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Introduction
The study of network capacity, or load, for arbitrary demand matrices is over half a cen-
tury old, and goes back to the pioneering work of Ford and Fulkerson (1956) and Elias 
et al. (1956) for the single commodity and to early attempts (Hu 1963; Lomonosov 1985; 
Shahrokhi and Matula 1990; Papernov 1976; Okamura and Seymour 1981) for the mul-
ticommodity flow solutions of the problem. This rather large literature aims to provide 
characterizations of the load, or the minimal capacity required to route the specified 
demand, in terms of nodal or link capacities needed, based on cut values. For the case of 
the single commodity model cut values provide both necessary and sufficient conditions, 
while for the multicommodity case, at best they provide necessary conditions.

The existing literature on multicommodity flow problem typically deals with either 
necessary or sufficient conditions for the existence of solutions or, more frequently, 
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computational schemes for the minimum cost routing of demands. There are no known 
closed-form solutions, or complete characterizations, of the solution to this problem 
under standard routing policies, such as shortest path or minimum cost routing. The 
reader is invited to consult multiple surveys of the state of the art in this literature (Ken-
nington 1978; Assad 1978; Ouorou et  al. 2000; Awerbuch and Leighton 2005; Wang 
2018a, b). By contrast, in this paper, we report on a closed-form solution that provides 
a complete description of the mean load at each node and each link of a network under 
stochastic routing of demand governed by the weights of the edges of the network, as we 
describe below.

Single commodity or multicommodity network flow models in communication, trans-
portation and numerous other settings typically assume shortest path routing. There 
are natural settings in which alternative routing not involving shortest paths may be 
required. For example, it may happen that longer routes are used for load balancing or, 
in the case of capacitated networks, to avoid network expansion (Minou 1989; Magnanti 
and Wong 1984). Or an inverse problem may be posed: to determine edge weights so 
that shortest path routes identified by these weights result in the smallest load across the 
network (Applegate and Cohen 2003). Given the universality of the network flow model, 
there is a vast number of applications of this model to numerous areas, in particular net-
work design, bandwidth and server capacity computation (Davis et al. 2002; Bienstock 
et al. 2006), network coding (Bassoli et al. 2013; Jalali et al. 2016) and search algorithms 
(Chung 1997).

But a key application of the multicommodity flow problem remains the same: deter-
mining the network capacity that meets a specified demand matrix, given the connectiv-
ity of the network. This is a problem of general interest to which there are no closed-form 
solutions that compactly and efficiently leverage the intrinsic features of the network and 
the demand matrix to give a direct analytical answer, the focus of this paper. Determina-
tion of even (tight) upper or lower bounds today requires a use of numerical computa-
tion. In this report, we provide one such solution that gives (tight) upper bounds for 
nodal and edge capacities.

As stated above, there are few analytical results concerning the multicommodity flow 
problem with shortest path routing, in the sense of having a closed form solution as a 
function of a small number of parameters characterizing the network and the commodi-
ties or point to point demands. These include the characterization of the maximal load 
for hyperbolic graphs (Narayan and Saniee 2011; Jonckheere et al. 2011). In this setting, 
for a network of N nodes one assumes 1 unit of (directed) flow between all N (N − 1) 
node pairs, and then asks how the load scales due to shortest path routing as a function 
of N. This measure is sometimes referred to as the betweenness centrality, see Newman 
(2010) used for ranking of nodes for search algorithms.

In this paper, we study the near opposite of shortest path routing: when flows are 
routed in a uniformly or weighted random manner, each flow starting from its source 
and moving at each step randomly to a neighboring node and only stopping when the 
destination of the flow is reached. An analytical solution to this problem, if one could 
be found, would serve as an upper bound for the network capacity under various more 
realistic shortest path routing models discussed above. In a previous paper (Narayan 
et al. 2020), this problem was solved for the special case of the uniform multicommodity 
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flow problem, that is, when all source-destination demands are present and are equal to 
one. Further, it was assumed that there were no biases in random routing. Here we gen-
eralize this result further by allowing (1) arbitrary and non-symmetric demand and (2) 
probabilistic routing that is driven by weights on the network edges. More specifically, 
we consider the case when an arbitrary amount of traffic dij , in discrete units of mes-
sages, or packets from hereon, is injected into the network at every time step and at each 
node i for each possible destination node j  = i. Thus there are 

∑

i  =j dij units of traffic 
(packets/messages) injected into the N-node network at every time step, and this traffic 
is removed from the network when it reaches its destination. The network is assumed to 
be connected, i.e., have a single component.

We first demonstrate that a steady-state distribution is achieved, and then derive a 
closed-form expression for the expected flow, or the average number of packets or mes-
sages passing through each node, in terms of both the graph and demand (matrix) Lapla-
cians. Next, we show how the result simplifies considerably when the demand matrix is 
symmetric. Following that, we derive a closed-form expression for when we each mes-
sage only once for a node it passes through, even if it passes through multiple times, 
thus providing a tighter upper bound on the network capacity needed to process the 
required load. Finally, to illustrate the results more concretely, we use the derived ana-
lytical results to estimate the largest mean load for a few archetypal demand matrices 
over prototypical networks.

Weighted random routing with repetition
We shall use the following notation in the sequel.

Time evolution equations

As described in the previous section, we consider an undirected connected graph 
G(N, E) with N nodes, in which packets of traffic are injected at various nodes in a deter-
ministic manner and move towards specified destinations. The dynamics are discrete 
time, i.e. packets of traffic move from node to node at time t = 0, 1, 2, 3 . . . . At each time 
step, therefore, the number of packets at a node depends on the number of packets at all 
its adjacent nodes at the previous time step, and any packets injected at their source or 
removed at their destination. We first obtain the equations for this time evolution.

At every time step, the number of packets injected at a node k with destination node 
l is given by Tkl , which is the kl’th element of the demand matrix T. Furthermore, any 
packet at node i at time t that has not yet reached its destination (i.e. whose destination 
is not the node i) moves to one of the nodes, j, adjacent to node i at time t + 1. The move 
from node i to an adjacent node j is chosen randomly, with probability

Here we use the notation i ∼ j if the nodes i and j have an edge connecting them, and 
i  ∼ j if they do not. A is the weighted adjacency matrix defined in Table 1, with Aij = 0 
if i  ∼ j. If i ∼ j, the matrix element Aij is a positive real number which reflects the weight 

(1)Pi→j =
Aij

∑

k∼i Aik
.
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of the edge (ij),  i.e. whether the edge should be favored or disfavored when traffic flows 
through the network. We assume that the graph is undirected, i.e. that the matrix A is 
symmetric.

As stated before, any packet of traffic that is at its destination at time t is removed from 
the network and is no longer present at time t + 1. On the other hand, if a packet returns 
to its source as it moves around randomly, it continues as it would from any other node. 
The same is true if it returns to a node it has previously visited, i.e. if its path includes a 
closed loop. We return to this point in the next section of this paper.

We are interested in the expected value of the number of packets at each node. We 
expect that in steady state, if and when it exists, packets are removed from any node i 
at the rate of 

∑

j Tji per time step. Recall the number of packets injected at the node i 
is 
∑

j Tij per time step. We seek to find the steady state load, i.e. the average number of 
packets at each and every node of the network. This load may be interpreted as how fast 
on average each node needs to route packets it received net of those terminating at it. 
We first need to ensure there is a single and unique equilibrium distribution for the load 
in the network under the above conditions. The reader may refer to a simplified version 
of this model, in which Tij = 1 for all i  = j and Aij = 1 for i ∼ j, which was discussed in 
earlier work (Narayan et al. 2020).

Theorem 1  For a connected graph G(N,  E),   with a deterministic injection rate of Tij 
packets per time step at node i destined for node j for each pair of nodes (ij),  where each 
packet is routed randomly from its current node to its neighbors according to the weights 
in the adjacency matrix A until it reaches its destination, there exists a unique steady 
state number of packets at each node.

Proof  Let us first consider the case when only one element in the demand matrix is 
non-zero, and this element is unity. That is, Tij = δikδjl for some choice of k and l. With 
this demand matrix, let pkli (t) be the ensemble average— i.e. averaged over many reali-
zations of the same network—of the number of packets at node i at time t,  except that 
pkll (t) = 0, reflecting the fact that packets are immediately removed when they reach the 
destination node. The rate equation for the pi ’s is then

Table 1  Notation

G G(N, E) is a graph with N nodes and E edges

A (Aij) is the weighted adjacency matrix with Aii = 0, Aij ≥ 0 for all i, j ≤ N

di
∑

j Aij is the degree of node i ≤ N

D (di) is the N × N diagonal matrix of weighted nodal degrees

L D − A is the graph Laplacian

M (Mij) = L+ 1N×N/N is the uniformly perturbed graph Laplacian

T (Tij) is the N × N demand matrix

T̃ diagonal matrix of nodal demands T̃j =
∑

i Tij

LT T̃ − T is the demand Laplacian for symmetric T
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for i  = l, with the boundary condition pkll (t + 1) = 0. Here dj is the (weighted) degree of 
node j,  as defined in Table  1. The boundary condition pkll  is an example of a Dirichlet 
boundary condition, where a function is defined in a region and is specified to be zero 
on the boundary of the region; in this case, the boundary is the node l and the region is 
all the other nodes in the graph.

We now show that, under the time evolution of Eq.  (2), the function pkli (t) reaches a 
t-independent unique steady state. Let pkl(1)i (0) and pkl(2)i (0) be two initial con-
figurations at t = 0, that evolve according to Eq.  (2). Define rkli (t) to be equal to 
[pkl(1)i (t)− p

kl(2)
i (t)]/di. Then rkl satisfies

with the Dirichlet boundary condition at i = l. This is equivalent to

where L is the Laplacian:

Note that the matrix A is the weighted adjacency matrix. The real symmetric matrix L 
has a complete set of eigenvectors, with eigenvalues � ≥ 0. The eigenvalue � = 0 only 
exists if one can construct a function f on the graph for which fi = fj for all the nodes, in 
which case it is nondegenerate. This is not possible with Dirichlet boundary conditions, 
so that � > 0. Thus the operator I − L (with Dirichlet boundary conditions) is a con-
traction. Therefore rkl(t → ∞) → 0, and as t → ∞ all initial configurations tend to the 
same t-independent steady state configuration. �

Steady state solution

Having obtained the time evolution equation Eq. (2), we find its fixed point in this sec-
tion, with Dirichlet boundary conditions as introduced in the proof of Theorem (1). As 
before, {�α ,α < N } represent the eigenvalues of the graph Laplacian.

In steady state, the arguments t and t + 1 in Eq.  (2) can be dropped. Moreover, we 
know that, of the traffic flowing from the node k to the node l,  the load that flows into l 
at any time step must be equal to the load injected into the node k,  i.e. unity. Therefore 
∑

Aljp
kl
j /dj = 1, and we can extend Eq. (2) as

(2)pkli (t + 1) = δik +
∑

j

Aij

pklj (t)

dj

(3)dir
kl
i (t + 1) =

∑

j

Aijr
kl
j (t)

(4)rkli (t + 1) =
∑

j

(δij − Lij)r
kl
j (t)

(5)Lij = diδij − Aij .

(6)pkli = δik − δil +
∑

j

Aij

pklj

dj



Page 6 of 15Narayan and Saniee ﻿Appl Netw Sci            (2021) 6:45 

for all i,  with the additional condition pkll = 0. It may seem that we have gained nothing 
by restricting our analysis to the steady state configuration, since we still have to impose 
Dirichlet boundary conditions at the l’th node. However, as we shall see immediately, 
the solution to Eq. (6) can easily be found in terms of the eigenvectors of the Laplacian 
without the Dirichlet boundary condition, i.e. independent of k and l. We rewrite Eq. (6) 
in vector form as

where pkl is a column vector whose i’th entry is pkli , the matrix D is a diagonal matrix 
with Dij = diδij , and vk and vl are unit column vectors whose i’th elements are δik and δil 
respectively. Defining pkl = Drkl , this equation is equivalent to

with rkll = 0.

If the matrix L were invertible, we could obtain rkl = L−1(vk − vl), but L has a zero 
eigenvalue. So we define the matrix M = L+ P, where P is a constant matrix with 
entries Pij = 1/N . Noting that the eigenvector ξ0 of L with � = 0 is a constant vector, 
with entries equal to 1/

√
N  to ensure normalization, the matrix P projects onto ξ0. The 

eigenvalues of the matrix M are then equal to �α + δα0 in terms of the eigenvalues of the 
Laplacian. In terms of this matrix, and its inverse M−1,

where we have used the fact that MP = LP + P2 = P2 = P, i.e. P = M−1P. The second 
term on the right hand side, Prkl , is a column vector with all entries identical. Therefore 
in component form,

For a general demand matrix, we arrive at the result:

Theorem 2  The total steady state load at the j’th node is

� �

The term T̃j =
∑

k Tkj is added to account for the processing of the traffic at its desti-
nation node, based on the assumption that this is the same as the amount of processing 
at any intermediate node on its path; this term can be easily modified if the assumption 
is changed. If the demand matrix is symmetric, this simplifies to a more compact form 
with a natural interpretation.

(7)pkl = vk − vl + AD−1pkl

(8)Lrkl = vk − vl

(9)rkl = M−1[vk − vl − Prkl] = M−1[vk − vl] − Prkl

(10)rklj = [M−1]jk − [M−1]jl + const = [M−1]jk − [M−1]jl − [M−1]lk + [M−1]ll .

(11)

�j =
∑

k

∑

l

Tklp
kl
j +

∑

k

Tkj

= dj
∑

k

∑

l

Tkl([M−1]jk − [M−1]jl − [M−1]lk + [M−1]ll)+ T̃j .



Page 7 of 15Narayan and Saniee ﻿Appl Netw Sci            (2021) 6:45 	

Theorem 3  When the demand matrix is symmetric, the total steady state load at the 
j’th node is

� �

It is also possible to write Eq. (11) in terms of the eigenvectors and eigenvalues of the 
Laplacian, L. Using the result [M−1]ij =

∑

α ξ
α
i (�α + δα0)

−1ξαj , which is in turn equal to 
∑

α  =0 ξ
α
i �

−1
α ξαj + 1/N , we obtain

When the demand matrix is symmetric, this reduces to

Further, when the demand matrix is uniform, i.e., Tkl = 1− δkl , since the first summed 
expression in Eq.  (14) is clearly zero when k = l, we can drop the factor of Tkl . Since 
∑

l ξ
α
l = 0 for α  = 0 and 

∑

l(ξ
α
l )

2 = 1 by normalization, this reduces still further to

which was derived in earlier work (Narayan et al. 2020).

Remark 1  For a symmetric demand matrix, the result that �j is linearly dependent on 
dj can be obtained directly. The traffic from node k to node l can be represented as a 
stream of random walkers that diffuse through the network at discrete time steps. At 
every time step, in addition to the diffusive dynamics, Tkl walkers are introduced at node 
k,  and all the walkers at node l are removed. Comparing with Eq. (2), the expected num-
ber of random walkers at node j at time t is equal to pklj (t). If the random walks cor-
responding to all source destination pairs take place simultaneously, with each walker 
labelled with an index corresponding to its destination, we have random walkers with 
N different labels moving through the network. In addition to the random walk dynam-
ics, walkers are created and destroyed at their sources and destinations respectively. 
In steady state, the number of walkers created and destroyed at the j’th node at any 
time step are equal to 

∑

i Tji and 
∑

i Tij respectively, but they have different labels. If 
we ignore the labels on the random walkers, the creation and destruction of random 
walkers can be ignored. The steady state solution for 

∑

k

∑

l p
kl
j (t) is proportional to the 

steady state solution for a diffusion process on the graph with no sources or sinks. It is 
easy to verify that, in this steady state, the number of random walkers at the j’th node is 
proportional to 

∑

i Aji = dj . Although this tells us that [�j − T̃j] is a constant, independ-
ent of j,  it does not tell us that this constant is equal to Tr[(T̃ − T )M−1].

(12)
�j = djTr[(T̃ − T )M−1] + T̃j

= djTr[LTM−1] + T̃j .

(13)�j = dj
∑

k

∑

l

Tkl

∑

α �=0

1

�α
(ξαj − ξαl )(ξ

α
k − ξαl )+ T̃j .

(14)�j = dj
∑

k

∑

l

Tkl

∑

α �=0

1

�α
ξαl (ξ

α
l − ξαk )+ T̃j .

(15)�j = Ndj
∑

α �=0

1

�α
+ (N − 1)
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Remark 2  So far we have dealt with connected undirected graphs. We point out that 
when the graph is directed, then assuming that steady state distribution is achievable, 
Remark 1 implies that the expected load �j = T̃j + Cπj where C is some constant inde-
pendent of the node and (πj) is the right principal eigenvector (with eigenvalue 1) of the 
random walk matrix for the directed graph, which for undirected graphs is equal to (dj).

Remark 3  We observe that the proofs of both theorems carry through essentially 
unchanged if we replace the deterministic arrival of one packet at each source node for 
each destination node at each time step with a Poisson arrival process with a mean of 
one packet arrival per node per unit time for each destination node.

Remark 4
Specializing to the case of a uniform demand matrix, where Eq. (15) applies, in the large-
N limit, the spectral density of the Laplacian 

∑

α δ(�− �α) tends to Nρ(�), where ρ(�) is 
smooth, and

which is ∼ N 2 if the integral has a spectral gap or is otherwise convergent. On the other 
hand, if ρ(� → 0) is non-zero, the spectral gap for large N is proportional to 1/N,   and 
N 2

∫

(ρ(�)/�)d� ∼ N 2 lnN . The maximum load at any node in the network is, up to an 
additive constant, Ndmax

∑

1/�α , which scales differently than the average load if dmax 
diverges as N → ∞.

Random routing without repetition
With different edges in the graph weighted differently, random routing preferentially fol-
lows paths that have edges with high weights. However, this generalized model suffers 
from an important shortcoming: if Aij is large for an edge connecting a node i to a node 
j,  then a packet that reaches node i is likely to move to j at the next time step, and vice 
versa. The packet may spend several time steps going to and fro between the two nodes. 
If Aij is increased with the weights of other edges held constant, this behavior becomes 
more pronounced. The multiple visits to nodes i and j increase the load at these nodes. 
Clearly, this is not how any reasonable routing scheme, even with randomness, would 
function. One way in which to eliminate the enhancement of the load at such nodes is 
to count each node on the path of a packet only once, regardless of how many times it is 
visited. In effect, this is as if the back and forth travel between the two adjoining nodes 
were to be eliminated.This is the strategy that we use in this section of the paper.

Counting each node on a path only once is an imperfect solution, since in addition 
to eliminating such back and forth paths, it also affects paths that include closed loops. 
The node at which the path enters and exits the loop, through which it goes twice, is 

(16)N
∑

1/�α → N 2

∫

ρ(�)

�
d�
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only counted once even though the loop is not being eliminated. (If the loop were to be 
eliminated, all the other nodes in the loop would be counted zero times, not once.) How-
ever, this solution eliminates the greatest shortcoming of random routing for a weighted 
graph in the previous section of this paper.

The analysis with an unweighted network and uniform demand between all source-des-
tination pairs has been reported in Narayan and Saniee (2018), which we extend here. As 
before, we start with packets that are sourced at node k and have their destination as node 
l,  and perform a random walk through the network. At each time step, a packet is removed 
from the network if it has reached the destination l or a query node m. The steady state 
equation is then a modification of Eq. (7):

where µkl
m is determined by the condition that pkll = pklm = 0. The fraction µkl

m of the traf-
fic between k and l that is removed at node m is the fraction that passes through the 
node m at some point in its path from k to l. In reality, the packet continues on after it 
encounters m,  perhaps passing through m multiple times, before it reaches its destina-
tion l,  but removing it from the network ensures that it is counted only once at the node 
m.

Defining rkl as before, we obtain

The solution to this equation is a modification of Eq. (10):

Applying the condition rkll = rklm = 0, and subtracting one from the other, we obtain

Note that µkl
k = 1, but µkl

l  is indeterminate because the terms with vl and vm in Eq. (17) 
merge together. Since all paths from k to l pass through both k and l,  we fix µkl

l = 1.

As noted earlier, µkl
m is the fraction of the traffic from node k to node l that passes through 

the node m,  possibly multiple times. Summing over all source-destination pairs, the load at 
node m with repeated traversals counted only once is given by the following.

Theorem 4  The load at node m with repeated traversals counted only once is given by

As before, this can be expressed in terms of the eigenvectors and eigenvalues of the Lapla-
cian, yielding

(17)pkl = vk − (1− µkl
m)v

l − µkl
mv

m + AD−1pkl

(18)(D − A)rkl = vk − (1− µkl
m)v

l − µkl
mv

m.

(19)rklj = [M−1]jk − (1− µkl
m)[M−1]jl − µkl

m[M−1]jm + const.

(20)
[M−1]mk − [M−1]lk − [M−1]ml + [M−1]ll

= µkl
m

(

[M−1]mm − [M−1]ml − [M−1]lm + [M−1]mm]
)

.

(21)

�̃m = T̃m +
∑

k

∑

l �=m

Tklµ
kl
m

= T̃m +
∑

k

∑

l �=m

Tkl
[M−1]mk − [M−1]lk − [M−1]ml + [M−1]ll

[M−1]mm − [M−1]ml − [M−1]lm + [M−1]mm
.
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Numerical results
In this section, we provide numerical results for three different types of graphs: square lat-
tice graphs, hyperbolic grids, and Erdös–Rényi random graphs (Erdös and Rényi 1959) for 
two types of demand regimes: broadcast with constant value and broadcast exponential 
decay. Numerical results for the uniform demand matrix for hyperbolic grids, Erdös–Rényi 
graphs, and scale-free networks (Barabási and Albert 1999); Dorogovtsev et al. (2000) have 
been presented earlier (Narayan et al. 2020).

Square lattice

We consider a L0 × L0 square lattice with N = L20 nodes. Periodic boundary conditions are 
used, so that every node has exactly four neighbors. It is convenient to choose the normal-
ized eigenfunctions of the Laplacian as the complex functions

where r = (x, y) is the location of the node, with x and y integers, and 
q = (qx, qy) = 2π(m, n)/L0, with n,m = 0, 1, 2 . . .L0 − 1, and m = n = 0 not allowed. 
For such complex eigenfunctions, Eq. (13) is generalized to

For the case of unit demand between all node pairs, from Eq.  (16) and the follow-
ing discussion, the load at any node grows as ∼ N 2 lnN  for large N. If we change 
the normalization so that the total demand between all node pairs adds up to 1, i.e. 
Tkl = (1− δkl)/[N (N − 1)], the load at any node grows as ∼ lnN  for large N.

Instead, we consider the case when all the traffic is broadcast from a single node k, which 
we choose to have coordinates x = y = 0. (Because of periodic boundary conditions, all 
nodes are equivalent.) Eq. (24) then becomes

where we have used the fact that �q = �−q .

If T0l is independent of the destination node l,  normalized to T0l = (1− δl0)/(N − 1) to 
ensure unit total demand, we can replace this with T0l = 1/(N − 1) inside the sum, because 
1− exp[i(rl · q] = 0 when l is at the origin. The sum over l can easily be performed, and 
the l-dependent term cancels out when summed, resulting in

(22)�̃m = T̃m +
�

k

�

l �=m

Tkl





�

α �=0

(ξαk − ξαl )(ξ
α
m − ξαl )

�α









�

α �=0

(ξαm − ξαl )
2

�α





−1

.

(23)ξq(r) =
1

L0
exp[iq · r]

(24)�j = dj
∑

k

∑

l

Tkl

∑

α �=0

1

�α
(ξ∗αj − ξ∗αl )(ξαk − ξαl )+ T̃jj .

(25)�j =
4

N

∑

l

T0l

∑

q �=0

1

�q

(

1+ exp[−iqj · q]
)

(1− exp[i(rl · q])+ T̃jj

(26)�j =
4

(N − 1)

∑

q �=0

1

�q

(

1+ exp[−irj · q]
)

+
1

N − 1
(1− δj0).
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In the large-N limit, this approaches

where the sum diverges as N → ∞, and the integral is finite. It is possible to argue, and 
to verify numerically in Fig. 1, that the large-N behavior of the sum is (2/π) lnN + const. 
Numerically, the constant is 0.3901 . . . . It is similarly possible to obtain that the inte-
gral approaches −(2/π) ln |rj| + const for large |rj|. Noting that the maximum distance 
between any pair of nodes is O(

√
N ), the load decreases as one moves away from the 

source, with a singular part that ranges from (2 lnN )/π near the source to (lnN/)π far 
from the source. This singular term is not present with geodesic routing.

Alternatively, if the demand falls off exponentially with distance from the source node, 
it is possible to take the large-N limit without any singular terms. We assume that the 
demand between the source node at (0,  0) and a destination node at (x, y)  = (0, 0) is 
proportional to p|x|+|y|. A normalization constant of (1− p)2/(4p) ensures unit total 
demand, matching the previous paragraph. Then

where, as in the previous paragraph, it is not necessary to specify (lx, ly)  = (0, 0) in the 
sum. The sums over lx and ly are then independent and easy to perform. In the large-
N limit, we can then replace N−1

∑

q with 
∫ 2π
0

∫ 2π
0 dqxdqy/(4π)

2, since the zero in �q 
is canceled by a zero in 

(

1− exp[i(lxqx + lyqy)]
)

 for small-q, resulting in the absence of 
singular terms in the large-N limit. The resulting integrals can be evaluated numerically, 
but an inspection of Eq.  (28) shows that the j-dependent term 

(

1+ exp[−irj · q]
)

 is a 
rapidly oscillating function of q, averaging to unity, when |rj| → ∞. Thus �j far from the 
source is half its value near the source, even though the demand is concentrated near the 
source.

(27)
4

N

∑

q  =0

2

�q
+ 4

∫

cos(q · rj)− 1

4 − 2 cos(qx)− 2 cos(qy)

dqx

2π

dqy

2π

(28)

�j =
(1− p)2

Np

∑

l

∑

q �=0

p|lx|+|ly| 1

�q

(

1+ exp[−irj · q]
)(

1− exp[i(lxqx + lyqy)]
)

+ T̃jj

a b

Fig. 1  a Load as a function of the logarithm of the distance r from the center of a square lattice. Demand is 
only broadcast from the center, uniformly to all other nodes. For definiteness, the load is shown for nodes 
along the x axis, for a lattice with N = 16002. The dashed line has a slope of −2/π . b Load at the center as a 
function of N,  the number of nodes in the square lattice, when demand is broadcast from the center equally 
to all nodes. The (2/π) lnN dependence is in agreement with the analytical results
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The r-dependence of the load can be understood using a continumm approximation, 
uaing an analogy to electrostatics. The source and destination of traffic map to posi-
tive and negative charges respectively, and the load maps to the electrostatic potential. 
The details of the analysis are outside the scope of this paper, but for demand broadcast 
equally to all nodes, the approximation predicts a ∼ ln r dependence of the load, while 
for demand decaying exponentially with distance, �(r)−�(∞) ∼ 1/r4 for large r. Both 
of these are consistent with our numerical results.

Hyperbolic grids

A hyperbolic grid Hp,q is an infinite regular planar graph with constant degree 
q,   and each face a p-sided polygon, satisfying the condition (p− 2)(q − 2) > 4. If 
(p− 2)(q − 2) = 4, it is possible to make all the polygons as regular polygons of the same 
size. This is no longer possible if (p− 2)(q − 2) > 4, but one can interpret the graph as 
a planar projection of a graph on a surface of constant negative curvature, and on that 
surface, the polygons are regular and identical.

When the demand between all pairs of nodes (i, j) with i  = j is equal to 1/(N (N − 1)), 
so that the total demand is 1, Eq. (15) is adjusted to

The second term is negligible when N → ∞, while the first term was shown numerically 
Narayan et al. (2020) to scale linearly with lnN  for large N when (p, q) = (3, 7).

Here, we show numerical results when demand is only broadcast from the node at 
the center, equally to all other nodes. To have the same total demand as in the previ-
ous case, the demand for each node is 1/(N − 1). As seen in Fig. 2, the load decays as 
�(r) = C exp[−cr] +�(∞), where r is the geodesic distance between the center and the 
node. Furthermore, the load at the center grows linearly with the radius of the grid, i.e. 
∼ lnN , which is the same as for uniform demand on the hyperbolic grid, and also similar 

(29)�j =
dj

N − 1

∑

α �=0

1

�α
+

1

N
.

a b

Fig. 2  a (Log scale) Load as a function of r,  the distance from the center, for a H3,7 grid with radius 8, 
i.e. with N = 11,173. Demand is only broadcast from the center, uniformly to all other nodes. The plot of 
ln[�(r)−�(∞)] is a linear function of r,  implying exponential decay of the load as a function of r,  towards 
its asymptotic value at r → ∞. b Load at the center as a function of the radius of the H3,7 grid. The load is a 
linear function of the radius, i.e. a linear function of lnN for large N.
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to the analytical results for the square lattice, when demand is broadcast from the center 
and is independent of the distance to the destination.

We also consider the case when the demand is broadcast from the central node, but 
drops off exponentially as a function of the distance r from the center, i.e. proportional 
to pr , with the proportionality constant chosen so that the total demand is unity, irre-
spective of N. We choose p = 0.25; the total demand on an infinite grid is finite as long 
as p < (3−

√
5)/2. The results for this case are not shown here, but within numerical 

accuracy, �(r)−�(∞) decreases exponentially as a function of r. The load is found to 
be almost independent of N,  similar to the analytical results for exponentially decaying 
demand on the square lattice.

As with the square lattice, the r-dependence of the load can be understood in a con-
tinuum approximation with an electrostatic analogy, which predicts that �(r)−�(∞) 
will decay exponentially with r.

Random graphs

We performed numerical simulations on Erdös–Rényi random graphs, with the prob-
ability of an edge being connected being p = 2/N  for a graph with N nodes. We only 
retain the giant component of the graph, which has O(N) nodes, numerically found 
to be ≈ 0.8N . For each value of N,   several random graphs were generated, so that the 
total number of nodes in the giant components of all the graphs was approximately 104. 
Demand was broadcast from the node at the center of each graph, either uniformly 
to all other nodes, or decaying as ∼ (1/4)r with the distance r from the center to the 
destination.

As shown in Fig. 3, rather surprisingly, the average load at the nodes at a distance r 
from the center has the same form when the demand is uniform or exponentially decay-
ing, up to an overall proportionality constant. The average load �(r) for nodes at a dis-
tance r from the center does not have a simple functional form. There is also very little 
change in the plots as a function of N,  consistent with our earlier result Narayan et al. 

a b

Fig. 3  a Average load �(r) for nodes at a distance r from the center, from which demand is broadcast, for the 
Erdös–Rényi model with p = 2/N and N = 2500. Filled black circles are �(r) when the demand is the same, 
irrespective of the destination. Open red circles are 2.5�(r) when the demand decreases as (1/4)r; the factor 
of 2.5 is chosen by eye to best match the two cases. The total demand for all destination nodes is normalized 
to 1. b Average load �(r) as a function of r for various values of N,  for the broadcast model with the same 
demand for all destination nodes. The difference between the curves is small
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(2020) that the load at the center with uniform demand between all node pairs is inde-
pendent of N.

Conclusions
We have shown that, for the general non-uniform multicommodity flow problem on an 
arbitrary connected graph under weighted random routing, the mean load at each node 
of the graph exists and is unique. We have also derived an explicit expression for it in 
terms of the graph and demand (matrix) Laplacians. Further, we have derived a closed 
form expression for the mean load without counting repeated visits to a transit node. 
Using these explicit expressions, we have obtained numerical estimates for the mean 
load for the regular and hyperbolic lattices in the large-size regime, and have numeri-
cally computed the mean load for Erdös–Rényi random graphs. This has been done for 
uniform and for broadcast demand. For the latter (broadcast demand), we have observed 
that the average load decreases as a function of distance from the broadcast source, rang-
ing from exponential decrease (for regular hyperbolic graphs), to logarithmic decrease 
(for regular grids), to staged decrease (for Erdös–Rényi random graphs).
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