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Introduction
Unplanned or self-organized cities spontaneously undergo scaling coherences for which 
a comprehensive explanation is lacking (Rybski et al 2019). Scaling coherence, or scale-
freeness, expresses apparent invariance under zooming-in or -out transformations. The 
scaling coherence of the spatial organization of a city is reflected in its streets: the streets 
of a self-organized city typically follow a scale-free behaviour which has attracted much 
attention from observational and theoretical researchers (Rosvall et al 2005; Porta et al 
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2006; Crucitti et al 2006; Jiang et al 2008). We recently linked the scale-freeness of self-
organized urban street networks to a preservation principle through a fluctuating meso-
scopic model (Benoit and Jabari 2019a, b).

The invoked preservation principle is the Jaynes’s Maximum Entropy principle (Jaynes 
1957, 2003; Lawrence 2019). This principle assesses the most plausible probability dis-
tribution of a fluctuating system according to moment constraints. We inversely applied 
it by envisioning streets as mesoscopic objects governed by social interactions (Benoit 
and Jabari 2019a, b). We reflect the scaling coherence by randomly distributing their 
numbers of configurations according to a scale-free distribution, specifically, a discrete 
Pareto distribution (Clauset et al 2009). The discrete Pareto distribution results from a 
constraint on the first logarithm moment (Dover 2004). Since their configurations are 
equally probable due to our lack of knowledge, this constraint interprets itself as an 
information measure preservation. The predominance of a number of vital connections 
among social connections asymptotically leads to a discrete Pareto distribution for the 
number of junctions per street. We have what is observed among self-organized urban 
street networks. However promising the approach appears, we need to investigate it 
completely with some specific tools.

To study such fluctuating models, analytical and simulational methods are usually 
employed as complementary methods to obtain more complete and accurate interpreta-
tions. Our analytical framework is the maximum entropy formalism, a general formalism 
of modern probability theory partially inherited from statistical physics (Jaynes 2003; 
Grandy 1987; Lawrence 2019). For simulating fluctuating systems, physicists mostly rely 
on random sampling algorithms based on Markov chain Monte Carlo methods, often 
abbreviated as Monte Carlo methods (Newman and Barkema 1999; Landau and Binder 
2015). Each thus-generated random sample enables us to obtain numerical results that 
we can confront to theoretical ones. The Monte Carlo method of first choice remains the 
algorithm pioneered by Nicolas Metropolis and his co-workers (Metropolis et al 1953; 
Newman and Barkema 1999).

Strictly speaking the Metropolis algorithm may apply to configurations of streets or 
their associated information networks. An information network (Rosvall et  al 2005; 
Porta et  al 2006) is a dual network representation of an urban street network that (i) 
associates each street to a node, and (ii) links each pair of nodes (streets) sharing a com-
mon junction (see Fig. 1 for illustration). It is this dual graph representation that reveals 
the underlying scale-freeness (Porta et al 2006; Crucitti et al 2006; Jiang et al 2008). For 
instance, the valence distribution of an information network associated to a self-organ-
ized urban street network typically follows a discrete Pareto distribution (Clauset et al 
2009). This observed scale-freeness provides a clue to find the prior hypothesis (Jaynes 
2003; Grandy 1987) necessary to construct a fluctuating mesoscopic model for the 
streets, that is, to model the probability distribution to which Monte Carlo simulations 
are “coming to equilibrium” (Newman and Barkema 1999; Landau and Binder 2015). For 
mimicking fluctuating transitions, we may use the property that one information net-
work transforms into another when a junction alters its street layout.

Basically, a Monte Carlo simulation iterates a Markov process for generating a Markov 
chain of states, a sequence of states whose every state depends only on its predecessor 
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(Newman and Barkema 1999; Landau and Binder 2015).1 Here a state is any configu-
ration of streets or its associated information network (see Fig. 1 for illustration). The 
Markov process is built so that the Markov chain reaches, when it is iterated enough 
times starting from any arbitrary state, the prescribed statistical equilibrium. To achieve 
this, the Markov process has to fulfil (i) the condition of detailed balance and (ii) the 
condition of ergodicity. The Metropolis algorithm is essentially an implementation choice 
for the former. The implementation of the condition of ergodicity relies on the details 
of the systems. The objective of this work is twofold. First, to present how a Metropolis 
algorithm adaptation can compel these two conditions for self-organized urban street 
networks. Second, to apprehend whether or not Metropolis simulations can provide 
pertinent “experimental” data to investigate their scaling coherence.

The rest of the paper presents our innovative modeling approach as follows. The sec-
ond section carries out the two requested conditions. Firstly, once the probability distri-
bution to come to equilibrium is established, the condition of detailed balance reduces 
to writing down the emblematic Metropolis acceptance ratio. Secondly, a short analy-
sis enables us to disentangle the state-of-the-art paradigms for generating information 
networks into a constrained ergodic dynamics, which nonetheless recalls the classical 

Fig. 1  Notional urban street network meant to pattern throughout this paper a real-world urban street 
network. The planar graph representation ( g ) emphasizes a literal geometric interpretation where junctions j∗ 
(and impasses i∗ ) are nodes and street-segments s̄∗ are edges. The street maps ( m ) and ( m′ ) show two of the 
possible configurations of streets associable to graph ( g ). The information networks ( t ) and ( t′ ) emphasize the 
topological information contained in street maps ( m ) and ( m′ ), respectively: they associate streets r∗ to nodes 
and they link streets sharing common junctions j∗ . Information networks of self-organized or unplanned 
urban street networks exhibit in general a scale-free valence distribution, namely, they are scale-free 
networks. This observational fact has led us to a fluctuating model for which configurations of streets are 
fluctuating as part of a social process. So, along this paper, a street map such as ( m ) or ( m′ ) is abstracted as a 
state (see Footnote 1) of a fluctuating system

1  A state is a set of quantities completely describing a system which does not include anything about its history. Along 
this notion, a dynamics is a map associating to a state another state which does not depend on the past states. A Markov 
process is a dynamics.
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single-spin-flip ergodic dynamics. This dynamics can potentially become unconstrained. 
Eventually, our Metropolis adaptation implements itself and compares easily against the 
classical single-spin-flip adaptation for Ising models. Next, the third section compares, 
over a wide range of scaling exponents, Metropolis generation series against state-of-
the-art outputs for Central London (United Kingdom). The range of consistency renders 
scaling investigations around their accepted scaling values feasible. As illustration, we 
plot the Watts–Strogatz phase diagram with scaling as rewiring parameter. We demon-
strate thusly a small-world crossover curving at realistic scaling values. Accordingly the 
state-of-the-art outputs underlie relatively large worlds. In the concluding section, after 
a summary of the findings, we point how the presented methodology may contribute, 
as part of a fluctuating system approach, to change our perspective on urban street net-
works and, by extension, on cities.

Implementation of the Metropolis algorithm
This section shows how we can apply the classical Metropolis algorithm on unplanned 
or self-organized urban street networks to generate scale-free streets. We first adapt the 
most emblematic part, then we design two appropriate dynamics. Each dynamics aims 
to create from any current configuration of streets a new one. The emblematic part tells 
us whether or not to accept the new configurations of streets in order for their sequences 
to tend to a prescribed statistical equilibrium.

The emblematic Metropolis acceptance ratio

Typically Monte Carlo methods are applied to thermal systems. So applying them to 
a non-thermal system requires the extra preliminary work to frame the statistics of its 
steady fluctuations. The framework provided by the maximum entropy formalism allows 
us to derive an equilibrium distribution which is relevant to our scale-free system. This 
first achievement of our paper is necessary to implement any Monte Carlo method. The 
resulting Metropolis acceptance ratio takes a typical form.

Scale‑freeness as available information

In the classic literature, the prescribed equilibrium distribution is de facto the Boltz-
mann distribution (Newman and Barkema 1999; Landau and Binder 2015). The same 
modern tools that derive the Boltzmann distribution from a conservation argument 
allows us to establish the prescribed equilibrium distribution of a scale-free system 
through a symmetry argument. We obtain a discrete Pareto distribution of an undefined 
quantity. This result should be folklore in some area, but we could not locate it in the 
literature.

At thermal equilibrium, the probability pµ for a thermal system to occupy any state 
(see Footnote 1) µ is assumed to yield the Boltzmann distribution

with Eµ the energy of state µ and β the inverse temperature (Newman and Barkema 
1999; Landau and Binder 2015; Grandy 1987). We have β = 1/kT  with k the Boltzmann 
constant and T the temperature. Nowadays the probability distribution (1) can easily be 
derived by applying the principle of maximum entropy (MaxEnt) formulated by Jaynes 

(1)pµ ∝ e
−βEµ
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(1957) as a general principle of probability theory (Jaynes 2003; Grandy 1987; Lawrence 
2019). Within the maximum entropy formalism, Boltzmann probability (1) becomes the 
most plausible probability distribution that preserves the total energy of the system on 
average. This preservation is formally a constraint imposed on the mean of the energy. In 
practice the constraint is treated as a standard variational problem (Jaynes 2003; Grandy 
1987) using the method of Lagrangian multipliers (see for example Applebaum 2008, 
App. 2). The Lagrangian writes (Jaynes 2003)

where pµ is our unknown probability distribution and the first Lagrange multiplier ν 
forces its normalization, while the second Lagrange multiplier β imposes the mean 
energy to have the constant energy value 〈E〉 . The stationary solution of Lagrangian (2) is 
the desired probability distribution pµ (Jaynes 2003); we have

for arbitrarily small variations δpµ of pµ . Resolving (3) immediately gives

as partition function (Jaynes 2003; Grandy 1987). Probability distribution (4) is Boltz-
mann probability (1) expressed in its canonical form (Jaynes 2003; Grandy 1987). If the 
maximum entropy formalism tells us how to treat total energy preservation, noticeably 
it does not tell us why we choose this constraint over another. Formally the preservation 
of the total energy is part of the initial hypothesis or available information (Jaynes 2003; 
Grandy 1987) that we have on systems in thermal equilibrium.

For self-organized urban street networks, our only available information is scale-freeness. 
However scale-freeness is not a preserved quantity but rather a property (Stanley 1971). 
But, at the same time, scale-freeness of a self-organized information network may result 
from a self-similarity inherited from its self-organized city (Kalapala et al 2006; Batty 2008). 
Self-similarity is a symmetry (Mandelbrot 1982), a transformation that lets an object or a 
system stay invariant. Symmetries play a fundamental role in modern physics (Gross 1996; 
Romero-Maltrana 2015; García-Pérez et  al 2018). A general consensus in physics is that 
an invariance to a transformation underlies a preserved entity, and vice versa (Gross 1996; 
Romero-Maltrana 2015). Let us see how this idea applies here. For our purpose, we must 
first rewrite Lagrangian (2) in the more generic form

where X is an extensive quantity whose each value Xµ describes state µ . An extensive 
quantity scales linearly under scaling transformations. The new second Lagrange mul-
tiplier � imposes our unknown constraint which expresses in terms of an unknown 

(2)LTE

({
pµ

}
; ν,β

)
= −

∑

µ

pµ ln pµ − ν

[∑

µ

pµ − 1

]
− β

[∑

µ

pµEµ − �E�

]

(3)0 = δLTE

({
pµ

}
; ν,β

)
=

∑

µ

[
− ln pµ − (ν + 1)− βEµ

]
δpµ

(4)pµ =
e−βEµ

Z(β)
with Z(β) =

∑

µ

e
−βEµ

(5)Lf
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− �
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f (X)
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function f  acting on X. It literally coerces the mean value of f (X) to have the constant 
value 

〈
f (X)

〉
 . For the sake of demonstration, we will assume exact self-similarity. Accord-

ingly, under the scaling transformation

a self-similar (or homogeneous) function �(x) will transform as

with α a scaling exponent (Stanley 1971, sec. 11.1). Here, the self-similarity invariance 
holds in the unknown probability distribution pµ = p(Xµ) . Under transformation (6), 
pµ remains unchanged as expected; we have

If we demand that Lagrangian (5) stays invariant under transformation (6), then

for any scaling factor s and any possible probability distribution pµ . Hence, the unknown 
function f  satisfies the functional equation

When X takes only positive values x, the most general solution of (10) which is continu-
ous is

with K a constant (Aczél 1966, Th. 2.1.2(2)). Substituting solution (11) into the generic 
Lagrangian (5) gives the self-similar Lagrangian

once the useless constant K is absorbed. One easily verifies that (12) remains indeed 
unchanged under the scaling transformation (6). The corresponding most plausible 
probability distribution pµ yields the stationary equation

whose solution readily writes

(6)x → x̃ = s x,

(7)�(x) → �̃(x) = �(s x) = s
α � (x)

(8)pµ → p̃µ = p̃(Xµ) =
p(sXµ)∑
µ p(sXµ)

=
s
α p(Xµ)∑
µ s

αp(Xµ)
= p(Xµ) = pµ.

(9)

0 =
(
Lf

({
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}
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))∼
− Lf

({
pµ

}
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)
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{
∑

µ
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[
f
(
sXµ

)
− f

(
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)]
−

〈
f (sX)− f (X)

〉
}

= −�

{
∑

µ

pµ
[
f (sXµ)− f (s)− f (Xµ)

]
−

〈
f (sX)− f (s)− f (X)

〉
}

(10)f (s x) = f (s)+ f (x).

(11)f (x) = K ln x

(12)

LSE
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pµ

}
; ν, �

)
= −
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µ

pµ ln pµ − ν
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µ

pµ − 1

]
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pµ lnXµ −
〈
lnX

〉]

(13)0 = δLSE
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pµ

}
; ν, �
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=
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µ

[
− ln pµ − (ν + 1)− � lnXµ

]
δpµ
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in the canonical form. One quickly checks that probability distribution (14) is invariant 
under the scaling transformation (6), as expected. This probability distribution is known 
as the discrete Pareto probability distribution (Clauset et al 2009). Let us summarize our 
result as follows. What the maximum entropy formalism (Jaynes 2003; Grandy 1987; 
Lawrence 2019) combined with the symmetry-conservation correspondence idea (Gross 
1996; Romero-Maltrana 2015) tells us about statistically self-similar steady fluctuations 
is threefold: 

	(i)	 They follow a discrete Pareto probability distribution with the self-similar scaling 
exponent as scaling exponent.

	(ii)	 They preserve on average the logarithm of an extensive quantity.
	(iii)	 Their equilibrium parameter is the self-similar scaling exponent itself.

However, it can tell us nothing about the nature of the extensive quantity.
Thusly, the prerequisite to Monte Carlo methods for self-organized urban street net-

works can be expressed as follows. At scaling equilibrium, the probability pµ for a self-
organized urban street network to develop its streets in any state µ is assumed to yield 
the discrete Pareto distribution

with Xµ the value at state µ of an extensive quantity X and � the scaling exponent. Still, it 
remains to make a genuine hypothesis on the extensive quantity X.

A surprisal‑driven system

In our context a state µ is a possible information network, namely a possible configura-
tion of streets, that an urban street network can develop (see Fig. 1 for illustration). Pre-
vious investigations show that an information network of a self-organized urban street 
network typically underlies scale-freeness (Porta et al 2006; Crucitti et al 2006; Jiang et al 
2008). Therefore, as shown in previous section, the distribution of their nodes (streets) 
preserves on average the logarithm of an extensive quantity, so that this distribution is 
most plausibly a discrete Pareto distribution of this extensive quantity. This extensive 
quantity cannot be specified due to our lack of knowledge on information networks of 
self-organized urban street networks.

However, the simplest assumption we can make is that a self-organized urban street 
network is a self-similar mesoscopic system whose mesoscopic objects have equiprob-
able configurations. Namely, we apply to our mesoscopic objects the principle of 
indifference (Jaynes 2003; Lawrence 2019). We may call such a system a self-similar 
Boltzmann-mesoscopic system. Our extensive quantity becomes then the number of 
equiprobable configurations of the mesoscopic objects. Let us denote by Pr(�) the prob-
ability for a mesoscopic object to have � possible equiprobable configurations, and by 
o(�) a mesoscopic object having effectively � possible equiprobable configurations. 
With these notations, we may say that each mesoscopic object o(�) has � as extensive 
quantity. Thence, for each mesoscopic object o(�) , our extensive quantity logarithm ln� 

(14)pµ =
Xµ

−�

Z(�)
with Z(�) =

∑

µ

Xµ
−�

(15)pµ ∝ e
−� lnXµ
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interprets itself either as the Boltzmann entropy of o(�) or as the surprisal associated to 
each configuration of o(�) . Surprisal (or surprise, or information content) Su = − ln ◦Pr 
measures uncertainty, astonishment, and knowledge attached to an event (Tribus 1961; 
MacKay 2003; Applebaum 2008; Stone 2015; Lawrence 2019). While the average of sur-
prisal over all the possible events gives their (Shannon) entropy, the surprisal attached 
to a possible event pertains its cognitive magnitude. When an event expected to be rare 
occurs, we are surprised and we feel that we learn a lot: the larger the uncertainty before 
the event, the greater the astonishment at the event, the wider the knowledge after the 
event (MacKay 2003; Applebaum 2008; Lawrence 2019). And vice versa. So that, com-
pared to the entropy interpretation, the surprisal interpretation appears in essence finer 
and more cognitive. For these reasons, we may favour the surprisal interpretation. The 
preserved moment 

∑
� Pr(�) ln� interprets then itself as an amount of surprisal that 

equilibria preserve on average. We interpret thusly steady fluctuations as a manifestation 
of uncertainties, astonishments, and knowledges whose the magnitudes remain on aver-
age the same. Presuming that this manifestation actually reflects a social process, each 
equilibrium becomes then a match between steady fluctuating configurations of streets 
and how city-dwellers comprehend their own urban street network (Dover 2004; Benoit 
and Jabari 2019a, b). We may expect that their comprehension reflects their agility and 
proficiency to navigate their own urban street network in normal or disrupted traffic.

With this assumption, the probability pµ for a self-organized urban street network to 
develop an information network (or a configuration of streets) µ yields

with

the total amount of surprisal for information network µ ; the product (the sum) is over 
the streets sµ and junctions jµ of information network µ . Along the interpretation devel-
oped in the previous paragraph, the total amount of surprisal Sµ (17) quantifies the com-
prehension of the city-dwellers for information network µ . Thus, accordingly, it is their 
comprehension that drives probability distribution (16), that is, the statistical equilib-
rium of their own urban street network.

The Metropolis acceptance ratio

Now that we have set up the fluctuating statistical model of our system, we are ready to 
implement the emblematic part of the Metropolis algorithm. The Metropolis algorithm 
holds its specificity among Monte Carlo methods in the implementation details of the 
condition of detailed balance (Newman and Barkema 1999; Landau and Binder 2015). 
This condition assures both that (i) each Markov chain (or sequence) reaches an equilib-
rium and that (ii) the equilibrium states follow the prescribed probability distribution. It 
applies, technically, to the probability P(µ → ν) of generating a state ν from a given state 
µ which is called the transition probability; along the constraint

(16)pµ ∝
∏

oµ∈{sµ,jµ}

�−�
oµ

= e
−�Sµ

(17)Sµ =
∑

oµ∈{sµ,jµ}

ln�oµ



Page 9 of 30Benoit and Jabari ﻿Appl Netw Sci            (2021) 6:33 	

the transition probabilities P(µ → ν) must satisfy the detailed balance equation

Each transition probability P(µ → ν) may be split into two parts as

The selection probability g(µ → ν) is a probability imposed to our algorithm for gener-
ating a new state ν given a state µ , while the acceptance ratio A(µ → ν) gives the odds 
of accepting or rejecting the move to state ν from state µ . For the Metropolis algorithm, 
the selection probabilities g(µ → ν) for all permitted transitions are equal. Scheme (20) 
along this choice reduces the detailed balance equation (19) into a ratio equation for the 
acceptance ratios A(µ → ν) ; we have

The last equality tells us that the odds of accepting or rejecting a move between two 
states are in favour to the more likely of them. This is common sense. Nonetheless, this 
still leaves open numerous possibilities. For the Metropolis algorithm, the more likely 
moves are assumed certain, while the less likely moves get their odds adjusted with 
respect to (21); we read

For our statistical model (16), the Metropolis acceptance ratio A(µ → ν) takes the more 
familiar form

That is to say, if the newly selected information network ν has a total amount of surprisal 
Sν strictly greater than the current one Sµ , we accept to replace the current information 
network µ by the newly selected one ν with the probability given above; otherwise, we 
accept with certainty.

Two simple ergodic single‑junction dynamics

The state-of-the-art generating paradigms are not dynamics. This is primarily 
because they build each information network from scratch. To be a dynamics, they 
should instead create a new information network from the current one. An analysis 
of their street-oriented paradigm gives us clues to design relevant ergodic dynamics. 
This second achievement of our paper permits us to concretely adapt the Metropolis 
algorithm to self-organized urban street networks.

(18)
∑

ν

P(µ → ν) = 1,

(19)pµ P(µ → ν) = pν P(ν → µ).

(20)P(µ → ν) = g(µ → ν) A(µ → ν).

(21)
P(µ → ν)

P(ν → µ)
=

g(µ → ν) A(µ → ν)

g(ν → µ) A(ν → µ)
=

A(µ → ν)

A(ν → µ)
=

pν

pµ
.

(22)A(µ → ν) =

{
pν pµ

−1 if pν < pµ
1 otherwise.

(23)A(µ → ν) =

{
e−�(Sν−Sµ) if Sν − Sµ > 0

1 otherwise.
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A street is an exclusive joined sequence of street‑segments

For information networks, nodes are streets, basically an exclusive sequence of suc-
cessive street-segments that are joined at junctions according to some paradigms. By 
exclusive we mean that a street-segment can only belong to a single street. This is the 
perspective used in the state-of-the-art literature (Jiang and Claramunt 2004; Rosvall 
et al 2005; Porta et al 2006; Jiang et al 2008; Masucci et al 2014).

An immediate paradigm is the “named street” paradigm (Jiang and Claramunt 2004; 
Jiang et  al 2008) which simply reproduces cadasters2. Since for some cities a cadaster 
may not exist, or simply reflect local habits and customs, some studies have considered 
generic substitutes instead. The choice of the paradigm may then ponder social and 
geographical phenomena. A relevant parameter has appeared to be the deflection angle 
between two adjacent street-segments (Jiang et al 2008; Molinero et al 2017). Figure 2 
illustrates the notion of deflection angle in our context through two typical junctions. If 
beyond some threshold angle any joining has to be excluded, many possibilities remain 
open.

Three paradigms based on deflection angles have been mainly used to generate infor-
mation networks. Basically these paradigms are nonoverlapping walks governed by a join 
principle. The every-best-fit join principle (Porta et al 2006; Jiang et al 2008) acts at every 
junction by joining its street-segment pairs in increasing order of their deflection angles, 
until applicable. The self-best-fit join principle (Viana et  al 2013; Jiang et  al 2008) and 
self[-random]-fit join principle (Jiang et al 2008) act sequentially on growing streets, until 
applicable, by randomly seeding them with a not-yet-selected street-segment before 
recursively appending, until applicable, one of the not-yet-appended street-segments. 
The self join principles differ only in the choice of the not-yet-selected street-segment to 
append. Figure 3 illustrates how the inner recursion can construct an entire street; sup-
plementary Animation A1 (Additional file 1) shows how the full machinery can achieve 
a complete configuration of streets. The self-best-fit join principle selects the one form-
ing the smallest deflection angle; the self[-random]-fit join principle selects at random. 
By construction, these three joint principles fall into two categories. The every-best-fit 
join principle is local and almost deterministic3; the two self join principles are global 
and random. The latters clearly differ nevertheless in the degree of their randomness. 
Unsurprisingly, due to their walk-oriented construction, the two self join principles have 
appeared, against well-founded cadasters and transportation traffic in terms of correla-
tion, more realistic (Jiang et al 2008). They thusly show that the deflection angle is a suit-
able parameter for generating information networks. However, the same walk-oriented 
construction renders them not easily tractable. In short, even though it provides a suit-
able parameter, the state-of-the-art approach can not be used to build an easily tractable 
dynamics.

2  A cadaster is a comprehensive land register maintained by either local or central authorities. Cadasters have been 
used, in some parts of the world, for levying taxes, raising armies, setting ownerships, etc.
3  The every-best-fit join principle is almost deterministic in the sense that it resolves at random the very rare occur-
rences of equality between deflection angles.
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Fig. 2  Deflection angles at junctions: the subfigures ( a⋆ ) and ( b⋆ ) show the deflection angles δ∗ for the 
junctions j1 and j2 , respectively, from the notional example in Fig. 1. A deflection angle of a street at a junction 
is basically the magnitude of the angular change experienced at the junction by the tangent of the street. In 
practice, the street can be arbitrarily oriented and the deflection angle becomes the magnitude of the angle 
between the incoming and outgoing tangents. The transposition to pairs of street-segments at junctions is 
obvious. Each subfigure corresponds to a possible incoming street-segment. The subfigures actually organize 
(index) themselves according to the cardinal direction (index) of their incoming street-segment. For each 
subfigure, the incoming tangent at the junction is in red and the outgoing tangents are in orange. Every 
double-arrow arc between the tangents of an incoming street-segments s̄i and an outgoing one s̄o indicates 
a deflection angle denoted by δi,o—and has a radius linear with the supplementary angle π − δi,o . Realistic 
angular changes are assumed to be bounded above. We have set the deflection angle threshold to π/4 . The 
light-blue pie areas identify the forbidden deflection angles—and have the radius of any arc with the deflection 
angle threshold as deflection angle. An incoming street-segment might so continue its way only along any 
outgoing street-segment whose tangent or arc lies within the angular sector of the missing slice—and/or does 
not cross the pie area. Furthermore, realistic configurations of streets must obviously have no street overlap. 
No incoming street-segment can continue its way along an outgoing street-segment already passed through. 
The very basic idea behind the state-of-the-art for building configurations of streets is a loop: commit one 
choice of outgoing street-segment; move to its opposite junction; repeat. Figure 3 along with supplementary 
Animation A1 (Additional file 1) illustrate how streets can emerge from this approach. In contrast, our approach 
identifies at every junction all the combinations of incoming and outgoing street-segments and “flips” them. 
Figure 4 sketches why and how these combinations are actually maximum matchings, while Fig. 5 along with 
supplementary Animation A2 (Additional file 2) illustrate a short sequence of “flips”
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A junction is a matching of street‑segments

For information networks, edges are junctions, essentially an exclusive set of singletons 
and pairs of street-segments that are isolated or paired according to the ongoing streets. 
By exclusive we mean that a street-segment can only belong either to one singleton or to 
one pair. Such a set is, in graph theory, a matching (Pemmaraju and Skiena 2003). To the 
best of our knowledge, this is the first work that mentions this perspective.

The graph theory perspective can apply on junctions as follows. First, inspired by the 
dual network representation of urban street networks, we may represent every street-
segment attached to a junction by a node. Let us put each node at the intersection of 
its associated street-segment with a circle centred at the junction. Second, we may link 
pair of nodes whose associated street-segments have a deflection angle smaller than the 
deflection angle threshold. Figure 4 illustrates in its two first rows these two steps for 
three realistic junctions. The resulting graph clearly depends on the deflection angle 
threshold: when it is set to the flat angle π , the graph is a complete graph; when it is set 
to the zero angle 0, the graph is an empty graph; otherwise the graph is an incomplete 
graph. We will call such a graph a junction graph. In general, a junction graph has no 
direct application for our purpose in the sense that any bunch of edges that share a com-
mon node (or adjacent edges) corresponds to a set of overlapping streets. In practice, 
we want a graph without any adjacent edge so that the graph corresponds to a set of 
nonoverlapping streets. Such a graph is, for a given junction, a matching subgraph (or 

Fig. 3  State-of-the-art construction paradigm for configurations of streets: the frames ( s∗⋆ ) show this 
paradigm steps for constructing street rc on street map ( m ) from the notional example in Fig. 1. Our 
illustration assumes that streets ra and rb were constructed previously and that the remaining streets will 
be constructed afterward. The superscript and subscript of each frame label indicate the street under 
construction and the step order, respectively. Each street-segment in colour already belongs to a street: 
when the colour is vivid and the line is solid, the street was committed; when the colour is pallid or the line is 
vividly dashed, the street is under construction. Each street-segment in grey is a candidate for belonging to a 
new street. We attribute to each street a particular colour. The construction goes like this. Initial stage ( sc0 ): no 
street-segment is yet assigned to street rc . Seeding step ( sc1 ): pick at random one candidate street-segment—
the seed street-segment is in pallid orange and marked with an orange bold square. Orientation step ( sc2 ): 
orient at random the seed street-segment and move toward the head junction—the square mark is now 
a pentagonal “home plate” indicating the orientation, the path moved along from the mark to the head 
junction j1 is now vividly dashed, the excluding pie aligned with the incoming tangent at j1 immediately 
identifies along which outgoing street-segments the street might continue (see Fig. 2). Appending loop steps 
( sc3)–(sc5 ): arbitrarily continue at the head junction along any valid outgoing street-segment (see Fig. 2) while 
applicable—at j1 the street might continue toward either i1 or j3 (see Fig. 2a2 ), the latter choice was arbitrarily 
taken; at j3 the street might continue toward either i3 or j5 , as the former choice was no more possible only 
the latter could be taken; at j5 the street can only continue toward i7 ; at i7 the street can no more continue so 
that the recursion ended. Inverting step ( sc6 ): move toward the tail junction and formally invert orientation—
the forward recursion lets now place to a backward recursion, the pentagonal mark has flipped its orientation 
and has rounded its tail to mark the epoch. Prepending loop steps ( sc7)–(sc8 ): arbitrarily continue at the tail 
(formal head) junction along any valid outgoing street-segment (see Fig. 2) while applicable—at j2 the street 
might continue toward either j4 or j6 (see Fig. 2b2 ), the former choice was arbitrarily taken; at j4 the street can 
only continue toward i6 ; at i6 the street can no more continue so that the backward recursion ended. Commit 
step ( sc9 ): commit the new achieved street and loop forward to build the next street until applicable—the 
now achieved street rc is in solid line, its mark is an unbold circle, and it has a label; retrospectively, this step 
leads to Initial stage ( sd0 ) for the next street rd while the above Initial stage ( sc0 ) appears to result from Commit 
step ( sb6 ) for the previously committed street rb ; the construction of streets loops until no more street-segment 
is unassigned. The arbitrary choices in Appending and Prepending loop steps are actually join principles (see “A 
street is an exclusive joined sequence of street-segments” section). Supplementary Animation A1 (Additional 
file 1) shows a complete construction of the configuration of streets on street map ( m)

(See figure on next page.)
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matching for short) (Pemmaraju and Skiena 2003) of its a junction graph. In short, we 
are interested by the set of matchings of the junction graphs. The number of matchings 
of a graph is called the Hosoya index (Hosoya 1971). We will denote the Hosoya index 
of the junction graph of a junction j by Zj . Also notice that a matching can be satu-
rated in the sense that it cannot be expanded to another matching by adding any edge 
of the underlying graph. Such a matching is called a maximal matching (Pemmaraju and 
Skiena 2003). Figure  4 gives in its fourth row the set of maximum matchings we can 
derive for each of its junctions. We will denote the number of maximal matchings of the 
junction graph of a junction j by Yj ; we have

Let us now describe the previous generating paradigms in terms of matchings. The 
“named street” paradigm selects the matching as implicitly recorded in cadasters. The 
every-best-fit join principle chooses for each junction the maximal matching which is 
optimal in terms of deflection angle distribution. The two self join principles operate at 
every junction on the set of matchings by successive visits. This becomes more apparent 
when we interpret their concrete implementations as nonoverlapping walks that haphaz-
ardly visit every junction several times. Each visit either steps forward or terminates the 

(24)1 � Yj � Zj .
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walk, that is, each visit selects a subset of matchings. This selection process reveals itself 
in supplementary Animation A1 (Additional file 1). For the self-best-fit join principle, 
the move is optimal in terms of deflection angle; for the self[-random]-fit join principle, 

Fig. 4  Set of maximum matchings associable to a junction: the columns ( a⋆ ), ( b⋆ ), and ( c⋆ ) outline why 
and how we can associate a set of maximum matchings to any junction through junctions j1 , j2 , and j3 , 
respectively, from the notional example in Fig. 1. The subfigures actually organize themselves in a table: 
each column corresponds to a notional junction; each row corresponds to a step of our outline. First step: 
associate to each street-segment a node—we can place each node at the intersection of the street-segment 
with a circle centred at the junction so that each graph is a circular graph. Second step: link each node to any 
node along which it might continue its way (see Fig. 2)—each graph is actually a graph representation of 
the pairable street-segments. Third step: enumerate all the street layouts which could be achieved as part 
of a configuration of streets according to the state-of-the-art (see Fig. 3)—the construction of the street 
layouts follow the scheme used in Fig. 3, while the subgraphs link the so paired street-segment-nodes with 
a fat red edge. Fourth step: by representing the subgraphs in canonical form, we immediately realize that 
Step three actually enumerate all the subgraphs with the maximum number of non-adjacent edges, namely, 
all the maximum matchings—this completes our outline. Notice that the subfigure labels in rows 3 and 4 
enumerate the maximum matchings with balanced ternary numbers using down-spin ( ↓ ), nil-spin (0), and 
up-spin ( ↑ ) as ternary digits (Knuth 1997). This enumeration offers between maximum matchings of junctions 
joining three or four street-segments and Ising spin states (down ↓ and up ↑ ) a close analogy as junctions j1 
and j2 exemplify well here. This analogy appears to hold as well for our less typical junction j3 . Figure 5 uses a 
simpler but more visual enumeration based on the regular polygons—extended with the degenerate regular 
digon. Each corner (side) represents then a maximum matching
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the move is random. Over the visits the subset of matchings decreases until it contains 
only one matching. This remaining matching is a maximal matching since every walk 
terminates only when no more street-segment is attachable. Figure 4 draws in its third 
row the end results of these repeated visits along their maximum matching for each of 
its junctions. Actually, Fig. 4 sketches, through three realistic junctions, why and how to 
any junction corresponds a set of maximum matching. The so isolated maximal match-
ings give the generated information network. In other words, the self join paradigms 
interpret themselves now as an intricate haphazard fashion to pick for every junction a 
maximal matching. Thusly, the matching viewpoint allows us to slightly disentangle the 
two most pertinent join paradigms.

The single‑junction‑switch and ‑flip dynamics

The previous slightly untangled description actually leads to a disembodied form of the 
self join paradigms with all their underlying principles removed. This is exactly what an 
ergodic dynamics is about. To the best of our knowledge, no ergodic dynamics has been 
reported so far for generating configurations of streets.

To begin with, let us deliberately ignore for a while the nonoverlapping walk machiner-
ies. The self join paradigms reduce then to choose for every junction a maximal match-
ing regardless of the matchings of the other junctions. So the elementary disembodied 
dynamics that occurs at junctions is to set up in an independent way a maximal match-
ing. The new set up will generally change the maximal matching into another maximal 
one. For clarity, this dynamics does not alter the urban street network but rather trans-
forms the information network into another, since the new maximal matching sets a new 
layout for some of the streets that cross the junction. By now we are able to tell that this 
dynamics is ergodic. An ergodic dynamics is a dynamics which from any state can reach 
any other state after a finite number of iterations. It is indeed obvious that we can get 
from any information network to any other by changing one by one each of the maximal 
matchings by which the two information networks differ. We coined this dynamics, fol-
lowing the literature (Newman and Barkema 1999) and as an obvious analogy to railroad 
switches, the single-junction-switch dynamics. The restriction to consider only maximal 
matchings is inherited from the join principles. This restriction is arbitrary in the sense 
that it is not actually imposed by physical constraints. In fact, the reasoning held above 
for the single-junction-switch dynamics evidently holds for any arbitrary choice of sub-
set of matchings. For completeness, we coined the dynamics that involves all matchings 
the single-junction-flip dynamics. Let us recap along these lines. Assuming an entire 
urban street network, the single-junction-switch dynamics is an ergodic dynamics which 
switches the maximal matching of a single junction into another maximal one, while the 
single-junction-flip dynamics is an ergodic dynamics which flips the matching of a single 
junction into another.

Using the single-junction-switch or -flip dynamics ensures that our Metropolis algo-
rithm fulfils the condition of ergodicity. It remains however to specify how we select 
from a given information network a new one which differs by only one dynamics step. 
For the sake of simplicity, we will only consider the single-junction-switch dynamics in 
the following. The choice of the Metropolis algorithm imposes (Newman and Barkema 
1999; Landau and Binder 2015) that the selection probabilities g(µ → ν) for each 
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possible new information network ν after one dynamics step are all chosen equal—the 
selection probabilities for all other information networks are set to zero. For an entire 
urban street network, one dynamics step enables to reach each of the Yj − 1 new maxi-
mal matchings of every junction j. Hence the number of possible new information net-
works that we can reach after one dynamics step from a given information network is 
the total number of maximal matchings

minus the number of junction N. Therefore we count N− N  non-zero selection prob-
abilities g(µ → ν) , and each of them takes the value

In practice we can realize this selection in two easy steps. First we pick at random a junc-
tion j with probability proportional to Yj − 1 . Then we choose at random a new maximal 
matching among the Yj − 1 possible new maximal matchings of junction j.

Another variant of the single‑spin‑flip Metropolis algorithm ?

When all junctions have two maximal matchings, the single-junction-switch dynamics 
is formally equivalent to the single-spin-flip dynamics on the original Ising model. Our 
two above achievements actually combine to give another variation on the single-spin-
flip Metropolis algorithm theme. This algorithm is a computational interpretation of the 
Ising model. A brief comparison provides basic physical insights and a simple clue for a 
crossover as scaling varies.

Informal implementation

As summary of our above results, let us informally implement our adaptation of the 
Metropolis algorithm to urban street networks as follows.

First, we choose randomly a junction j with probability proportional to its number of 
maximal matchings Yj minus 1, Yj − 1 ; its street-segments will be laid out accord-
ing to some maximal matching Mj . Second, we pick at random a new maximal 
matching M̃j not identical to Mj among the remaining Yj − 1 available possibilities. 
Third, we calculate the change in the total amount of surprisal �S that would result 
if we were to lay out this change to this junction. Ultimately, with acceptance prob-
ability

either accept or reject the change.
Properly speaking, this informal implementation encodes the single-junction-switch 
Metropolis algorithm for urban street networks. We let the reader to elaborate the 

(25)N =
∑

j

Yj

(26)g(µ → ν) =
1

N− N
.

A =

{
e−��S if�S > 0

1 otherwise,
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Fig. 5  Single-junction-switch Metropolis algorithm for configurations of streets: the frames ( g⋆ ) show how this 
algorithm may evolve from the configuration of streets on street map ( m′ ) to the one on street map ( m ) from the 
notional example in Fig. 1. The subscript of each frame label indicate the generation time. The figure reads from top 
to bottom. It actually separates generated configurations of streets from intermediate computational steps in two 
complementary ways: it shifts (resp. epochs) the formers to the left column (resp. with integers) and the latters to 
the right column (resp. with half-integers). The right frames display more information. In particular each switchable 
junction is marked with an extended regular polygon whose the corners (sides) enumerate its maximum 
matchings (see Fig. 4): when the polygon is in grey, the junction is resting; when the polygon is in red and notably 
bigger, the junction is switching. As for the state-of-the-art construction paradigm in Fig. 3, we attribute to each 
street a particular colour. In clear contrast, however, all streets are here fully constructed. The streets in dashed lines 
are not under construction but instead under challenge as follows. The dashing actually indicates coexistence of 
old streets with new ones. Each old street keeps its colour, its circle mark, and its label. Each new street emerges 
with a new color, a wavy-circle mark, and a tilded label. The new streets result from the new street layout at the 
switching junction. This change leads so to a new configuration of streets ν that competes with the old one µ . This 
is the actual ongoing challenge. The Metropolis algorithm resolves such challenges by either accepting or rejecting 
change µ → ν with an acceptance ratio A(µ → ν) in an optimal way. After a sufficient number of generations, 
the configurations of streets reach a prescribed statistical equilibrium—provided the equilibrium is sustainable. 
Our prescribed statistical equilibrium follows from the assumption that self-organized urban street networks are 
statistically self-similar. It is a Boltzmann-like distribution with a total amount of surprisal (information) instead 
of energy and the scaling as equilibrium parameter (see formula (16)). Our odds of accepting or rejecting new 
configurations of streets favour the less surprising ones (see formulae (23) and (30)). The algorithm goes like this 
(see “Informal implementation” section). Note first that only the four junctions j1 , j2 , j3 , and j8 are actually switchable: 
junction j3 has Y3 = 6 maximum matchings (see Fig. 4c); junctions j1 , j2 , and j8 have Y1 = Y2 = Y8 = 2 
maximum matchings (see Fig. 4a, b); the remaining junctions j◦ have obviously Y◦ = 1 maximum matching. 
So each move will first choose randomly one junction among junctions j1 , j2 , j3 , and j8 with probabilities 1

8
 , 1
8
 , 5
8
 , 

and 1
8
 , respectively. Each move will second pick uniformly at random a new maximum matching. There will be 

Y3 − 1 = 5 choices for j3 , and Y1 − 1 = Y2 − 1 = Y8 − 1 = 1 choice for j1 , j2 , and j8 . Each move will third 
calculate its change in amount of surprisal �S in view to compute its acceptance ratio A. Here the surprisal changes 
at mid-steps ( g 1

2
 ), ( g1 1

2
 ), and ( g2 1

2
 ) are respectively �S̃ = ln 5

9
 , �S̃ = 0 , and �S̃ = ln 6

5
 (see “Working assumptions” 

section). Ultimately each move will either accept or reject the change with probability A. The layout changes at 
( g 1

2
 ) and ( g1 1

2
 ) are certain since they are less or equally surprising, the one at ( g2 1

2
 ) is accepted with probability 

exp(−�̃ ln 6
5
) where �̃ is our effective equilibrium parameter (see formula (30)). Our illustration actually rejects the 

last move. Supplementary Animation A2 (Additional file 2) shows a longer sequence
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corresponding single-junction-flip Metropolis algorithm. Meanwhile, the reader may 
refer to Fig. 5 and supplementary Animation A2 (Additional file 2) for illustration.

A brief comparison with Ising models

The single-junction-switch (resp. single-junction-flip) Metropolis algorithm for our 
urban street network model mimics the classical single-spin-flip Metropolis algorithm 
for Ising models (Newman and Barkema 1999; Landau and Binder 2015; Berlinsky and 
Harris 2019; MacKay 2003). Nonetheless our model differs from them in three basic 
aspects: 

	(i)	 Our model is driven by scaling and surprisal (information) whereas Ising mod-
els are driven by temperature and energy. The parallel scaling-information versus 
temperature-energy (�, S) ↔ (β ,E) pours into the discipline the all maturity of 
thermodynamics and statistical physics. This parallel is actually superseded by the 
maximum entropy formalism “in a disembodied form with all the physics removed” 
(Jaynes 2003). This formalism provides, for instance, numerical tools to compute 
for any information network measure (Newman 2018; Porta et al 2006) its linear 
response to arbitrary small scaling changes, namely its specific-heat-capacity-like 
coefficient or susceptibility (Newman and Barkema 1999; Grandy 1987; Jaynes 
2003).

	(ii)	 Junctions are nodes of a finite arbitrary planar graph while spins are classically 
attached to sites of an “infinite” regular lattice. Finiteness means that collective 
phenomena will get smoother. Arbitrariness renders our model closer to the Ising 
spin-glass models for which the values of the spin-spin interactions are no more 
constant but random (Newman and Barkema 1999; Landau and Binder 2015; Mac-
Kay 2003). Collective phenomena in Ising spin-glass models are more subtle and 
more intricate (Newman and Barkema 1999; Landau and Binder 2015).

	(iii)	 The distribution of maximal matchings (resp. matchings) among junctions is het-
erogeneous while the distribution of spins among sites is classically homogeneous. 
That is, junctions have different numbers of maximal matchings (resp. numbers of 
matchings (Hosoya indices)) while spins have classically the same number of states 
or the same dimension. Because the number of street-segments attached to a junc-
tion is mostly three or four, the distribution of matching is expected to be statis-
tically homogeneous with a bell-like distribution. This contributes to make our 
model even closer to the Ising spin-glass models.

On the other hand, it is noteworthy that the Ising models have became a toy model to 
crack phase transition and crossover phenomena (Berlinsky and Harris 2019; MacKay 
2003). This raises the obvious question whether our model may actually undergo a cross-
over as scaling varies: 

	(iv)	 Our model experiences, as scaling increases, an ultra-small- to small-world crosso-
ver around the scaling value of 3. The small-world effect is in effect a statement on 
geodesic (or shortest) distances between node pairs (Newman 2018). Their mean 
ℓ behaves in small-world networks as the logarithm of the number of nodes N, 
ℓ ∼ lnN  (Newman 2018). The small-world effect becomes extreme in scale-free 
networks as the scaling � get smaller than 3 (Cohen and Havlin 2003): the mean 
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geodesic distance ℓ behaves as ℓ ∼ ln lnN  when 2 < � < 3 , as ℓ ∼ lnN/ ln lnN  at 
� = 3 , and as ℓ ∼ lnN  for 3 < � . Thusly, since our generated information networks 
are scale-free, our model effectively undergoes a small-world crossover as scaling 
varies. Clearly its manifestation relies on the behaviour of the number of nodes 
N. A more substantial analytical work is however beyond the scope of the present 
paper. Meanwhile, notice that a geodesic distance counts in our context how many 
changes of street are required for a particular journey. That is, the mean geodesic 
distance reflects how rapidly on average city-dwellers can travel. Accordingly, the 
crossover diagram of the mean geodesic distance interprets itself as an efficiency 
diagram. This means, for instance, that our approach provides a method to analyze 
the relative efficiency of an actual configuration of streets.

Equilibrium Metropolis simulations
What we have achieved in the previous section is adapting to unplanned or self-organ-
ized urban street networks the Metropolis algorithm. Now, in this section, we exercise 
this adaptation in a case study. As case study, we select the urban street network of Cen-
tral London (United Kingdom), which is a classical example of self-organized urban 
street network (Jacobs 1993).

Working assumptions

For the sake of illustration, we have made two suppositions. First, we have assumed that 
streets predominate junctions. Second, we have described the mesoscopic streets as 
asymptotic agent systems driven by social interactions (Dover 2004; Benoit and Jabari 
2019a, b). According to this agent model, a number of vital connections υ dominates 
among the possible numbers of connection between agents. So that, the number of con-
figurations �sµ of street sµ in configuration of streets µ becomes proportional to a power 
of its number of junctions nsµ (Benoit and Jabari 2019a, b); we have

So the total amount of surprisal Sµ (17) in configuration of streets µ becomes

up to an irrelevant constant; the sum is over the streets sµ of configuration of streets µ . 
Thusly our working assumptions bring out an effective scaling exponent �̃ along an effec-
tive total amount of surprisal S̃µ ; we read

The corresponding effective Metropolis acceptance ratio is literally the tilde version of 
formula (23); we get

(27)�sµ ∝ n2υsµ .

(28)Sµ = 2υ
∑

sµ

ln nsµ

(29)�̃ = 2�υ and S̃µ =
∑

sµ

ln nsµ .
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(30)A(µ → ν) =

{
e
−�̃

(
S̃ν−S̃µ

)

if S̃ν − S̃µ > 0

1 otherwise.

a b

c d

e f

g h
Fig. 6  Typical single-junction-switch Metropolis generation series for Central London (United Kingdom): 
the foreground purple generation series plot, for different effective scaling exponents �̃ = 2�υ , typical 
simulations starting from a self-fit output; the background light-grey generation series plot, according to 
the same modus operandi, typical sequences of self-fit outputs. Each horizontal solid line drawn along a 
generation series plot represents its in-equilibrium mean value, the accompanying horizontal dashed lines 
indicate the associated standard-deviation bounds. Coloured lines, Metropolis generation series; greyed lines, 
sequences of self-fit outputs. The equilibria are assumed reached after the 5000 th generation. The following 
annealing parameters were used to algebraically cool down to the desired �̃ : �̃0 = 1.495 , ǫ = 10−3 and 
m = 500 . ( The starting cooling value �̃0 was chosen by hand so that the associated Metropolis equilibrium 
approaches on average self-fit outputs—as illustrated in (d); the special case �̃ = ∞ in (h) corresponds to a 
full ‘simulated annealing’ process (Press et al 2007; Galassi et al 2009). )



Page 21 of 30Benoit and Jabari ﻿Appl Netw Sci            (2021) 6:33 	

Figure  5 along with supplementary Animation  A2 (Additional file  2) show how our 
Metropolis adaptation can actually generate a sequence of configurations of streets.

Equilibria

Single‑junction‑switch Metropolis generation series versus self‑fit outputs

Central London offers, as shown in Fig. 6, single-junction-switch Metropolis genera-
tion series that come to equilibria. The equilibria were attained from self-fit outputs 
through a basic algebraic annealing schedule (Newman and Barkema 1999; Press et al 
2007; Galassi et al 2009). To paraphrase: increase (resp. decrease) the control effective 
scaling exponent �̃c to �̃c(1+ ǫ) (resp. �̃c/(1+ ǫ) ) after every m accepted/rejected sin-
gle-junction-switch moves up (resp. down) to the desired equilibrium effective scal-
ing exponent �̃ ; the initial control effective scaling exponent �̃0 and the parameters 
ǫ and m are determined by experiment. This annealing schedule allowed us to reach 

a

b
Fig. 7  Effective total and average amounts of surprisal versus effective scaling exponent for Central London 
(United Kingdom): green solid lines plot the mean (top) and standard-deviation (bottom) of the effective 
average amount of surprisal 〈S̃µ〉 ; purple dashed lines plot the mean (top) and standard-deviation (bottom) 
of the effective total amount of surprisal S̃µ ; the insets show their asymptotic behaviours. The annealing 
parameters are the same as in Fig. 6; the equilibria were assumed reached after the 5000 th generation as in 
Fig. 6; the mean and standard-deviation values were computed over 250 000 in-equilibrium generations and 
averaged over 10 simulations. (We attribute the noise that waves the asymptotic branches to the poor quality 
of our map data (see Footnote 4))
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equilibria for a range of effective scaling exponent �̃ values large enough to capture 
the features of our system as follows.

The single-junction-switch Metropolis generation series exhibited in Fig. 6 show at 
least four noticeable properties: 

	(i)	 The sustained Metropolis equilibria (a–f ) are clearly comparable to the self-fit out-
puts in terms of order of magnitude of their means and fluctuations. This property 
holds, as shown Fig. 7, within a window grossly comprised between 1 and 5. We 
must always bear in mind that scaling exponents of real-world networks are typi-
cally comprised between 2 and 3 (Newman 2018).

	(ii)	 The ground state, namely the sustained Metropolis equilibrium  (h) attained for 
�̃ = ∞ , lays below the self-fit outputs by about eleven times their standard-devi-
ation. The ground state was obtained through a ‘simulated annealing’ (Press et al 
2007; Galassi et al 2009).

	(iii)	 The sustained Metropolis equilibrium (a) shows that there also exist equilibria that 
detach significantly from the self-fit outputs from above.

	(iv)	 The sustained Metropolis equilibrium  (d) shows that the single-junction-switch 
Metropolis algorithm can mimic quite well sequences of self-fit outputs.

These four properties lead us to claim that the single-junction-switch Metropolis algo-
rithm generates series that are consistent with the self-fit outputs.

The effective total and average amounts of surprisal, S̃µ and 〈S̃µ〉 respectively, exhibit in 
Fig. 7 at least two promising properties: 

	(i)	 Their means and their standard-deviations vary smoothly as a function of the 
effective scaling exponent �̃ at least for values smaller than 4.5. For greater effec-
tive scaling exponent �̃ values, our simulations get subject to noise: the effective 
total amounts of surprisal S̃µ and its standard-deviation SD (S̃µ) continue to vary 
smoothly while they tend asymptotically to a constant; however, their average 
counterparts 〈S̃µ〉 and SD (〈S̃µ〉) experience noisy variations.4

	(ii)	 They all experience a noticeable change of behaviour within the window comprised 
between 1 and 4. The means of S̃µ and 〈S̃µ〉 experience both a change of rate that 
leads them to their respective asymptotic plateau. The standard-deviations SD (S̃µ) 
reach a maximum at right of 1 before decreasing towards an asymptotic plateau; 
the standard-deviations SD (〈S̃µ〉) has the left profile of a Mexican-hat—left shape 
of a biquadratic curve—with a minimum around 2.

The latter property strongly suggests that the relevant physics of our system occurs 
within the window comprised between 1 and 4, while the former property means that 
Monte Carlo studies within this window are feasible.

4  We attribute the noise to the poor quality of our map data in their small streets and in their simplification of the junc-
tions. The variations of S̃µ and SD (S̃µ) remains relatively smooth because the Metropolis acceptance ratio (30) tends to 
smooth S̃µ itself by rejecting the inappropriate states—among them there are the inappropriate states resulting from 
“corrupted” data. By contrast, the variation of 〈S̃µ〉 and SD (〈S̃µ〉) are not smoothed by the Metropolis algorithm in any 
manner. Furthermore, “corrupted” layout at junctions cannot be rejected because (i) our working assumptions do not 
take into account junctions in the computation of S̃µ and because (ii) the single-junction-switch dynamics cannot break 
them since it only allows maximal layouts—this becomes evident as soon as the single-junction-flip dynamics is used 
since then 〈S̃µ〉 and SD (〈S̃µ〉) vary almost smoothly along their respective asymptotic branch.
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The single‑junction‑switch versus ‑flip dynamics

Single-junction-flip Metropolis generation series came also, by applying the same 
annealing schedule scheme, to equilibria. Nevertheless, the single-junction-flip Metrop-
olis generation series contrast with the single-junction-switch Metropolis generation 
series into two major ways: 

	(i)	 The total amounts of surprisal at single-junction-flip equilibria within the real-
world window 2–3 (Newman 2018) appear to be greater than the total amounts of 
surprisal of the self-fit outputs by about 300 times their standard-deviations—while 
the corresponding ones at single-junction-switch equilibria are greater by at most 
8 times their standard-deviations. This makes the single-junction-flip Metropolis 
algorithm clearly inconsistent with the self-fit join principle, hence unrealistic.

	(ii)	 For large effective scaling exponent �̃ values, the single-junction-flip simulations 
appear much less subject to noise.

In brief: restricting matchings to maximal matchings renders our system realistic but 
numerically unstable for relatively large scaling exponents; vice versa, loosing matchings 
renders our system unrealistic but numerically stable for a relatively wider range of scal-
ing exponents.

To explain this, we must keep in mind that our particular working assumptions neglect 
junctions. In fact, in one hand, the single-junction-switch dynamics provides to our 
working assumptions a “hard-coded” constraint on junction layouts so that our system 
becomes more realistic. On the other hand, the single-junction-flip dynamics allows the 
Metropolis algorithm to reject maximal matchings in favour of non-maximal matchings 
so that our algorithm becomes numerically more stable. To resolve this dilemma, we 
may replace the hard constraint on junction layouts with a soft constraint. This may take, 
in the total amount of surprisal Sµ (28), the form of additional surprisal terms involving 
junctions or mixing streets and junctions. The derivation of such terms is however out-
side the scope of the present paper.

Unorthodox Watts–Strogatz phase diagram

So far we have demonstrated that Central London sustains scale-free configurations of 
streets over a wide range of scalings. This means that the selection of a realistic scale-
free configuration of street involves other criteria than just scale-freeness. An appeal-
ing explanation might hold with the small-world crossover, which may happen as we 
exposed in our “A brief comparison with Ising models” section. This hypothesis illus-
trates well the new class of explorations that the method presented in the present paper 
brings in the field. We keep our hypothesis for future work. Meanwhile, to emphasize 
our contribution, we demonstrate the small-world crossover by adopting the phase dia-
gram used for Watts–Strogatz small-world models (Watts and Strogatz 1998; Newman 
2003, 2018).

Two‑regime phase diagram

The Watts–Strogatz phase diagram for Central London plotted in Fig.  8 shows two 
crossovers which occurs simultaneously at the effective scaling value of 3. This phase 
diagram plots for the information networks of Central London the averages of their 
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mean geodesic distance (or mean vertex-vertex distance) ℓ and of their mean local tran-
sitivity (or clustering coefficient) C as functions of the rewiring parameter (Watts and 
Strogatz 1998; Newman 2018). The rewiring parameter is here the effective scaling expo-
nent �̃ . These two functions experience a qualitative change of behaviour in the vicin-
ity of effective scaling �̃ = 3 , that is, they exhibit a crossover at effective scaling �̃ = 3 
(Gluzman and Yukalov 1998). Our claim that the crossovers precisely happen at effective 
scaling �̃ = 3 relies on the arguments given by Cohen and Havlin (2003). The two simul-
taneous crossovers indicate two distinct phases or regimes: 

	(i)	 A uniform regime takes place as effective scaling increases from 3. As effective 
scaling gets higher and higher starting from 3, the mean geodesic distance between 
node pairs ℓ (resp. the mean local transitivity C) tends on average asymptotically 
towards a slightly-decreasing (resp. a slightly-increasing) plateau. The asymptotic 
behaviours become obvious around the effective scaling value of 4. This means that 
in this regime the involving phenomena are saturating.

	(ii)	 An emergent/reduction regime occurs as effective scaling decreases from 3. As 
effective scaling gets lower and lower starting from 3, the mean geodesic dis-
tance between node pairs ℓ (resp. the mean local transitivity C) increases (resp. 
decreases) on average to reach a linear behaviour around the effective scaling value 
of 3/2. The decreasing on average of the mean geodesic distance between node 
pairs ℓ as scaling increases means that scaling is inducing a smaller world (New-
man 2018). The increasing on average of the mean local transitivity C as scaling 
increases means that scaling is inducing a denser world or a world with less “struc-

Fig. 8  Mean geodesic distance between nodes and mean local transitivity versus effective scaling exponent 
for the information networks of Central London (United Kingdom): yellow solid line plots the mean of the 
mean geodesic distance between node pairs ℓ ; turquoise dashed line plots the mean of the mean local 
transitivity C; the vertical dotted line represents the effective scaling exponent �̃0 for which the associated 
Metropolis equilibrium approaches on average self-fit outputs—as illustrated in Fig. 6d; the inset shows their 
asymptotic behaviours; the main figure and the inset have the same aspect ratio. The experimental protocol 
was the same as in Fig. 7. (We attribute the noise to the same reasons as in Fig. 7.)
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tural holes” (Newman 2018). In our context, a smaller world means journeys with 
lesser changes of streets ( see end of point  (iv) in “A brief comparison with Ising 
models” section); a denser world means more local alternative routes.

We may regard the two linear behaviours for small and large scalings as degenerate or 
extreme. In this sense the relevant part of the phase diagram yields between the effective 
scaling values of 3/2 and 4. This is consistent with our previous expectation in “Equilib-
ria” section that the relevant physics of our system may occur within the window 1–4.

A brief comparison with the classical Watts–Strogatz phase diagram

The Watts–Strogatz phase diagram for Central London confirms that our urban 
street network model underlies the small-world effect. Our expectation was sketched 
in point (iv) of our “A brief comparison with Ising models” section. Nonetheless the 
obtained Watts–Strogatz phase diagram differs from the classical Watts–Strogatz 
phase diagram (Newman 2003, Fig.  6.2; Watts and Strogatz 1998, Fig.  2) in three 
essential characteristics: 

	(i)	 A smaller world means a denser world, not a less dense one. This is because on 
average the mean local transitivity C increases instead of decreasing.

	(ii)	 The two crossovers coincide. In other words, no emergent/reduction regime over-
laps with an uniform regime and vice versa.

	(iii)	 The small-world effect predominates. The overall variation of the average of the 
mean local transitivity C is of order 0.04, so we may regard the local transitivity 
evolution as insignificant. Meanwhile the average of the mean geodesic distance 
between node pairs ℓ gains overall 2.5 nodes and 0.9 nodes within the relevant win-
dow from 3/2 to 4, that is, the small-world effect is actually the substantial phe-
nomenon.

Therefore, contrary to Watts–Strogatz small-world networks (Watts and Strogatz 
1998; Newman 2003, 2018), the information networks of Central London experience 
no balance between local transitivity and the small-world effect. Actually, among 
both, only the small-world effect is relevant as scaling varies.

The self‑fit configurations of streets are inefficient

Generation series (d) in Fig.  6 shows that, for Central London, self-fit outputs are 
hardly distinguishable from Metropolis in-equilibrium generations at effective scal-
ing �̃0 = 1.495 . This value can be regarded as a measurement of the effective scaling 
at which Central London sustains self-fit configurations of streets. This measurement 
is represented on the Watts–Strogatz phase diagram for Central London in Fig. 8 by 
the vertical dotted line. The phase diagram immediately tells us on self-fit information 
networks for Central London three noteworthy facts: 

	(i)	 Their worlds are on average of a magnitude one node larger. As natural reference, 
we take here the high-scaling asymptotic configurations of streets.

	(ii)	 They occur around the end of the low-scaling linear behaviour. That is, they occur 
around the low-scaling boundary of the relevant window 3/2–4.
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	(iii)	 There is room for information networks with significantly smaller worlds. A quick 
check shows that information network worlds at effective scaling 2.50 (centre of 
realistic window 2–3) and 2.75 (centre of the relevant window 3/2–4) are on aver-
age, respectively, 0.6 and 0.7 nodes smaller than the self-fit worlds. These offset 
drops are, respectively, of the order of 60% and 70% . Namely, they are substantial.

To summarize, the Watts–Strogatz phase diagram describes self-fit information net-
works for Central London as being on average relatively large worlds.

However, Central London dwellers may rather want to know whether their self-fit 
configurations of streets are efficient. Efficiency means here for city-dwellers that 
they can complete their journeys as fast as possible. This can be partially achieved 
by decreasing as much as possible the number of street changes required per jour-
ney. This means to develop information network whose worlds are as small as possi-
ble. This corresponds on the Watts–Strogatz phase diagram to information networks 
having on average relatively small worlds. In effect, this involves the information 
networks that actually experience the crossover. As we have seen, quite the opposite 
actually happens to the self-fit information networks of Central London: they take 
place where the small-scaling linear behaviour ceases and they underlie on average 
relatively large worlds. In brief, the self-fit configurations of streets for Central Lon-
don are inefficient.

Conclusions and future works
Unplanned or self-organized urban street networks undergo a scale-free coherence that 
we interpret in terms of a fluctuating system. This paper sketches how the Metropolis 
algorithm, which embodies well the idea of fluctuating systems (Newman and Barkema 
1999; Landau and Binder 2015), can apply to self-organized urban street networks once 
our interpretation is embraced. The Metropolis algorithm is a classical entry-point for 
more elaborate Monte Carlo methods. These methods are the natural numerical com-
panions for theoretical studies on fluctuating systems, and vice versa. Our theoretical 
framework is the maximum entropy formalism (MaxEnt) (Jaynes 2003; Grandy 1987; 
Lawrence 2019).

Our prior hypothesis (Jaynes 2003; Grandy 1987) is scale-freeness (Stanley 1971). 
Assuming this property as the result of an underlying self-similarity symmetry (Man-
delbrot 1982; Batty 2008) paves the way to a symmetry-conservation correspondence 
as used in physics (Gross 1996; Romero-Maltrana 2015). This physical idea effortlessly 
adapts itself to MaxEnt. This allows us, as required for implementing any Monte Carlo 
method, to set up our prescribed statistical equilibrium. The self-similarity symmetry 
demands the conservation on average of the logarithm of an extensive quantity which, 
by virtue of MaxEnt, most plausibly underlies a discrete Pareto distribution (Clauset 
et al 2009). The scaling exponent is our equilibrium parameter. Meanwhile, the best we 
can tell on any information network is that it is a mesoscopic system whose objects, 
nodes (streets) and edges (junctions), have equiprobable configurations. So, the best 
we can assume about our extensive quantity is that it is a number of equiprobable con-
figurations. The conserved quantity becomes then an average of Boltzmann entropies. 
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However we may rather interpret this information measure as an amount of surprisal 
(Tribus 1961; MacKay 2003; Applebaum 2008; Stone 2015; Lawrence 2019) that actually 
quantifies the comprehension of the city-dwellers for their own urban street network 
(Benoit and Jabari 2019a, b). Once our prescribed statistical equilibrium is fully set up, 
we can readily implement our Metropolis acceptance ratio.

As concerns the ergodic dynamics, its counterpart, the nonoverlapping walk 
approaches found in the literature (Porta et al 2006; Jiang et al 2008; Viana et al 2013) 
appear inappropriate but nonetheless inspirational. We imagine information networks 
not in terms of haphazard nonoverlapping walks along street-segments, but in term of 
random street layout at junctions. Our approach readily leads to dynamics that mimic 
the classical single-spin-flip dynamics in Ising models (Newman and Barkema 1999; 
Landau and Binder 2015; Berlinsky and Harris 2019). At every junction, each pair of 
street-segments that can hold a street is a link of a graph where street-segments map to 
nodes, so that each matching (Pemmaraju and Skiena 2003) of this graph represents a 
possible layout. As the single-spin-flip dynamics changes the state of a spin into another 
possible state, our dynamics changes the matching (layout) of a junction into another 
possible matching (layout). We named single-junction-flip the dynamics that involves 
any matchings, and single-junction-switch the dynamics that involves only maximal 
matchings (Pemmaraju and Skiena 2003). If our approach implicitly implies that self-
organized urban street networks might sustain scaling coherence over a wide range 
of scalings, finding dynamics reminiscent of Ising models suggests first and foremost 
that they might undergo a crossover as scaling varies. Since large scale-free networks 
exhibit ultra-small- and small-world behaviours for scaling values respectively smaller 
and greater that 3 (Cohen and Havlin 2003), self-organized urban street networks might 
actually experience as scaling increases a small-world crossover around the scaling value 
of 3.

We choose as case study the recognized self-organized urban street network of Central 
London (United Kingdom) (Jacobs 1993). Simulations based on predominant streets and 
an asymptotic agent model driven by social interactions (Dover 2004; Benoit and Jabari 
2019a, b) show that the single-junction-switch Metropolis algorithm generates equilib-
ria that are consistent with the aforementioned nonoverlapping walk approaches. The 
simulations remain consistent over a range of scaling exponents large enough to contain 
the realistic window from 2 to 3 (Newman 2018) and to capture changes of behaviour in 
their total and average amounts of surprisal. Thusly, the single-junction-switch Metrop-
olis algorithm allows simulational investigations. The single-junction-flip dynamics also 
leads to equilibria, but with unrealistic amounts of surprisal. We explain this, given that 
our model neglects junctions while the single-junction-switch dynamics coerces junc-
tions to have maximal layouts, by a lack of constraints on junctions. Along this expla-
nation, the single-junction-flip dynamics may allow to investigate the role played by 
junctions. In brief, our simulations on Central London show that our adaptation of the 
Metropolis algorithm for generating self-organized information networks is applicable 
and relevant.

To illustrate our innovative methodology, we plot the Watts–Strogatz phase diagram 
with scaling as rewiring parameter. The phase diagram exhibits an emergent/reduction 
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regime followed by an uniform regime as scaling increases. That is, the small-world and 
the local transitivity crossovers occur simultaneously. However only the former is sig-
nificant in magnitude. The crossovers happen approximately around the scaling value of 
3. More noticeably, the crossovers curve within the realistic window from 2 to 3. Thusly, 
as expected, our phase diagram demonstrates a small-world crossover around the scal-
ing value of 3. Our phase diagram also allows us to discuss the pertinence of the self-fit 
outputs. The self-fit outputs take place on average nearly the scaling value of 3/2, namely, 
significantly before the realistic window 2–3. They actually occur on average at the end-
ing of the linear scaling behaviour observed at low scalings—which we may consider as 
degenerate. Concretely this means that self-fit outputs generate on average information 
networks that underlie relatively large worlds, namely, that are inefficient. If the implicit 
belief that self-organized urban street networks have reached an optimal balance over 
time holds, representative information networks may rather occur within the realis-
tic window 2–3 where their worlds are on average relatively small, namely, efficient—
assuming that the small-world effect gets counterbalanced as its effect curves. Thusly, 
our illustrative Watts–Strogatz phase diagram challenges the state-of-the-art on gener-
ating information networks, while it indicates that self-organized information networks 
can undergo as scaling increases a small-world crossover curving within the realistic 
window 2–3. In other words, our illustrative numerical “experiment” on Central London 
demonstrates that our adaptation of the Metropolis algorithm for generating self-organ-
ized information networks is indeed pertinent to gain new insights.

From a fundamental point of view, future works must focus on two points. First, we 
must recognize the deep origin underlying the extensive quantity associated to the scal-
ing exponent in order to specify its very nature. Second, we must find an uncoercive way 
to involve junctions in order to investigate their role. From a simulational point of view, 
we must investigate the undergoing small-world crossover by considering other network 
phenomena (Newman 2018) and a large panel of recognized self-organized urban street 
networks (Jacobs 1993; Crucitti et al 2006). We anticipate to observe network phenom-
ena (Newman 2018) that counterbalance the small-world effect within or around the 
realistic window 2–3 (Newman 2018). From an observational point of view, our fluctuat-
ing approach clearly challenges the current method to determine the scaling exponent 
of an urban street network which is based on a single arbitrary output (Porta et al 2006; 
Jiang et al 2008). In view to confront our simulational data against observational data, 
we must derive methods able to “take” the scaling exponent and to measure network 
measures (Newman 2018) along with their susceptibilities (Newman and Barkema 1999; 
Grandy 1987; Jaynes 2003). From a practical point of view, we envision that our Metrop-
olis adaptation may initiate, alongside Monte Carlo models getting more elaborate but 
also more realistic, a ‘scaling-dynamics’ based description of our urban street networks 
and, by extension, of our cities. Such a descriptive framework may provide fruitful anal-
ogies with thermodynamics and precious insights on unplanned evolution for city scien-
tists, city designers, and decision-makers to anticipate the evolution of our cities.

Abbreviations
MaxEnt: Maximum Entropy formalism (or principle); SE:: Scaling equilibrium; TE: Thermal equilibrium.
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