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Introduction
Complex systems are made up of a collection of objects, that are connected to each 
other in some manner, and can be modeled as networks. The objects often are referred 
to as nodes or vertices, and the connections as edges. The nature of the vertices and edges 
may vary depending on the system being modeled. While networks ignore many proper-
ties of the system they model, they nevertheless capture some of its complexity in a way 
that facilitates the analysis of its properties. Networks can be applied to model systems 
that arise in social science, telecommunication, transportation, as well as in many other 
areas; see, e.g., Estrada (2011a), Estrada and Knight (2015), and Newman (2010) for dis-
cussions on networks and for many examples of their applications.

A network is represented by a graph G = {V , E} , where V = {vi}
n
i=1 denotes a set of 

vertices or nodes, and E = {ei}
m
i=1 is a set of edges between the vertices. Two vertices vi 

and vj , with i  = j , are said to be adjacent if there is an edge between them. We consider 
unweighted connected simple graphs, i.e., connected undirected unweighted graphs with-
out multiple edges and self-loops. Networks are studied by algebraic and computational 
methods applied to the graphs that represent them. Questions of interest include the deter-
mination of the most important vertices and edges of a network, as well as the identifi-
cation of structural properties. Fundamental topological properties, which will be defined 
and used in Sect. 2, are bipartivity and, more generally, multipartivity. An m-partite net-
work involves objects that can be split into m disjoint groups Vi , i = 1, 2, . . . ,m , called par-
tite sets, with connections occurring only across, but not within, the groups. A survey of 
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mathematical properties and applications of bipartite graphs in the areas of algebra, combi-
natorics, chemistry, communication networks, and computer science are provided by Asra-
tian et al. (1998).

The notion of multipartite graphs is required in the definition of chained graphs intro-
duced in this paper. The chained structure characterizes multipartite networks such that 
edges can occur only between nodes belonging to “subsequent” partite sets Vi and Vi+1 , 
i = 1, 2, . . . ,m− 1 , and vice versa, as illustrated in Fig. 1. The definition of chained graphs 
can be relaxed allowing connections between nodes belonging to the same node subset, as 
it will be subsequently explained.

The above concepts will be described in detail in Sect.  2, where it will be shown that 
bipartite graphs are ℓ-chained for some ℓ ≥ 2 . This shows that the chained structure is a 
refinement of bipartivity, since it reveals additional structure of a bipartite graph. The 
chains provide insight into how the vertices are connected; this structure is not uncovered 
by bipartivity only.

We also will use chained graphs to identify “central nodes”. These are nodes determined 
by their location in the chain structure, incorporating a different idea of centrality than 
other centrality measures, such as the degree or the subgraph centrality. A nice introduc-
tion to the latter measure is provided by Estrada and Higham (2010); see also Borgatti 
(2005), Estrada (2011a), and Estrada and Knight (2015) for an overview of other important 
quantities that describe global properties of a given graph, such as the importance of a par-
ticular node within the network, or the ease of traveling from one node to another. With 
the aim of determining a new centrality measure, called “position centrality”, we will first 
examine the spanning trees associated with a given underlying graph (Bapat 2014; Bondy 
and Murty 1976). The position centrality of a node will be defined by taking into account 
the lengths of the paths from it to all the other vertices and it can be computed by using the 
chained structure determined by the tree rooted at the node. By using this measure, which 
depends upon a parameter p, one may identify a most “centrally located” node, referred to 
as a “center vertex”, as a vertex with the smallest position centrality. There may be more than 
one center vertex. For p = 1 , a center vertex coincides with a vertex with the largest close-
ness centrality (Newman 2010).

Another application of interest to us is the detection of anti-communities, i.e., subsets 
{Si}

p
i=1 of vertices of a graph G with no or few edges between vertices in each set Si , but 

many connections between the node sets Si and V\Si , i = 1, 2, . . . , p . Once a semi-chained 
structure has been identified in a graph, the presence of anti-communities can be deter-
mined by ascertaining the number of edges among nodes belonging to the same set; see, 
e.g., the autobahn data set and Fig. 16 in Sect. 6. Community and anti-community detection 
in networks is an important problem with applications in various fields, including physics, 
computer science, as well as in the natural and social sciences. Several methods have been 
developed to identify this kind of structures in networks; see, e.g., Chen et al. (2014) and 

1 2 3 4

Fig. 1  A chained graph with 4 enumerated node sets
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Raghavan et al. (2007). In Fasino and Tudisco (2017) a spectral method was used to simul-
taneously detect communities and anti-communities, while in Concas et al. (2020) another 
approach to identifying anti-communities has been described. We will illustrate the benefit 
of using the chained structure for this purpose in Sect. 6.

This paper is organized as follows: Sect. 2 introduces notation that will be used in the 
remainder of the paper and discusses ℓ-chained bipartite graphs. Section 3 describes the 
structure of the adjacency matrices that are associated to ℓ-chained graphs. The rela-
tion between the chain structure and spanning trees is investigated in Sect. 4. Section 5 
introduces the notion of position centrality and discusses some applications. Numeri-
cal illustrations of ℓ-chained graphs and the identification of approximations of central 
nodes are described in Sects. 6 and 7 contains concluding remarks.

Some definitions
This section introduces notation and definitions to be used in the sequel. Most of our 
definitions and terminology follow those in Estrada (2011a), Newman (2010). The adja-
cency matrix M = [mij]

n
i,j=1 ∈ Rn×n associated with an unweighted undirected sim-

ple graph G with n vertices is symmetric and has the entry mij = 1 if there is an edge 
between the vertices vi and vj , otherwise mij = 0.

Bipartivity, and more generally multipartivity, are interesting structural properties of a 
graph that provide important information about the network being modeled. There are 
various characterizations of multipartite graphs (Estrada and Gómez-Gardeñes 2016; 
König 1916). They can be defined as follows.

Definition 1  A graph G is said to be ℓ-partite if the set of vertices V that make up the 
graph can be partitioned into ℓ disjoint non-empty subsets V = V1 ∪ V2 ∪ · · · ∪ Vℓ such 
that every vertex in Vi , for any 1 ≤ i ≤ ℓ , is adjacent only to vertices in Vj for some j  = i , 
and the number of subsets, ℓ , is as small as possible. A graph is said to be bipartite when 
ℓ = 2 , and multipartite when ℓ ≥ 3.

Equivalently, the vertices of an ℓ-partite graph can be colored with ℓ colors, so that the 
vertices at the endpoints of every edge have different colors, and ℓ is the minimal num-
ber of colors required (Jensen and Toft 1995).

1 2 3

(a)

2

1

3

(b)
Fig. 2  Example 2: chained graph with vertices v1 , v2 , and v3 . The initial vertex set in (a) is V1 = {v1} , while the 
initial vertex set in (b) is V1 = {v2}
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Example 1  The graph on the right-hand side of Fig.  2 is bipartite, and the graph in 
Fig. 3 is tripartite.

Usually, vertices in distinct subsets Vi of an ℓ-partite graph model different entities. For 
instance, users of social bookmarking services, such as Delicious (http://​www.​delic​ious.​
com), put tags on web pages. Users, tags, and web pages can be represented by a tripar-
tite network V = V1 ∪ V2 ∪ V3 , in which users define the vertex subset V1 , tags define 
the subset V2 , and web pages define the subset V3 . This example of tripartite graphs is 
discussed by Ikematsu et al. (2013).

There are various methods for partitioning the vertex set V of a bipartite graph 
G into unique disjoint non-empty subsets V1 and V2 , such that every vertex in V1 is 
adjacent to a vertex in V2 ; see Bondy and Murty (1976) and Concas et al. (2020) for 
discussions of methods and further references. Assume for the moment that the n 
vertices in the set V are enumerated so that the first n1 of them make up the vertex set 
V1 and the remaining n2 = n− n1 vertices make up the vertex set V2 . Then the adja-
cency matrix for G is of the form

where B ∈ Rn1×n2 , O denotes a zero-matrix of suitable order, and the superscript T 
denotes transposition. A bipartite graph with partition sets V1 and V2 is said to be com-
plete if every vertex of V1 is adjacent to all vertices of V2 . For complete bipartite graphs, 
every entry of the submatrix B of the adjacency matrix (2.1) is one. The notion of a com-
plete bipartite graph can be extended to multipartite graphs.

Definition 2  An ℓ-partite graph G = {V , E} with the vertex set V = V1 ∪ V2 ∪ · · · ∪ Vℓ 
partitioned into non-empty disjoint subsets Vi is said to be complete if, for each 1 ≤ i ≤ ℓ , 
every vertex in the vertex subset Vi is adjacent to every vertex in the set V\Vi.

Complete ℓ-partite graphs are commonly denoted by Kn1,n2,...,nℓ , where ni is the 
cardinality of the node subset Vi . The adjacency matrix M for Kn1,n2,...,nℓ is of order 
n =

∑ℓ
j=1 nj with all entries mij equal to one, except for the entries of ℓ disjoint diago-

nal blocks of zeros of orders n1, n2, . . . , nℓ.

(2.1)M =

[
O B

BT O

]
,

1

2 3

Fig. 3  Example 3: a semi-chained graph

http://www.delicious.com
http://www.delicious.com
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The following definitions introduce the notions of particular multipartite struc-
tures, which will be used in the remainder of the paper.

Definition 3  An undirected graph G = {V , E} is said to be ℓi-chained with initial vertex 
vi if the set of vertices can be subdivided into ℓi disjoint non-empty subsets

such that vi ∈ V1 , and all vertices in the set Vj are adjacent only to vertices in the sets Vj−1 
or Vj+1 for j = 2, 3, . . . , ℓi − 1 , where the chain length ℓi is the largest number of vertex 
subsets Vj with this property. Moreover, the vertices in V1 and Vℓi are adjacent only to 
vertices in V2 and Vℓi−1 , respectively. Vertex sets Vj with consecutive indices are said to 
be adjacent.

In the Delicious bookmarking service application mentioned above, vertices in V1 
and V3 are adjacent only to vertices in V2 . Thus, this vertex partitioning shows that the 
graph is 3-chained.

Definition 4  The graph G = {V , E} is said to be ℓi-semi-chained with initial vertex vi if 
the set of vertices can be subdivided into ℓi disjoint non-empty subsets (2.2) such that 
vi ∈ V1 , and all vertices in the set Vj are adjacent only to vertices in the sets Vj−1 , Vj , 
or Vj+1 for j = 2, 3, . . . , ℓi − 1 , where the chain length ℓi is the largest number of vertex 
subsets Vj with this property. Moreover, the vertices in V1 and Vℓi are adjacent only to 
vertices in V1 ∪ V2 and Vℓi−1 ∪ Vℓi , respectively.

Example 2  Figure 2 displays two chained graphs with three vertices and different initial 
vertices. In the chained graph displayed in subfigure (a), each vertex set Vi , i = 1, 2, 3 , 
contains one node, and the initial vertex is v1 . This gives the chain length ℓ1 = 3 . The 
same chain length can be obtained if the initial node is chosen to be v3 . The chained 
graph in (b) has initial vertex v2 , with V1 = {v2} and V2 = {v1, v3} , which gives the chain 
length ℓ2 = 2 . This example illustrates that the chain length depends on the initial vertex 
chosen.

Example 3  Figure 3 displays a 1-semi-chained graph, that is not chained in the sense of 
Definition 3. The semi-chained structure in this example is independent of the choice of 
the initial vertex.

While chained structure is not so common for graphs, every non-trivial graph is 
semi-chained. Nevertheless, representing a graph in (semi-)chained form is use-
ful, because this structure is closely linked to anti-communities, which are subsets 
of vertices, such that there are only few edges between vertices in the same subset, 
but many edges between vertices in different subsets. Recent discussions on anti-
communities and their detection can be found in Concas et  al. (2020), Estrada and 

(2.2)V = V1 ∪ V2 ∪ · · · ∪ Vℓi
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Gómez-Gardeñes (2016) , Estrada and Knight (2015), Fasino and Tudisco (2017). 
We will introduce a density measure for anti-communities, which is similar to the 
intra-cluster density that allows one to identify clusters or communities; see Estrada 
(2011b), Estrada and Knight (2015), and Fortunato (2010).

Definition 5  The anti-community score 0 ≤ ρ ≤ 1 is the ratio between the number of 
edges connecting the nodes in the subset and the maximum admissible number of edges 
between them.

To highlight the role of the anti-community score, we will in the following consider 
ρ-anti-communities. The sets Vi , i = 1, . . . , ℓ , in an ℓ-chained graph are 0-anti-com-
munities, as they have no internal edges, while each set Vi in a semi-chained graph is a 
ρi-anti-community. When ρi is small, Vi may be considered an anti-community.

Definition 6  The maximal chain length, ℓ , of a graph is defined as

where the maximum is over all the initial nodes vi in the vertex set V . When the maximal 
chain length is considered, the graph is said to be ℓ-chained.

Example 4  The graph G of Example 2 has maximal chain length ℓ = 3.

The following notion will be useful in the sequel. It is stronger than (standard) mul-
tipartivity, but weaker than complete multipartivity.

Definition 7  An ℓ-partite graph G = {V , E} with the vertex set partitioning 
V = V1 ∪ V2 ∪ · · · ∪ Vℓ into non-empty disjoint subsets Vi is said to be strongly ℓ-partite 
if, for every i, every vertex in the subset Vi is adjacent to at least one vertex in every sub-
set Vj , j  = i.

The special case of strongly tripartite graphs is applied to community detection by 
Ikematsu et  al. (2013), who refer to these graphs as 3-partite 3-uniform hypernet-
works. We also define the notion of strongly ℓ-chained graphs.

Definition 8  An ℓ-chained graph G = {V , E} with the vertex set partitioning 
V = V1 ∪ V2 ∪ · · · ∪ Vℓ into non-empty disjoint subsets Vi is said to be strongly ℓ-chained 
if, for every i, every vertex in the subset Vi is adjacent to at least one vertex in the subsets 
Vi−1 (for 1 < i ≤ ℓ ) and Vi+1 (for 1 ≤ i < ℓ).

We are interested in strongly chained graphs, because their structure can be identi-
fied from the knowledge of the vertex and edge sets of a graph. We note that “stand-
ard” chained graphs G = {V , E} cannot be uniquely identified from the knowledge of 
V and E . Indeed, let the vertex v of a chained graph be connected only to vertices in 
the vertex set Vi for some 1 < i < ℓ . Then v may belong to either the vertex sets Vi−1 
or Vi+1.

ℓ = max
i

ℓi,
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It is remarkable that an ℓ-chained graph is always bipartite, and vice versa. This 
property will help us study anti-communities.

Theorem 1  Let G be a bipartite graph. Then the graph is ℓ-chained for some ℓ ≥ 2 . The 
partitioning of the node set V into chained sets is not unique, but the maximal number of 
chained sets, ℓmax , is uniquely determined. Conversely, if a graph is ℓ-chained, then it is 
bipartite.

Proof  Let the graph G = {V , E} be bipartite and let V = V1 ∪ V2 be the associated parti-
tioning. It follows that the graph is at least 2-chained. Conversely, let the graph G = {V , E} 
be ℓ-chained, i.e., there is a partitioning of the vertex set V = V1 ∪ V2 ∪ · · · ∪ Vℓ that sat-
isfies the properties of Definition 3. Then letting

shows that the graph G is bipartite with associated vertex set partitioning V = Ṽ1 ∪ Ṽ2 . 
The unicity of ℓmax follows by recursive subdivision of the sets Ṽ1 and Ṽ2 , and by a suit-
able choice of the initial set V1 in (2.2).�  �

The property of bipartite graphs shown by Theorem  1 will be further discussed in 
Sect. 3, where we consider the structure of adjacency matrices for ℓ-chained graphs for 
ℓ ≥ 3.

We remark that the ℓ-chained structure with ℓ > 2 gives a finer representation of a 
bipartite graph, as it provides information on hierarchical connections between nodes 
that is not contained in the basic notion of bipartivity.

Closed chained graphs

This subsection considers chained graphs that may be cyclic. This kind of graphs are 
important, e.g., for their connection to n-cubes.

Definition 9  A graph G = {V , E} is said to be closed ℓi-chained with initial vertex vi if 
the set of vertices can be subdivided into ℓi disjoint non-empty subsets

such that vi ∈ V1 and all vertices in the set Vj are adjacent only to vertices in the sets Vj−1 
or V((j+1) mod ℓi) for j = 1, 2, . . . , ℓi , with V0 ≡ Vℓi , where the chain length, ℓi , is the larg-
est number of vertex subsets Vj with this property. Closed ℓi-semi-chained graphs can be 
defined analogously.

We remark that a closed ℓ-chained graph G = {V , E} is not ℓ-chained, but may be 
k-chained for some k < ℓ . The following example illustrates this.

Example 5  Consider the graph G = {V , E} in Fig.  4a and define the vertex subsets 
Vi = {vi} for i = 1, 2, . . . , 6 . This graph is closed 6-chained with initial vertex v1.

(2.3)Ṽ1 =
⋃

j odd

Vj and Ṽ2 =
⋃

j even

Vj ,

V = V1 ∪ V2 ∪ · · · ∪ Vℓi
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Define the vertex subsets Ṽ1 = {v1} , Ṽ2 = {v2, v6} , Ṽ3 = {v3, v5} , and Ṽ4 = {v4} . The 
chain of vertex sets

shows that G is a 4-chained graph with initial vertex v1 . The graph also is bipartite. The 
latter property is illustrated by Fig. 4b.
Theorem 2  A closed ℓ-chained graph G is (ℓ/2+ 1)-chained if and only if ℓ is even. A 
closed ℓ-chained graph is ((ℓ+ 1)/2)-semi-chained if and only if ℓ is odd.

Proof  Let ℓ be even. Then we may partition the closed ℓ-chained graph G with vertices 
v1, v2, . . . , vℓ as

This shows that G is (ℓ/2+ 1)-chained with initial vertex v1.

If, instead, ℓ is odd, then we define the vertex sets

V = Ṽ1 ∪ Ṽ2 ∪ Ṽ3 ∪ Ṽ4

V1 = {v1}, Vj = {vj , vℓ−j+2}, j = 2, 3, . . . , ℓ/2, V ℓ
2+1 =

{
v ℓ
2+1

}
.

1 2

3

4

6

5

(a)

1 2

4

6

3

5

(b)
Fig. 4  a: a closed chained graph with 6 enumerated node sets (each set contains one node). b: the bipartite 
structure Ṽ1 = V1 ∪ V3 ∪ V5 and Ṽ2 = V2 ∪ V4 ∪ V6

7

1 5 3

6 2 4

Fig. 5  A closed 7-chained graph is tripartite. A tripartization of the node set is given by Ṽ1 = V1 ∪ V3 ∪ V5 , 
Ṽ2 = V2 ∪ V4 ∪ V6 , Ṽ3 = V7
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The remaining vertices, v ℓ+1
2

 and v ℓ+3
2

 , are adjacent and make up the vertex set V ℓ+1
2

 . This 

makes the graph G ((ℓ+ 1)/2)-semi-chained with initial vertex v1 .�  �

Example 6  Consider the graph G = {V , E} shown in Fig. 5. Let V = V1 ∪ V2 ∪ · · · ∪ V7 
with Vi = {vi} for i = 1, 2, . . . , 7 . This partitioning shows that the graph is closed 
7-chained with initial vertex v1 . The graph also is 4-semi-chained. Moreover, the graph is 
tripartite with tripartization V = Ṽ1 ∪ Ṽ2 ∪ Ṽ3 , where Ṽ1 = {v1, v3, v5} , Ṽ2 = {v2, v4, v6} , 
and Ṽ3 = {v7}.

The following result shows that the facts that the graphs in Figs. 4 and 5 are bipar-
tite and tripartite are not coincidences.

Theorem 3  Consider a closed ℓ-chained graph G = {V , E} with vertex set partitioning 
V = V1 ∪ V2 ∪ · · · ∪ Vℓ and initial vertex v1 . Then the graph G is bipartite if ℓ is even. It is 
tripartite if ℓ is odd.

Proof  If ℓ is even, then the partition (2.3) produces a bipartite graph; see an example 
with ℓ = 6 in Fig. 4. If ℓ is odd, then the partitioning

shows that the graph is tripartite. An example with ℓ = 7 is illustrated in Fig. 5. �

V1 = {v1}, Vj = {vj , vℓ−j+2}, j = 2, 3, . . . , (ℓ− 1)/2.

Ṽ1 =
⋃

j odd
j �= ℓ

Vj , Ṽ2 =
⋃

j even

Vj , and Ṽ3 = Vℓ

1 2

34

(a)

1 2

34

6 7

5 8

(b)
Fig. 6  a The 2-cube graph with an enumeration of the nodes.  b The 3-cube graph with an enumeration of 
the nodes vi
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Example 7  Regard the 2-cube graph G = {V , E} with four vertices V = {vj}
4
j=1 displayed 

in Fig. 6a. The vertices are enumerated so that odd vertices are adjacent to even verti-
ces, and vice versa. The graph G is bipartite with the partitioning V = V1 ∪ V2 , where 
the set V1 contains all vertices with odd index, and V2 contains all vertices with even 
index. Moreover, the graph is closed 4-chained with initial vertex v1 , as well as 3-chained 
with initial vertex v1 . The latter is seen from the chain structure V = V1 ∪ V2 ∪ V3 , where 
V1 = {v1} , V2 = {v2, v4} , and V3 = {v3}.

Example 8  Consider the 3-cube graph G = {V , E} displayed in Fig.  6b. The vertices 
v1, v2, . . . , v8 are enumerated so that odd vertices are adjacent to even vertices, and vice 
versa. Hence, the graph G is bipartite with V = V1 ∪ V2 , where the set V1 contains all ver-
tices with odd index, and the set V2 contains all vertices with even index. The bipartite 
structure is illustrated in Fig. 7b.

To determine the closed chain structure with initial vertex v1 , we regard the vertex par-
titioning {v1} ∪ {v2, v4} ∪ {v3, v5, v7} ∪ {v6, v8} , which shows that G has a closed 4-chained 
structure with initial vertex v1 . We note that the graph is not strongly chained, as v8 is 
not connected to v1.

The chain structure of the 3-cube gives rise to a different partitioning of the node set 
V . Define the node subsets V1 = {v1} , V2 = {v2, v4, v6} , V3 = {v3, v5, v7} , and V4 = {v8} . 
The vertices in Vi+1 are adjacent to the vertices in Vi for i = 1, 2, 3 . Thus, the graph G 
is strongly 4-chained with initial vertex v1 . The chain structure is illustrated by the 
graph in Fig. 7a.

The above observations can be extended to n-cubes.

Definition 10  A 0-cube is made of just one vertex. An n-cube is composed by 2n ver-
tices. It is obtained recursively by taking two (n− 1)-cubes, the first one with vertices 
vi , i = 1, 2, . . . , 2n−1 , and the second one with vertices vi , i = 2n−1 + 1, 2n−1 + 2, . . . , 2n , 

1

2 4 6

3 5 7

8

(a)

1

3

5

7

2

4

6

8

(b)
Fig. 7  a: the chained structure of the 3-cube graph G . b: the bipartite structure of G
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and connecting the vertex vi in the first cube to the vertex with index 
(i mod 2n−1)+ 2n−1 + 1 in the second cube.

The graph of an n-cube, with n > 3 is bipartite with V = V1 ∪ V2 , where the set V1 con-
tains all vertices with odd index, and the set V2 contains all vertices with even index. 
To determine the chain structure with starting vertex v1 , we regard the vertex partition-
ing V = V1 ∪ V2 ∪ V3 ∪ V4 , where V1 = {v1} , V2 = {all vertices adjacent to v1 with even 
index} , V3 = {all vertices with odd index except v1} , and V4 = {all vertices not adjacent 
to v1 with even index} . Thus, the graph is strongly 4-chained with initial vertex v1 . Given 
the symmetry of an n-cube with respect its nodes, changing the starting node does not 
modify the number and cardinality of the node sets. An n-cube with n > 3 is also closed 
4-chained. This structure is not strongly chained. Moreover, it is not unique. It can be 
determined by considering the above chained node sets and move nodes from V2 to V4 , 
without making the set V2 empty. This discussion leads to the following result.

Theorem  4  An n-cube with n = 0, 1, 2 , is strongly (n+ 1)-chained. It is strongly 
4-chained when n ≥ 3 . An n-cube with n ≥ 2 is closed 4-chained.

Adjacency matrices for chained graphs
Consider an ℓ-chained graph G = {V , E} with initial vertex v1 and vertex set par-
titioning V = V1 ∪ V2 ∪ · · · ∪ Vℓ . Let ni be the cardinality of the vertex set Vi for 
i = 1, 2, . . . , ℓ . Define the matrix Ai ∈ Rni×ni+1 that describes the connections between 
the vertices in the set Vi and the vertices in the set Vi+1 for i = 1, 2, . . . , ℓ− 1 . Hence, 
the entries of Ai satisfy [Ai]jk = 1 if there is an edge between vertex vj in Vi and ver-
tex vk in Vi+1 , and [Ai]jk = 0 otherwise. The adjacency matrix M associated with G is 
symmetric block tridiagonal with off-diagonal blocks Ai and AT

i  , and has vanishing 
diagonal blocks

It is known from Theorem 1 that every ℓ-chained graph is bipartite. This also can be seen 
by applying a suitable permutation matrix P and its transpose to the adjacency matrix M 
from the left and right, respectively, to obtain

with B ∈ Rno×ne , where

(3.1)M =




O A1

AT
1 O A2

AT
2 O A3

AT
3

. . .
. . .

. . . O Aℓ−1

AT
ℓ−1 O




.

(3.2)PMPT =

[
O B

BT O

]
,
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Here ⌊α⌋ denotes the integer part of α ≥ 0.

Example 9  We illustrate the permutation (3.2) for ℓ = 5 . In this case

where Ik is an identity matrix of order k, and

This shows that the graph G associated to the adjacency matrix M is bipartite.

The submatrix B in (3.3) exhibits a particular pattern of zero entries. This suggests the 
possibility of identifying the strongly chained structure of a graph, whose vertices are 
in a random order, by first identifying its bipartite structure, e.g., by methods described 
in Concas et al. (2020), Gleich: MatlabBGL—A Matlab Graph Library. https://​www.​cs.​
purdue.​edu/​homes/​dglei​ch/​packa​ges/​matlab_​bgl/, and then reordering the vertices to 
obtain a suitable zero pattern in the submatrix B.

The considered permutation also illustrates that it is not possible to identify a 
3-chained graph. Indeed, considering the adjacency and permutation matrices

one obtains

This shows that the matrix B does not have a zero pattern that would allow one to iden-
tify the node partitioning of a 3-chained graph.

If G is an ℓ-semi-chained graph, then the diagonal blocks of the matrices (3.1) and (3.2) 
may have some nonzero entries. If there are fewer nonvanishing entries in the diagonal 
blocks of the matrix (3.2) than in the off-diagonal blocks, then this indicates the exist-
ence of an anti-community.

no =

⌊(ℓ+1)/2⌋∑

i=1

n2i−1, ne =

⌊ℓ/2⌋∑

i=1

n2i.

P =




In1 O O O O
O O In2 O O
O O O O In3
O In4 O O O
O O O In5 O


 ,

(3.3)PMPT =




A1

O AT
2 A3

AT
4

AT
1 A2

AT
3 A4 O



=

�
O B

BT O

�
.

M =



O A1 O

AT
1 O A2

O AT
2 O


 , P =



In1 O O
O O In3
O In2 O


 ,

PMPT =




O O A1

O O AT
2

AT
1 A2 O


 =

�
O B

BT O

�
.

https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/
https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/
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Chained graphs and spanning trees
Many graphs G are not chained, but their spanning trees are. This section explores the 
possibility of using the chained structure of a spanning tree to gain insight into proper-
ties of the underlying graph.

A spanning tree for G is a subgraph T = {V , E ′} that is a tree and contains all the verti-
ces of G ; see, e.g., Estrada (2011a), Newman (2010) for further details. In general, E ′ � E ; 
if E ′ = E , then G is a tree itself. A spanning tree T  for G is not uniquely determined by G . 
In particular, T  depends on the initial vertex, the so-called root, of the tree. A spanning 
tree for a graph G with n vertices can be computed in time proportional to n.

Each spanning tree has an ℓ-chained structure: let V1 contain the root, v1 , of the 
tree, V2 the children of the root, and, in general, Vi+1 the children of the vertices in Vi 
for i = 1, 2, . . . , ℓ− 1 . The set Vℓ contains the leaves of the tree at the lowest level. This 
shows, in particular, that spanning trees are bipartite; cf. Theorem 1. We will use the 
chained structure of a spanning tree T  for G to determine an approximated chained 
structure for G , also in situations when G is not chained.

Definition 11  Let T  be a spanning tree for the graph G . An ℓ-chained vertex set 
decomposition for T  is said to be an ℓ-chained vertex set decomposition for G . We will 
refer to leaves of T  as leaves of G.

Let D = E \ E ′ be the set of the edges in G that are not in T  , and let C(T ) denote 
the graph obtained by adding the edges in D to the spanning tree T  . The graph C(T ) 
coincides with G and inherits the chain structure of T .

If all the edges in D are compatible with the chain structure of the spanning tree T  , 
that is, if for each edge ek ∈ D , there is an index 2 ≤ i ≤ ℓ− 1 such that ek connects a 
vertex in Vi to a vertex in Vi−1 or Vi+1 , then the graph G = C(T ) is chained. If an edge 
in D connects two vertices that belong to the same node set Vi , the graph is semi-
chained. Finally, if an edge in D connects a vertex in Vi to a vertex in Vi+j , |j| ≥ 2 , then 
the graph C(T ) is not chained. This observation leads to the following result.

Theorem 5  A graph is ℓ-chained (semi-chained) if at least one of its spanning trees T  
generates a graph C(T ) whose edges are compatible with the (semi-)chain structure of T .

Let the vertex set decomposition V = V1 ∪ V2 ∪ · · · ∪ Vℓ be determined by the chain 
structure of G = C(T ) . Recall that a graph is strongly chained if every vertex in Vi is 
connected to at least one vertex in Vi+1 and to one vertex in Vi−1 for = 2, 3, . . . , ℓ− 1 . 
Moreover, every vertex in V1 (resp. Vℓ ) is required to be connected to one vertex in V2 
(resp. Vℓ−1 ). Whether a graph is strongly chained depends on the leaves of the graph.

Theorem 6  Let T  be a spanning tree of the graph G = {V , E} , and let T  determine the 
chain structure V = V1 ∪ V2 ∪ · · · ∪ Vℓ . If T  has leaves connected only to vertices in Vℓ−1 , 
then G is strongly chained. This also holds if T  has leaves connected to vertices in V1 or in 
V2 , but not if there are leaves connected to vertices in both V1 and V2.

Proof  The vertices in Vℓ are leaves. If, in addition to the leaves in Vℓ , there are leaves 
connected to the root, v1 , but no other leaves, then the graph is strongly chained. 
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This can be seen by moving the leaves connected to v1 to a new vertex set V0 that pre-
cedes V1 . This shows that the graph is strongly (ℓ+ 1)-chained with chain structure 
V = V0 ∪ V1 ∪ · · · ∪ Vℓ.

We turn to the situation when, in addition to the leaves in Vℓ , there are also leaves con-
nected to the vertices in V2 . The latter leaves can be moved to V1 , which shows that the 
graph is strongly ℓ-chained.�  �

We remark that it is easy to construct examples that illustrate that if T  has a leaf 
connected to a vertex in Vi for some 3 ≤ i ≤ ℓ− 2 , then C(T ) is not guaranteed to be 
strongly chained.

The above discussion leads to Algorithm 1 for determining if a graph with n vertices 
is (semi-)chained in O(n2) time steps. We note that the algorithm can easily be paral-
lelized, as each iteration is independent on the others.

The following example illustrates that both the partitioning of the vertex set V of a 
graph G = {V , E} and the number of partitions, ℓ , depend on the choice of the root of 
the spanning tree T  as well as on the spanning tree itself.

Example 10  Consider the graph G with adjacency matrix

This graph G is not chained. The graphs defined by the adjacency matrices

and

A =




0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
0 1 0 0 0


.

(4.1)A1 =




0 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 0 0



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are spanning trees for G . Regard first the partitioning of the tree (4.1). Starting with ver-
tex v1 , we obtain the vertex subsets V1 = {v1} , V2 = {v2} , V3 = {v3, v5} , and V4 = {v4} . 
Thus, ℓ = 4 . If we instead start with vertex v2 , then we get the sets V1 = {v2} and 
V2 = {v1, v3, v5} , V3 = {v4} , and ℓ = 3.

We now turn to the spanning tree (4.2). Letting V1 = {v1} , we obtain V2 = {v2} , and 
V3 = {v3, v4, v5} . Hence, ℓ = 3 . If we instead let V1 = {v2} , then V2 = {v1, v3, v4, v5} and 
ℓ = 2.

In what follows, we will need the notion of tree branches.

Definition 12  A branch for a tree T  is a sequence of vertices starting at the tree root 
and ending at a leaf. The length of a branch is the number of vertices in the branch. A 
longest branch is a branch with maximal length.

A recursive procedure for determining all the longest branches of a tree is presented 
by Algorithm 2.

It is natural to seek the root of a spanning tree with the deepest chain structure on a 
long branch of any of the spanning trees of the graph. A heuristic approach for doing 
this is described by Algorithm 3.

(4.2)A2 =




0 1 0 0 0
1 0 1 1 1
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0



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Example 11  We have already seen in Example 9 that the chain structure of an undi-
rected simple unweighted graph G = {V , E} cannot be uniquely determined from the 
sets E and V . Here we provide another illustration using spanning trees. The pictures in 
Fig. 8 show the same graph. The graph in Fig. 8b is obtained by determining a spanning 
tree for the graph in Fig. 8a, starting from vertex v9 , and then constructing C(T ) by add-
ing the missing arcs. Both graphs are strongly 4-chained.

The adjacency matrices for the graphs of Fig. 8 are permutations of each other. The 
blocks in matrix (3.1) for the two graphs are

and

respectively. We notice that the graph G is in fact 5-chained. This can be seen, for exam-
ple, by constructing the spanning tree starting from vertex v2 . 

Example 12  Consider the graph G = {V , E} displayed in Fig. 9. The adjacency matrix 
for G is given by

A1 =



1 1
1 0
0 1


 , A2 =

�
1 0 1
0 1 1

�
, A3 =



1 0
1 1
0 1


 ,

A1 =



1 1 0
1 0 0
0 1 0
1 1 1


 , A2 =



1 0
0 1
0 1


 , A3 =

�
1
1

�
,



Page 17 of 29Concas et al. Appl Netw Sci            (2021) 6:39 	

By removing edges denoted by dashed lines between the vertices v2 and v3 , v4 and v5 , as 
well as between the vertices v5 and v6 , we obtain the graph G′ with the associated adja-
cency matrix

This matrix is of the form (3.1). It follows that the graph G′ is chained. The ver-
tex set for G′ can be expressed as V = V1 ∪ V2 ∪ V3 with V1 = {v1} , V2 = {v2, v3} , and 
V3 = {v4, v5, v6}.

A =




0 1 1 0 0 0
1 0 1 0 1 0
1 1 0 1 1 1
0 0 1 0 1 0
0 1 1 1 0 1
0 0 1 0 1 0



.

A′ =




0 1 1 0 0 0
1 0 0 0 1 0
1 0 0 1 1 1
0 0 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0



.

1 2 3

4 5

6 7 8

9 10

(a)

1 2 3 8

4 5 10

6 7

9

(b)
Fig. 8  Example 11: the two figures (a) and (b) show the same graph. The layouts display different chain 
structures

1

2 3

4 5 6

Fig. 9  Example 12: a graph G without chain structure
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In Example 12, the graph G is approximated by a 3-chained graph. We conclude that G 
is a 3-semi-chained graph with ρ-anti-communities {v1} , {v2, v3} , and {v4, v5, v6}.

Position centrality and some applications
There are many ways to measure the importance of a vertex in a graph; see, e.g., Estrada 
(2011a), Estrada and Higham (2010), and Newman (2010). These measures often are 
referred to as centrality measures. In this section, we are interested in determining a 
most “centrally located” vertex in a graph. We call such a vertex a center vertex. For this 
purpose, we introduce a new centrality measure, which belongs to the class of path-
based centrality measures. This class includes closeness and betweenness centralities. In 
fact, determining the most centrally located nodes is an extension of closeness centrality.

Applications of the detection of a center vertex include:

–	 Information dissemination: we are interested in determining a vertex (the center ver-
tex) such that information from it can travel to all other vertices in the least amount 
of time. Here we assume that the travel time is proportional to the number of edges 
that have to be traversed from a center vertex to the receiving vertices. In the context 
of social network theory, the importance of a node for spreading information is often 
associated with the betweenness centrality which assumes that the communication 
in a network takes place through the shortest paths passing through this node. How-
ever, it has been shown that in some circumstances the best spreaders do not corre-
spond to the most highly connected or central nodes. They are often located within 
the core of the network, identified by using k-shell decomposition analysis; see Kitsak 
et al. (2010) and the references therein.

–	 City planning: let the edges of a graph represent the streets of a town. It would be 
reasonable to allocate a fire station, police station, bus terminal, or hospital at a 
center vertex of the graph.

Definition 13  Let T  be a spanning tree of the graph G , starting at a vertex v, and let 
V1,V2, . . . ,Vℓ the ℓ-chained structure determined by the tree. The position centrality Pp 
of v in the graph, where p ∈ R , is defined by

where (#Vi) denotes the cardinality of the set Vi . We refer to a vertex vc with the smallest 
position centrality as a p-center vertex.

When p = 1 , the position centrality is the sum of the lengths of the paths from v to all 
the other vertices, so its minimization is equivalent to the maximization of the closeness 
centrality

Pp(v) =

ℓ−1∑

k=1

k(#Vk+1)
p,
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where d(vi, vj) is the distance between vi and vj . For p = −1 , position centrality is equiv-
alent to harmonic mean distance; see Newman 2010, Eq. (7.30). We emphasize that posi-
tion centrality depends on the chained structure, which contains important information 
about the network being analyzed.

Using positive p values different from 1 may help select central nodes with differ-
ent features. A value larger than 1 further penalizes the presence of a large number of 
long walks, and selects a relatively long ℓ-chained structure, generally with maximal 
chain length, with sets Vk containing a small number of vertices. This feature has the 
interesting side effect of reducing the bandwidth of the adjacency matrix correspond-
ing to the node ordering induced by the chain structure.

On the contrary, p ∈ (0, 1) reduces the difference between the scores of long and 
small walks, leading to a shorter chain structure, composed by large node sets.

Example 13  Consider the graph G displayed in Fig. 10. The position centrality of a ver-
tex in the graph can be computed by using the chained graph starting from this vertex.

To compute the position centrality of vertex v2 , we consider the spanning tree 
rooted at vertex v2 . We obtain V1 = {v2} , V2 = {v3} , V3 = {v4} , V4 = {v1, v5, v8} , and 
V5 = {v6, v7, v9, v10} . Since the graph is unweighted, the length between a vertex in Vi to a 
vertex in Vi+1 is one. It follows that the 1-position centrality of vertex v2 is

while P5(v2) = 4828 and P1/5(v2) = 12.02.
We turn to the position centrality of vertex v4 . Letting V1 = {v4} , we obtain 

V2 = {v1, v3, v5, v8} , and V3 = {v2, v6, v7, v9, v10} . We have

C(vi) = n



�

j �=i

d(vi, vj)




−1

,

P1(v2) = 1 · 1+ 2 · 1+ 3 · 3+ 4 · 4 = 28,

12

3

4

5

6

7

8

9

10

Fig. 10  A spanning tree of G
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Similarly, we can compute the position centrality for all the other vertices of the span-
ning tree. Vertex v4 has the smallest position centrality score for p = 1

5 and p = 1 , while 
the center vertices for p = 5 are v7 , v9 , and v10 . 

In Example 13, the center vertices lie on one of the longest branches of the spanning tree. 
It is reasonable to assume that this is typical for many trees. Hence, to approximate the 
center vertex, instead of evaluating the position centrality for all the vertices, it is more effi-
cient to compute the position centrality for the vertices on the longest branches only. This 
suggests the iterative procedure described by Algorithm 4. The same approach can also be 
used for determining the approximate top k p-center nodes, as described by Algorithm 5.

It may be attractive to identify a tree with the shortest longest branch and then determine 
a candidate for the central node on a longest branch. We outline this approach, but hasten 
to add that it is only a heuristic, because a center vertex is not guaranteed to lie on a longest 
branch.

The following example illustrates that the center vertex depends on the spanning tree.

P1(v4) = 1 · 4 + 2 · 5 = 14, P5(v4) = 7274, P1/5(v4) = 4.08.
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Example 14  Consider the undirected and unweighted graph G displayed in Fig.  11. 
Two shortest-path trees rooted at vertex v1 are shown in Fig. 12. The center vertices of 
the shortest-path tree in Fig. 12a are the vertices v2 and v3 . Let v2 be the starting ver-
tex. Then V1 = {v2} , V2 = {v1, v3, v4} , V3 = {v5} , and V4 = {v6} . The position centrality is 
P1(v2) = 8.

Let, instead, v3 be the initial vertex. Then we obtain V1 = {v3} , V2 = {v2, v5} , and 
V3 = {v1, v4, v6} . The position centrality is P1(v3) = 8 . Both vertices v2 and v3 have the 
smallest 1-position centrality of the vertices in the graph.

Similarly, we find that the center vertex of the shortest-path tree in Fig. 12b are the ver-
tices v2 and v4 . The position centrality of both these vertices is 8, which is the smallest 
position centrality of all the vertices.

Numerical experiments
The algorithms discussed in the previous sections were implemented in the MATLAB 
programming language. Large tests were executed on a Linux virtual machine running 
on a Cisco UCSB-B480-M5 server based on Intel Xeon Gold 6136 processors. The vir-
tual machine is equipped with 32 cores and 128 Gbyte RAM.

We first illustrate the use of the algorithms on a small graph, namely, the one described 
in Example 11 and illustrated in Fig. 8. The graphs in Fig. 13 display spanning trees start-
ing at vertex v2 and at vertex v6 of the graph G . The dashed lines denote edges that must 
be added to the tree T  to obtain the graph C(T ) : it is seen that the added edges are com-
patible with the chain structure of T  , and the chain length is 5. Applying Algorithm 1 
confirms that this length is maximal. Hence, G is 5-chained and all the sets Vi deter-
mined by T  are 0-anti-communities.

By computing the 1-position centrality of all nodes in G , one finds that the correspond-
ing central nodes are v4 , v5 , and v8 . The nodes with the smallest 5-position centrality 
are v2 and v3 . Both of them are roots of a tree with maximal chain length; Fig. 13a illus-
trates this for v2 . We applied Algorithm 3 for approximating the chain structure length 

1 2

3

4

5 6

Fig. 11  An undirected and unweighted graph G
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of the graph, and Algorithm  4 to approximate its center vertex for p = 1 . To investi-
gate the global performance of these methods, the algorithms were applied starting from 
each vertex of the network; the results are displayed in Fig. 14. It can be observed that 
the chain structure length was not detected for each starting vertex, but the computed 
approximations are accurate. On the contrary, Algorithm  4 always determined one of 
the three correct center vertices.

We now analyze the structure of three medium-sized networks, deriving from well 
known data sets:

–	 autobahn (1168 nodes, 2486 edges) describes the German highway system 
network, where the vertices are locations and the edges highways connecting 
them. It is available at Biological Networks Data Sets of Newcastle University, 
http://​www.​biolo​gical-​netwo​rks.​org/.

–	 yeast (2361 nodes, 13828 edges) represents the protein interaction network for yeast: 
the interacting proteins are connected by edges (Jeong et al. 2001; Sun et al. 2003). It 
is available at Batagelj and Mrvar (2006).

–	 geom (7343 nodes, 23796 edges) was extracted from the computational geometry 
database collaboration network geombib by B. Jones (version 2002). Nodes represent 
authors; the value of the entry (i, j) of the adjacency matrix is the number of papers 
coauthored by authors i and j. The data set is available at Batagelj and Mrvar (2006). 
We will use the associated unweighted network.

The autobahn network is connected, but the networks yeast and geom are not. We 
therefore considered the largest connected component, of 2224 and 3621 vertices, of the 
latter networks.

As expected, Algorithm 1 reveals all three networks (autobahn, yeast, and geom) to be 
semi-chained. The maximal chain length of a spanning tree for each of the three graphs 
is ℓ = 63 , 12, and 15, respectively. The structure of a maximal chain length spanning tree 
for autobahn (starting at vertex 116) and for geom (starting at vertex 207) are displayed 
in Fig. 15a,b. The additional edges which define C(T ) , represented by dashed lines, are 
compatible with the semi-chain structure of each tree T .

1 2

3

4

5 6

(a)

1 2

3

4

5 6

(b)
Fig. 12  Two shortest-path trees of node v1 ; the center nodes of the (a)  tree are v2 and v3 and the center 
nodes of the (b)  tree are v2 and v4

http://www.biological-networks.org/
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Figure  16 displays the adjacency matrix for the autobahn network after applying 
two particular orderings of the nodes, deriving from the spanning tree displayed in 
Fig. 15a. By listing the vertices in the same order as they appear in the node sets Vi , 
i = 1, 2, . . . , 63 , we obtain the spy plot in Fig. 16a. In a spy plot, each nonzero entry of 
a matrix is represented as a dot, and the quantity “nz” on the x-axis denotes the num-
ber of nonzeros. The graph exhibits the form reported in (3.1), and shows that this 
ordering reduces the bandwidth of the adjacency matrix, especially in the presence of 
a long chain structure. By applying the vertex ordering proposed in Example 9, that is, 
by listing first the nodes in the sets Vi with an odd index i and then those with an even 
index, the adjacency matrix of G takes the sparsity structure shown in the spy plot in 
Fig. 16b. It coincides with the form displayed in Eq. (3.3), and shows that the graph is 
almost bipartite.

In view of the sparsity of the diagonal blocks, this spy plot signals the presence of 
anti-communities in the network. Indeed, by computing the anti-community score 
of the node sets Vi resulting from the application of Algorithm  1 with starting vertex 
116, represented in the graph if Fig.  15a, we find that the autobahn network has 48 
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Fig. 13  Example 11: two spanning trees (a) and (b) with maximal chain structure length. The dashed edges 
are added to each tree T  to obtain the graph C(T )
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Fig. 14  Example 11: chain length (left) and central vertex (right) detected by Algorithms 3 and 4, 
respectively, starting from node vk , k = 1, . . . , 10
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0-anti-communities (23 including just one vertex) and 15 anti-communities, with maxi-
mal score ρ = 0.07.

The spy plots for the yeast and geom networks corresponding to the first ordering are 
reported in Fig. 17a, b, respectively. They clearly show that in both networks there are 
groups of vertices which do not interact, and that there are no anti-communities.

Figures 18, 19, and 20 depict the results obtained by running Algorithm 3 to approxi-
mate the chain structure length, and Algorithm 4 to determine an approximation of the 
center vertex for p = 1 . The algorithms are initialized using each node in the network as 
a starting vertex, in order to investigate their best and worst performances. In real appli-
cations, the algorithms should be initialized with a random starting vertex.

The graph in the left panel of each figure shows the maximal chain length We see that 
for the autobahn network about half of the tests determine the correct value 63, and the 
other runs obtain the close value 61. For the other two networks, Algorithm 3 is very 
accurate, missing the correct chain length by one unit in just a few cases.

The graphs (b) in Figs. 18, 19, and 20, report the relative errors in the approxima-
tions of the 1-position centrality by Algorithm 4 when compared to the exact result. 
The (exact) minimal position centrality was computed by Algorithm 1, which identi-
fied the following center vertices for the three test networks:

–	 vc = 698 , with P1(vc) = 13954 , for autobahn;
–	 vc = 518 , with P1(vc) = 6914 , for yeast;
–	 vc = 20 , with P1(vc) = 11736 , for geom.

We see that the position centrality was accurately estimated in most cases. The rela-
tive error for autobahn exceeds 15% only for a small number of starting vertices, while 
it is always below 16% for yeast, and 8% for geom.

To illustrate the differences between the center vertex individuated by the position 
centrality, as defined in Definition  13, and other centrality measures, we consider a 
real-world data set concerning air transport management.

(a) (b)
Fig. 15  Maximal chain length spanning trees for the autobahn network (a) and the geom network (b), 
starting at vertex 116 and 207, respectively. Each tree T  is completed by the additional edges that define 
C(T )
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The network is determined by domestic airlines between 164 cities in the 48 contigu-
ous states in the US in 2019. It is reported by the Bureau of Transportation Statistics 
of the US Department of Transportation (U.S. Department of Transportation). By using 
cities as nodes and airlines between cities as edges, we construct an undirected and 
unweighted network with adjacency matrix A ∈ R164×164 . We determine the center ver-
tex of this network by three different methods: subgraph centrality, eigenvector central-
ity based on the computation of the Perron vector, and the position centrality described 
in this paper.

The idea behind the subgraph centrality, introduced by Estrada and Rodriguez-
Velazquez (2005), consists of characterizing the importance of a node in all subgraphs 
in a network by considering its participation in all closed walks starting (and ending) at 
it. More precisely, the subgraph centrality for the node i, in a network described by the 
adjacency matrix A, is the i-th diagonal entry of the exponential of A, that is, it is given 
by
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Fig. 16  Spy plots (a) and (b) for the autobahn network (1168 vertices) after applying two particular node 
orderings induced by a maximal chain length spanning tree

Fig. 17  Spy plots for the yeast (a) and geom (b) networks, after applying the node ordering induced by the 
maximal length spanning trees starting at node 569 and 207, respectively
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Fig. 18  autobahn network (1168 vertices): chain structure length detected by Algorithm 3 (a), and relative 
error in the minimal position centrality detected by Algorithm 4 (b), starting from each node in the network

0 500 1000 1500 2000

11

12

exact
not exact

(a)
0 500 1000 1500 2000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b)
Fig. 19  yeast network (2224 vertices): chain structure length detected by Algorithm 3 (a), and relative error 
in the minimal 1-position centrality detected by Algorithm 4 (b), starting from each node in the network
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Fig. 20  geom network (3621 vertices): chain structure length detected by Algorithm 3 (a), and relative error 
in the minimal 1-position centrality detected by Algorithm 4 (b), starting from each node in the network
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where ei denotes the i-th column of the identity matrix.
The eigenvector centrality was introduced by Bonacich as a measure of the influence a 

node has in a network (Bonacich 1987). The i-th entry of the principal eigenvector q1 of 
the adjacency matrix A of a graph is known as the eigenvector centrality of node i. Typi-
cally, q1 is normalized and, by the Perron-Frobenius theorem, it can be chosen so that all 
of its components are nonnegative.

The node identified by both the subgraph centrality and the eigenvector centrality is 
New York City, one of the largest commercial centers of the US. The center vertex deter-
mined by the position centrality is located at Las Vegas. Indeed, given its position and 
connections, it is easy to travel from Las Vegas to any other town.

For completeness, we report in Fig. 21 the results obtained by running Algorithm 3 to 
approximate the chain structure length, and Algorithm 4 to determine an approximation 
of the center vertex. We see that in this case Algorithm 3 is not very accurate, but the 
network is too small for the experiment to be of significance. On the contrary, the center 
node is determined with high accuracy.

Finally, Table 1 reports the central nodes for the networks autobahn, yeast, geom, and 
airlines, according to various centrality indices. Position centrality, with p = 1, 5, 15 , is 
compared to the degree of a node, betweenness centrality (Newman 2010), PageRank 

eTi exp(A)ei,

0 50 100 150

3

4

5

exact
not exact

(a)
0 50 100 150

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(b)
Fig. 21  domestic airlines network (164 vertices): chain structure length detected by Algorithm 3 (a), and 
relative error in the minimal position centrality detected by Algorithm 4 (b), starting from each node in the 
network

Table 1  Central nodes for the networks considered in the paper, according to different centrality 
measures: degree (deg), betweenness centrality (btwin), PageRank (prank), subgraph centrality 
(sgcen), eigenvalue centrality (eig), and position centrality Pp , for p = 1, 5, 1

5

network deg btwin prank sgcen eig P1 P5 P1/5

autobahn 693 219 693 693 219 698 565 693

yeast 535 138 1338 442 427 518 258 273

geom 20 956 2967 79 956 20 655 43

airlines 79 79 79 104 104 79 84 79
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(Page et al. 1999), subgraph centrality, and eigenvector centrality. We note that for the 
autobahn network P1/5 , the degree, the PageRank, and the subgraph centrality agree in 
the determination of the center node. For airlines most of the methods agree, with the 
exception of subgraph and eigenvector centrality, which identify the same node, and 
P5 . In most cases, different indices select different center vertices, illustrating that they 
take different features of the network into consideration. We emphasize the fact that 
the position centrality associates to a center vertex a hierarchy of the nodes, namely, the 
chain structure, which contains additional strong information about the topology of the 
network.

Conclusion
The notions of chained and semi-chained graphs, as well as of center nodes, are intro-
duced. Their properties and use to analyze networks are discussed, and algorithms for 
approximating both the chained structure of a graph and its center nodes are presented.
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