and, for each pair of vertices, 
the associated Bernoulli parameter was independently realized from the distribution 
δ · Beta(α,β)+ µ′ − δ α

α+β
 . Note that

•	 The distribution δ · Beta(α,β)+ µ′ − δ α
α+β

 has support interval of length δ , has 
mean µ′ , and the support interval is contained in the interval [0, 1].

•	 The distribution δ · Beta(α,β)+ µ′ − δ α
α+β

 is uniform when α,β is 1,  1, and is 
bimodal when α,β is 0.5, 0.5, is symmetric unimodal when α,β is 2, 2, and is skewed 
in the other two cases, in different directions, one where the mode is an endpoint of 
the support and one where the mode is interior of the support.

•	 The Bernoulli mean µ is approximately µ′ , since 
(n+s

2

)

 is very large for these purposes.

The s seeds were chosen discrete uniform randomly from the n+ s vertices, and we 
computed ϕ̂SGM via the SGM algorithm for seeded graph matching. In Fig. 2 we plotted 
alignment strength str(ϕ̂SGM) against total correlation ̺T for all of the pairs of graphs 
generated in the case where µ′ = 0.5 , in different subfigures for the different values of 
s = 0, 10, 20, 50, 250, 1000 ; green dots indicate when ϕ̂SGM = ϕ∗ , blue and red dots indi-
cate when ϕ̂SGM �= ϕ∗ , blue when ϕ̂SGM agreed with ϕ∗ on at least 85% of the nonseeded 
vertices (i.e. “match ratio ≥ 85%”), and red when ϕ̂SGM agreed with ϕ∗ on less than 85% of 
the nonseeded vertices.

Note that in Fig. 2, each of (a)–(f ) are plots of 2255 points, each point represented with 
a filled circle, and the crowding of the points makes them resemble lines; so, in Fig. 2, we 
also included (g) and (h), which are zooms of a portion of (c) and (d), respectively. With 
the increased granularity in (g) and (h), we see that if we ignore some outlier red and 
green dots, then there is a better defined transition from red to green than would appear 
in (c) and (d).

The Phantom Alignment Strength Conjecture is well motivated by the results illus-
trated in Fig. 2. In particular, alignment strength str(ϕ̂SGM) exhibits very low variance 
and is approximately a piecewise-linear function of total correlation ̺T . There appears 
to be a critical value q̂SGM , dependent on the number of seeds s in these experiments, 
for which the following holds. When total correlation ̺T is above q̂SGM then ϕ̂SGM = ϕ∗ 
and str(ϕ̂SGM) ≈ ̺T , and when total correlation ̺T is below q̂SGM then ϕ̂SGM �= ϕ∗ , evi-
denced by str(ϕ̂SGM) �≈ ̺T , and str(ϕ̂SGM) is constant—at a phantom alignment strength 
level. When there are enough seeds, we see that the two pieces of the function join to 
become continuous, suggesting that ϕ̂SGM = ϕ̂ is then achieved for all ̺T , and the value 
of q̂SGM is then q̂.

Also note that the five different Beta distributions from which Bernoulli param-
eters were realized (the five pairs of Beta parameters labelled A, B, C, D, E) in these 
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experiments were collected into each of the figures of Fig. 2, and the experiment results 
for these different distributions are indistinguishable from each other in the figures, in 
accordance with Theorem 2, and reflected in the Phantom Alignment Strength Conjec-
ture claim that the phantom alignment strength is just a function of n, s,µ′ , and that it 
isn’t relevant what distribution is used to obtain the Bernoulli parameters.

Also note the phase transition from matchable to non-matchable which takes place 
when ̺ T gets to q̂SGM , and this phase transition becomes better and better defined as the 
number of seeds goes up.

For the other values of µ′ , the figures exhibited the same overall type of structure, 
although the phantom alignment strength values were different. In the interest of space, 
we only present here the µ′ = 0.5 experiment figures.

Phantom alignment strength versus theoretical matchability threshold

Among other assertions, the Phantom Alignment Strength Conjecture asserts, under 
conditions, that the alignment strength str(ϕ̂SGM) when ̺T = 0 , called the “phan-
tom alignment strength,” is equal to the total correlation threshold for matchabil-
ity of exact seeded graph matching (i.e. the particular value such that ϕ̂ = ϕ∗ or not 
according as ̺T  is greater than this value or not); indeed, we have denoted this com-
mon quantity q̂ . In this section, we will compare alignment strength str(ϕ̂SGM) when 
̺T = 0 to the matchability threshold proved in Lyzinski et al. (2014).

Consider a probability space with a sequence of correlated Bernoulli random graphs 
for each of the number of vertices n ≡ n = 1, 2, 3, . . . , with s = 0 seeds and all Ber-
noulli parameters equal to a fixed value p (ie correlated Erdos–Renyi random graphs). 
When we say that a sequence of events happens “almost always” we mean that, with 
probability 1, all but a finite number of the events occur. The following result was 
stated and proved in Lyzinski et  al. (2014); although stated there in terms of ̺e , we 
write ̺T  instead, since here, where ̺h = 0 , we have that ̺T = ̺e.

Theorem  3  There exists positive, real valued, fixed constants c1, c2 such 
that if ̺T ≥ c1

√

log n
n  then almost always ϕ̂ = ϕ∗ , and if ̺T ≤ c2

√

log n
n  then 

limn→∞ E|{ϕ ∈ Π : D′(ϕ) < D′(ϕ∗)}| = ∞.

For each value of p = .05, .1, .2, .3, .4, .5 , and each of 500 values of n between 500 and 
4000, (as mentioned, s = 0 ) we plotted realizations of alignment strength str(ϕ̂SGM) 
vs the value of n, for uncorrelated ( ̺ e = 0 ) pairs of random Bernoulli (Erdos–Renyi) 
graphs where each Bernoulli parameter is p, hence ̺T = 0 (since ̺e = 0 , ̺h = 0 ). Fig-
ure 3 shows the plots for p = 0.05, 0.1, 0.5.

Then, for each p, we fit the associated points to a curve fp(n) := dp + cp

√

log n
n  for 

real numbers cp and dp ; the values of dp and cp are given in Table  1, and fp is also 
drawn in Fig. 3. For each value of p, note the near-perfect fit of fp to the associated 
points plotted in Fig. 3, and note that the value of dp is close to zero.

Indeed, this suggests, as conjectured in the Phantom Alignment Strength Conjecture, 
that the phantom alignment strength (ie str(ϕ̂SGM) when ̺T = 0 ) exists as a value q̂ which 
coincides with the amount of total correlation needed for ϕ̂ = ϕ∗.
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Block settings

The setting of the Phantom Alignment Strength Conjecture in Sect. “Phantom alignment 
strength conjecture, consequences” was specifically concerning correlated Bernoulli ran-
dom graphs G1,G2 such that there are n nonseed vertices, s seed vertices (selected discrete 
uniformly from the n := n+ s vertices), and Bernoulli parameters for each pair of vertices 
are selected independently from any fixed distribution with mean µ′.

Let us consider a block setting, which differs from the above in that there is a positive inte-
ger K, and the vertex set V is first randomly partitioned into K blocks B1,B2, . . . ,BK as fol-
lows: There is a given probability vector π ∈ [0, 1]K such that 

∑K
i=1 πi = 1 and each vertex 

in V is independently placed in block Bi with probability πi for i = 1, 2, . . . ,K  . Next, sup-
pose there is a unit-interval-valued (ie [0, 1]-valued) distribution Fi,j for each i = 1, 2, . . . ,K  
and j = i, i + 1, . . . ,K  such that, for each 1 ≤ i ≤ j ≤ K  and each u ∈ Bi and v ∈ Bj , the 
Bernoulli parameter p{u,v} is independently realized from distribution Fi,j . Let M be the 
K × K  symmetric matrix with i, jth entry equal to the mean of distribution Fi,j.

Similarly to the Phantom Alignment Strength Conjecture, does there 
exists a phantom alignment strength value q̂ ≡ q̂(n, s,π ,M) ∈ [0, 1] and also 
q̂SGM ≡ q̂SGM(n, s,π ,M) ∈ [0, 1] whereby Eqs. (10) and (11) hold? This is not so simple.

We consider the following choices for n, s, π , and M:

n = 1000 s = 40 π =

[

0.2
0.8

]

M =

[

0.3 0.4
0.4 0.5

]

Fig. 3  Phantom alignment strength as a function of n, fitted to fp(n) := dp + cp

√

log n
n

Table 1  Values of the constants in fp(n) := dp + cp

√

log n
n

p dp cp

0.05 − 0.021 2.19

0.1 − 0.010 1.80

0.2 − 0.003 1.58

0.3 − 0.001 1.51

0.4 0.000 1.48

0.5 0.000 1.47
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Fig. 4  Experiment A in Sect. “Block settings”; here F1,1 , F1,2 , F2,2 are resp. point mass at 0.3, 0.4, 0.5
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Fig. 5  Experiment B in Sect. “Block settings”; same as Experiment A except that F2,2 is uniform [0, 1]

Total Correlation(ρT )
0.00 0.25 0.50 0.75 1.00

< 50%
≥ 50%
≥ 85%
100%

Match Ratio

0.00

0.25

0.50

0.75

1.00

A
lig

nm
en

t
St
re
ng

th

Fig. 6  Experiment C in Sect. “Block settings”; eight different combinations for F1,1 , F1,2 , F2,2
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In experiment “A”, we took F1,1 to be point mass distribution at 0.3, F1,2 to be point mass 
distribution at 0.4, and F2,2 to be point mass distribution at 0.5. For each value of edge 
correlation ̺e from 0 to 1 in increments of 0.001, we realized Bernoulli parameters and 
then we realized associated correlated Bernoulli random graphs. In Fig.  4, we plotted 
alignment strength str(ϕ̂SGM) against total correlation ̺T ; green dots indicate when 
ϕ̂SGM = ϕ∗ , (else) light blue when ϕ̂SGM agreed with ϕ∗ on at least 85% of the nonseeded 
vertices, (else) dark blue when ϕ̂SGM agreed with ϕ∗ on at least 50% , (else) red when ϕ̂SGM 
agreed with ϕ∗ on less than 50% of the nonseeded vertices. We then repeated the experi-
ment with the only difference being that F2,2 was the uniform distribution on the interval 
[0, 1], so (n, s,π ,M) are same as above; the resulting plot is Fig. 5 (alignment strength 
str(ϕ̂SGM) vs ̺T , same dot color scheme as above). Let us call this Experiment “B.”

Next, we repeated the above experiment for all eight possible combinations of:
F1,1 is the uniform distribution on (a) interval [0.25, 0.35] or b) interval [0, 0.6]
F1,2 is the uniform distribution on (a) interval [0.35, 0.45] or b) interval [0, 0.8]
F2,2 is the uniform distribution on (a) interval [0.45,  0.55] or b) interval [0,  1]  

and we superimposed all of the alignment strength vs total correlation plots in Fig.  6 
(same dot color scheme as above); we will call this Experiment “C.” Again, the underlying 
(n, s,π ,M) are the same as the previous experiments.

Note that Figs.  4, 5, and 6 (for respective experiments A,B, and C) are not similar, 
even though they originate from the same values of n, s, π , and M. Thus, the Phantom 
Alignment Strength Conjecture is not simply extended to the case of nontrivial block 
structure.

However, also note that when SGM was broadly failing to get the truth in experiments 
A, B, and C (i.e. the red dots in Figs. 4, 5, and 6), the alignment strength was almost con-
stant, at a value of around 0.12. This suggests a decision procedure (analogous the pro-
cedure described in Sect. “Phantom alignment strength conjecture, consequences”) for 
deciding if G1 , G2 from an (n, s,π ,M)-block model are graph matched with some truth. 
The procedure would be to realize H1 and H2 as correlated Bernoulli random graphs 
where ̺e = 0 , where the n+ s vertices are apportioned to the blocks in proportion to π , 
and where, for every pair of vertices, the Bernoulli parameter is taken as the entry of M 
associated with the block memberships of the two vertices, and then the s seeds are cho-
sen uniformly at random. The alignment strength of the seeded graph match of H1 to H2 
can then be used as a phantom alignment strength value in the sense that, if the align-
ment strength of the seeded graph match of G1 to G2 is more than some ǫ > 0 greater 
than this phantom alignment strength value, then we decide that there is at least some 
truth present in the seeded graph match of G1 to G2.

What made the block structure more complicated? We will next provide some 
insight. Indeed, Experiment B was constructed in an extreme way in order to cause 
particular mischief. The value of ̺h in Experiment  A was approximately .0129, and 
the value of ̺h in Experiment B was approximately .2277; in particular, that is why 
the value of ̺T  was never below approximately .22 in Experiment B, as is clear from 
Fig. 5. However, in Experiment B when ̺e = 0 , all of the vertices in the first block are 
stochastic twins; they share the same probabilities of adjacency as each other to all of 
the vertices in the graph, and all adjacencies are collectively independent. Thus the 
“true” bijection (the identity) has no signal in that case. (One might even say that the 
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“truth” isn’t very “truthy.”) As such, the total correlation in that case, approximately 
.2277, does not contribute to matchability vis-a-vis the first block. As positive edge 
correlation ̺ e is increasingly added in to Experiment B, the first block achieves match-
ability on the strength of only the edge correlation, and the second block achieves 
matchability on the strength of edge correlation together with heterogeneity correla-
tion. In this manner, total correlation does not tell a uniform story across all vertices. 
This is in contrast to the hypotheses of the Phantom Alignment Strength Conjecture 
(and the setup in the empirical matchability experiments in the paper Fishkind et al. 
2019b) where the Bernoulli parameters were realized from one distribution. Note that 
with Experiment C, there is more variety in ̺h (for the eight experiments the values of 
̺h ranged from approximately .0161 to approximately .30); there is still some lack of 
demarcation between matchable and nonmatchable in terms of total correlation, but 
the situation is improved somewhat from the left tail of the figure, and total correla-
tion has more influence as a unified quantity.

We did additional experiments with other values of (n, s,π ,M) and found comparable 
results to what appears above.

Real data; matching graphs to noisy renditions

Recall that the Phantom Alignment Strength Conjecture is formulated under the 
assumption that each pair of vertices has a Bernoulli parameter that is a realization of a 
distribution which is common to all of the pairs of vertices. How realistic is this assump-
tion in practice? And, more to the point of the practitioner, do the conclusions of the 
conjecture apply to real data, in general?

In this section we consider a human connectome at different resolution levels. (This 
connectome has been featured in Priebe et  al. 2019; Chung et  al. 2020.) Diffusion-
weighted Magnetic Resonance Imaging (dMRI) brain scans were collected from one 
hundred and fourteen humans at the Beijing Normal University (Zuo et al. 2014). Fiber 
tracts, which trace axonal pathways through a three-spatial-dimensional cuboid array 
of 1× 1× 1 mm3 voxels of the dMRI scan, are estimated using the ndmg pipeline (Kiar 
et al. 2018).

For each value of n = 70, 107, 277, 582, 3230 , the graph Gn was formed in the fol-
lowing manner. Starting from the original cuboid array of voxels, n equally spaced “con-
tractile” voxels were selected, and each voxel in the array was merged with its nearest 
contractile voxel (Mhembere et  al. 2013); the n such groupings of voxels (centered at 
their contractile voxel) are the n vertices of the graph Gn . For any two vertices in Gn , we 
declare them adjacent precisely when there exists a fiber that runs through any voxel of 
one vertex and also any voxel of the other vertex for any of the one hundred and fourteen 
individuals.

Given any graph G = (V ,E) , and also given any noise parameter ρ ∈ [0, 1] , we can 
instantiate a graph G called a ρ-noised rendition of G on the same vertex set V as follows. 
Denote the density of G by d′G := |E|

(|V |
2 )

 . First, instantiate an independent Erdos–Renyi 

graph H on V with Bernoulli parameter d′G ; i.e. each pair of vertices is an edge indepen-
dently of the others with probability d′G . Next, for each pair of vertices {u, v} , perform an 
independent Bernoulli trial; with probability ρ set u adjacent/ not adjacent (resp.) to v in 
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G according as u adjacent/ not adjacent (resp.) to v in G, and with probability 1− ρ set u 
adjacent/ not adjacent (resp.) to v in G according as u adjacent/ not adjacent (resp.) to v 
in H. In this manner, G is a mixture of G and noise graph H. When graph matching G to 
a ρ-noised rendition of G, clearly ϕ∗ is the identity function V to V.

For each of n = 70, 107, 277, 582, 3230 , we did the following experiment. For each 
value of the noise parameter ρ from 0 to 1 in increments of .025, we did 20 repetitions 
of instantiating a ρ-noised rendition of Gn , then seeded graph matched Gn to it using 
the SGM algorithm after selecting 10% of the n vertices (discrete uniform randomly) as 
seeds. The mean alignment strength str(ϕ̂SGM) (the mean being over the 20 repetitions) 
vs noise parameter ρ was plotted in five respective figures (for the five different values of 
n ) in the left side of Fig. 7; green dots indicate when ϕ̂SGM = ϕ∗ , (else) light blue when 

Fig. 7  Section “Real data; matching graphs to noisy renditions” experiments; LHS is noisy connectome, RHS is 
corresponding synthetic



Page 20 of 27Fishkind et al. Appl Netw Sci            (2021) 6:62 

ϕ̂SGM agreed with ϕ∗ on at least 85% of the nonseeded vertices, (else) dark blue when 
ϕ̂SGM agreed with ϕ∗ on at least 50% , (else) red when ϕ̂SGM agreed with ϕ∗ on less than 
50% of the nonseeded vertices.

We then repeated the above experiments, with the only difference being that in place 
of Gn we used an Erdos–Renyi graph instantiation, the Erdos–Renyi using the Bernoulli 
parameter d′Gn (the density of the connectome Gn ). The resulting plots are in the right 
hand side of Fig. 7. Simple calculations of the distributions show that the pairs of graphs 
being seeded graph matched here in these repeated experiments are precisely correlated 
Erdos–Renyi graphs with the parameter ρ being precisely the edge correlation ̺e , which 
is equal to ̺T since ̺h = 0.

To emphasize: The left hand side of Fig.   7 is from seeded graph matching connec-
tome to noisy connectome, and the right hand side of Fig. 7 is from seeded graph match-
ing synthetic data of the same connectome density to a noisy version of this synthetic 
data, which turns out to precisely be seeded graph matching pairs of correlated Ber-
noulli random graphs where the noise parameter turns out to be the total correlation, 
so the figures in the right hand side of Fig. 7 are of Sect. “Of hockey sticks and broken 
hockey sticks” variety (except that the alignment strength values are averaged over 20 
instantiations).

Notice that the figures in the left hand side of Fig. 7 and their respective counterparts 
in the right hand side of Fig. 7 look remarkably similar in many important ways. The dif-
ferences seem to just be that the seeded graph matching success and alignment strength 
values clearly exhibit thresholding in the synthetic data, which is less pronounced 
and more gradual in the connectome data, although the sharpness of the connectome 
thresholding seems to be catching up as the number of vertices increases. Aside from 
this, there stills seems to be a reasonable phantom alignnment strength for the connec-
tome data.

Real data; matching same objects under different modalities

In this section, we illustrate the ideas in this paper using three real data sets from Fish-
kind et al. (2019a); they are the Wikipedia, Enron, and C Elegans pairs of graphs. Each is 

Fig. 8  Matching English and French Wikipedia graphs



Page 21 of 27Fishkind et al. Appl Netw Sci            (2021) 6:62 	

an example of a pair of graphs with the same underlying objects (thus there is a natural 
“true” bijection), and adjacencies between objects in the respective graphs are relation-
ships among the objects in two different modalities.

The Wikipedia pair of graphs G1 , G2 from Fishkind et al. (2019a) were created in the 
year 2009. The vertices of G1 are the English language Wikipedia articles hyperlinked 
from the Wikipedia article “Algebraic Geometry,” and all Wikipedia articles hyperlinked 
from these articles; in total, there are n = 1382 vertices. These vertices/articles each have 
directly corresponding articles in the French language Wikipedia, and these are the ver-
tices of G2 . Every pair of vertices/articles in G1 are adjacent in G1 precisely when one of 
the articles hyperlinks to the other article in the English language Wikipedia, and every 
pair of vertices in G2 are adjacent in G2 precisely when one of the articles links to the 
other in the French language Wikipedia. Thus G1 and G2 are simple, undirected graphs, 
and the “true” bijection is the function mapping English articles to their French versions.

For each value of s = 0, 5, 50, 150, 250, 382, 500 , we did 100 replicates of uniformly 
sampling s seeds from the n vertices, seeded graph matched G1 to G2 using SGM, then 
recording the alignment strength str(ϕ̂SGM) , averaged over the 100 replicates, plotted 
(in blue) vs the number of seeds s in Fig. 8. In the same figure, we recorded the match 
ratio (the number of nonseeds correctly matched, divided by the number of nonseeds), 
averaged over the 100 replications, plotted (in purple) versus the number of seeds s, also 
in Fig. 8. In addition, for each value of s = 0, 5, 50, 150, 250, 382, 500 , we did 100 repli-
cates of realizing uncorrelated pairs of Erdos–Renyi graphs H1 , H2 , each with 1382 ver-
tices and Bernoulli parameter of H1 equal to the density of G1 , Bernoulli parameter of 
H2 equal to the density of G2 , then uniformly sampling s seeds from the 1382 vertices, 
then seeded graph matched H1 to H2 using SGM, and recording the alignment strength 
str(ϕ̂SGM) , averaged over the 100 replicates, plotted (in green) vs the number of seeds s 
in Fig. 8; these values represent the phantom alignment strength values in the respec-
tive seed levels. Note that, as the number seeds went from 0 to 5 to 50, the jump in 
match ratio coincides with a jump in the gap between seeded graph matching alignment 
strength and the phantom alignment strength. (Even when s = 0 there is some truth in 
the graph match; the match ratio was .0151, approximately 21 nonseed vertices matched 
correctly, whereas chance is 1/1382, one nonseed vertex matched correctly.)

Fig. 9  Matching C. Elegans’ electrical and chemical connectome
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The C. Elegans pair of graphs Geℓ , Gch from Varshney et  al. (2011); Fishkind et  al. 
(2019a) are connectomes mapping out the neural structure of the roundworm Cae-
norhabditis Elegans. C. Elegans is of interest to neuroscientists due to its well studied 
genetics (C. Elegans sequencing consortium 1998), comparatively simple nervous sys-
tem (White et al. 1986), and a growing understanding of the correspondence between 
the two (Bargmann 1998; Arnatkevic̆iūtė et  al. 2018). Like in humans, communica-
tion in the C. Elegans nervous system occurs via synapses, or junctions, between pairs 
of neurons. Neuronal synapses in the C. Elegans connectome can be classified in two 
ways (Varshney et al. 2011): an electrical synapse is a channel through which electrical 
impulses traverse, whereas chemical synapses are junctions through which neurotrans-
mitters flow. We consider n = 279 somatic neurons of the hermaphrodite C. Elegans as 
the vertices of each graph. For each pair of vertices/neurons, they are adjacent in Geℓ 
precisely when there is an electrical synapse between them, and they are adjacent in Gch 
precisely when there is a chemical synapse between them.

We conducted the identical experiments as we did for the Wikipedia graphs, except 
that the number of seeds s considered were s = 0, 1, 5, 10, 20, 50, 75, 100, 150, 200 , and 
we matched Geℓ and Gch . The resulting plots are in Fig. 9; alignment strength of the C 
Elegans seeded graph match in blue, phantom alignment strength in green, match ratio 
in purple. Note that seeded graph matching did poorly, as evidenced by low match ratio, 
even when the number of seeds was huge (200 seeds and 79 nonseeds), and correspond-
ingly the gap between seeded graph matching alignment strength and phantom align-
ment strength was small.

The Enron graphs from Fishkind et al. (2019a) arose in the following manner. Enron 
was a large and highly respected energy company that dissolved spectacularly in 2001 
amid systemic fraud. The United States Justice Department released a trove of email 
messages between company employees. The graphs G130 , G131 , and G132 have as verti-
ces n = 184 Enron employees and, for each pair of vertices/employees, the vertices are 
adjacent in G130 precisely when there is an email from one employee to the other in week 
number 130 of the email corpus, they are adjacent in G131 precisely when there is an 
email from one employee to the other in week number 131, and they are adjacent in G132 

Fig. 10  Matching Enron email networks; all pairs from weeks {130, 131, 132}
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precisely when there is an email from one employee to the other in week number 132. 
The paper (Priebe et al. 2005) identified an anomaly going into week 132, and (Fishkind 
et al. 2019a) used match ratio differences between pairs of these graphs to highlight this 
anomaly.

We conducted the identical experiments for each of the pairs G130,G131 and G131,G132 
and G130,G132 as we did for the Wikipedia graphs, except that the number of seeds s 
considered were s = 0, 1, 5, 10, 20, 50, 60, 90, 100 . The resulting plots are in Fig.  10. As 
noted in Fishkind et  al. (2019a), the match ratio from matching G130 to G131 is high-
est of the three, since the anomaly had not yet occurred. The next highest match ratio 
was from matching G131 to G132 , then came matching G130 to G132 . Note that the gap 
between seeded graph matching alignment strength and phantom alignment strength 
was ordered the same way; highest was G130 to G131 , then was G131 to G132 , and then was 
G130 to G132 . Indeed, more gap here when there was higher match ratio. (Note that the 
match ratios here differ a bit from those in the paper (Fishkind et al. 2019a), Figure 8; 
that figure was inadvertently from a nonsimple graph version of the data, and here we 
created a simple graph.)

Notable mentions and future directions, plus caveats
The applications of graph matching are broad and many, and getting the right answer is 
only valuable when we know that we have the right answer. This paper provides princi-
pled tools that can help the practitioner decide if seeded graph matching has found the 
true bijection.

The first caveat—and future direction—is that we are presenting a conjecture, and 
not a theorem. Indeed, the Phantom Alignment Strength Conjecture, as formulated in 
Sect.“Phantom alignment strength conjecture, consequences”, includes terms in quotes; 
“moderate,” “high probability,” “very different,” and “negligible.” Ironing these terms out 
with specifics is part of the puzzle of proving the conjecture, and is an important next 
task. It may be a hard task, and we expect this paper to stimulate more experimentation, 
fine-tuning, and eventually a proof of the conjecture.

Fig. 11  The same as the plot in Fig. 2d, except that the x-axis in this figure is edge correlation instead of total 
correlation. The contrast between these two figures is quite stark, and highlights the utility of total correlation 
with regard to matchability
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Part of the first caveat is the consideration that we don’t have a proof of the conjecture 
as of now, and our experimentation is wide but not exhaustive, and thus there may be 
additional hypotheses or limitations to the conjecture statement.

A second caveat is that the conjecture is expressed in terms of an underlying model 
for a pair of random graphs, and we need to consider if particular real data that we may 
encounter (beyond the examples that we used here) can more generally be considered as 
arising from such a model.

Also, when there are multiple blocks with Bernoulli coefficients being realized from 
different distributions for different blocks, we saw in Sect. “Block settings” that total cor-
relation became a much less reliable tool for determining matchability. More work is 
needed to explore this further; the paper (Fishkind et al. 2019b), when presenting empir-
ical evidence for the relationship between total correlation and matchability, restricted 
their attention to the setting hypothesized in our Phantom Alignment Strength Con-
jecture, which excludes multiple blocks. Indeed, in the setting of our conjecture, the 
role of total correlation in matchability is starkly visible. See Fig. 2d, where the x-axis is 
total correlation, and compare to Fig. 11. Figure 11 is the same data plotted in Fig. 2d, 
except that the x-axis is used for edge correlation instead of total correlation. The con-
trast between these two figures is quite dramatic. Indeed, the current-literature-standard 
yardstick of edge correlation failed miserably in capturing matchability, whereas total 
correlation captured matchability perfectly here. These two figures are powerful illustra-
tion of the role of total correlation in matchability.

While more work remains to be done, we have here presented principled tools that 
can be of significant help to the practitioner now.

A large measure of inspiration for this paper came from Figures 1, 2, and 3 of Fishkind 
et  al. (2019b) (on which half of us are co-authors). Those figures displayed the results 
of graph matchings of many simulations of pairs of correlated Bernoulli random graphs 
under similar conditions of the Phantom Alignment Strength Conjecture. One axis of 
each figure tracked edge correlation, and the second axis tracked heterogeneity correla-
tion; green, yellow, and red dots were respectively located at coordinates correspond-
ing to parameters where the graph matchings were always the truth, mostly the truth, 
and often not the truth, respectively. It was striking to observe that the regions of red 
and green were sharply demarcated by a level curve of total correlation, with little yel-
low between the red and green. These figures starkly demonstrated the role of total cor-
relation in matchability, as well as thresholding behavior. Together with the theoretical 
results of Fishkind et  al. (2019b) tieing alignment strength to total correlation (when 
graph matching gets truth), we had important ingredients for the “hockey stick” at the 
heart of the Phantom Alignment Strength Conjecture.
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