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Introduction
In recent years epidemiological modelling, along with many other fields, has seen 
renewed activity thanks to the emergence of network science (Newman 2018; Barabasi 
2016; Zhan et al. 2020; Masuda and Holme 2017). Approaching these models from the 
view of complex coupled systems has shed new light onto spreading processes where the 
early black-box ordinary differential equation (ODE) models from Kermack and McKen-
drick had its limitations (Keeling and Eames 2005; Humphries et al. 2020). These ODE 
models assume homogeneous mixing of the entire population, which may be an appro-
priate approximation for small communities. However, when attempting to model the 
spread of disease at a national or international level, they fail to capture how heteroge-
neities in both travel patterns and population distributions contribute to and affect the 
spread of disease. Epidemiological models on complex networks aim to solve this prob-
lem by moving away from averaged dynamics of populations and mean-field descrip-
tions. Instead, the focus is on interactions between individuals or metapopulations, 
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where the spreading process is driven by contacts in the network (Yang et al. 2003; Shar-
key et al. 2015; Colizza et al. 2007).

There have been many improvements made in regards to network models, e.g., gen-
eralised multi-layer network structures or more specifically temporal networks that 
allow for the network structure to change with time (Masuda and Holme 2017; Iannelli 
et al. 2017; Koher et al. 2016; Lentz et al. 2016). Temporal networks are a natural way 
of representing contacts and lead to an insightful interplay between the disease dynam-
ics and the evolving network topology (Karrer and Newman 2010; Shrestha et al. 2015; 
Lentz et al. 2013). With the ever growing availability of mobility and contact data it has 
become easier to provide accurate and high-resolution data to inform network models. 
The results can be extremely useful tools for public-health bodies and other stakeholders 
(Gethmann et al. 2019; Tratalos et al. 2020; Génois and Barrat 2018).

In previous works, a widely used epidemiological concept is the individual-based 
model (Newman 2018; Valdano et  al. 2015; Sharkey 2011). It assumes statistical inde-
pendence in the state of each vertex. A major problem associated with such a model 
is that it suffers quite badly from an echo chamber effect due to the fact that there is 
no memory of past interactions due to statistical independence. There have been efforts 
to ameliorate this problem by introducing memory at the level of each vertex’s direct 
neighbours. These models referred to as contact-based (Koher et al. 2019) or pair-based 
(Frasca and Sharkey 2016) and have been shown to significantly reduce the echo cham-
ber effect, depending on the underlying network structure. These two models differ in 
their initial approach. The contact-based model takes an edge-based perspective, which 
extends the message passing approach (Karrer and Newman 2010; Kirkwood 1935), 
and all dynamic equations are formulated in terms of edges. By contrast, the pair-based 
model keeps the vertex-based approach of the individual-based model and dynamic 
equations are in terms of vertices.

In this paper, we extend the Pair-Based (PB) model to a temporal setting giving a Tem-
poral Pair-Based (TPB) Model. We show how it can be drastically reduced and simplified 
under a certain dynamical assumption (Sharkey and Wilkinson 2015). We deal specifi-
cally with susceptible–infected–recovered (SIR) models. Once the TPB model is written 
in concise form, it is then possible to show that the contact-based model is equivalent to 
a linearised version of the TPB model. We then establish the conditions for an epidemic 
to occur according to the TPB model, also known as the epidemic threshold. We investi-
gate how the TPB model performs on a number of synthetic and empirical networks and 
investigate what kind of network topologies work best with the TPB model.

The remainder of this paper is structured as follows: In "SIR network model" section, 
we summarize the theoretical framework. Then, we address the calculation of an epi-
demic threshold in "Epidemic threshold" section, before presenting the main results in 
"Results" section. Finally, we offer some conclusions in "Conclusions" section.

SIR network model
Let us consider a temporal network G = {G1, . . . ,GT } to be a series of networks 
Gt = (V ,Et) , which all share the same vertex set V but differ in their edge set Et . The 
adjacency matrix for the network at time t will be denoted by A[t] , and A[t]

ij = 1 implies 
an edge between vertices i and j at time t, whereas A[t]

ij = 0 implies no edge. 
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Reduced master equations

Let � be the set of compartments in the model, that is, in the SIR model: � = {S, I ,R} . 
Let Xn =

(

Xn
1 ,X

n
2 , . . . ,X

n
N

)T be the vector whose ith element refers to the state of the ith 
vertex in the network at time step n, thus Xn ∈ �N where |V | = N  . The evolution of the 
disease is then described by the master equations (Gardiner and Gardiner 2009),

In other words, we assume that the infection process is Markovian. P(Xn+1) is the prob-
ability of the network being in the particular configuration of states given by Xn+1 and 
P(Xn+1|Xn) is probability of the network moving from the configuration of states Xn to 
X
n+1 between their respective time steps. These equations describe the entire process 

on the network. However, in order to progress the system forward one step in time, the 
probabilities of all combinations of state vectors must be found. This usually is not feasi-
ble for network processes with potentially billions of vertices as for the SIR process the 
total combination of states is given by 3N .

Instead, it is possible to describe the evolution of the disease using a system of Reduced 
Master Equations (RME) (Sharkey 2011), which describes the evolution of subsystems 
within the network, such as individual vertices, removing the need to obtain every pos-
sible combination of states. An important note is that these RMEs are in fact not them-
selves true master equations as they are not necessarily linear due to the fact that the 
transition rates of the subsystems are non-linear combinations of the transitions rates of 
the original system. However, we shall continue to use the term RME introduced by the 
author of Sharkey (2011).

For notational convenience we use the following notation for the joint marginal 
probabilities,

When we wish to specify a particular realisation of Xn
i  , we denote it by Sni  , Ini  or Rn

i  to 
imply Xn

i = S , Xn
i = I or Xn

i = R , respectively. Employing this new notation we start 
with the RME, which describes the evolution of individual vertices,

For SIR dynamics, the evolution of each vertex in each compartment is given as the 
following, 

(1)P
(

X
n+1

)

=
∑

Xn∈�N

P
(

X
n+1|Xn

)

P
(

X
n
)

.

(2)P
(

Xn
i1
,Xn

i2
, · · · ,Xn

im

)

= �Xn
i1
Xn
i2
· · ·Xn

im
�.

(3)�Xn+1
i � =

∑

Xn
i ∈�

�Xn+1
i |Xn

i ��X
n
i �.

(4a)�Sn+1
i � = �Sni � − �In+1

i |Sni ��S
n
i �

(4b)�In+1
i � = �Ini � − �Rn+1

i |Ini ��I
n
i � + �In+1

i |Sni ��S
n
i �

(4c)�Rn+1
i � = �Rn

i � + �Rn+1
i |Ini ��I

n
i �,
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where �In+1
i |Sni � reads the probability vertex i is infected at time n+ 1 given it was sus-

ceptible at time n and similarly for �Rn+1
i |Ini � . Note that 〈Rn

i 〉 can be recovered using the 
conservation of the probabilities �Sni � + �Ini � + �Rn

i � = 1 . In order to compute the transi-
tion rates we define the following quantities, the probability of infection on contact β , 
the rate of recovery µ . A[n] is the temporal adjacency matrix of the network on which the 
process is occurring. Following directly from Frasca and Sharkey (2016), the transition 
rates of moving from S to I, and I to R are given by 

For the expression within the square brackets of Eq. (5a), the first term is the prob-
ability that vertex i is infected by some other vertex in the network and double-counts 
events. Each subsequent term accounts for double-counting and over-correcting in 
the previous. These equations describe the probabilistic SIR process on temporal 
networks. Note that the system of equations is not closed as it lacks a description 
for their joint probabilities. There are a number of ways  in which this problem can 
be tackled, usually by making a number of numerical or dynamical approximations 
(Yang et  al. 2003; Valdano et al. 2015; Koher et  al. 2019; Gómez et al. 2010). In the 
next sections we attempt to improve on and unify many existing approaches showing 
how they are derived from the system of RMEs given by Eqs. (4) and (5).

Temporal individual‑based model

One of the most commonly used epidemiological models on networks is the individ-
ual-based (IB) model, which has been extended to the temporal setting in Valdano 
et al. (2015). We refer to this extension as the temporal individual-based (TIB) model. 
The key idea is the assumption of statistical independence of vertices or the mean 
field approximation, i.e., the factorisation �Xn

i1
Xn
i2
. . .Xn

iM
� = �Xn

i1
��Xn

i2
� . . . �Xn

iM
� . By 

assuming this independence of vertices, Eq. (5a) simplifies to 

 which upon factorising can be concisely written as

(5a)

�In+1
i |Sni � =

1

�Sni �



β
�

j1∈V

A
[n]
ij1
�Sni I

n
j1
� − β2

�
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A
[n]
ij1
A
[n]
ij2
�Sni I

n
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Inj2�
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�

j1,...,jN−1∈V

A
[n]
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[n]
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�Sni I
n
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�





(5b)�Rn+1
i |Ini � = µ.
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Upon substituting the transition rates �In+1
i |Sni � and �Rn+1

i |Ini � under the assumption of 
statistical independence, the full TIB model is written as 

This model closes Eq.  (5a) at the level of vertices, thus ignoring all correlations with 
other vertices at previous times. However, ignoring all past correlations causes the 
model to suffer quite badly from an echo chamber effect (Shrestha et al. 2015). This echo 
chamber has the effect of vertices artificially amplifying each other’s probability of being 
infected 〈Ini 〉 at each new time step, as the marginal probability of each vertex is highly 
correlated with the rest of the network and the factorisation of Eq. (5a) means each ver-
tex forgets its past interactions. As demonstrated in Shrestha et al. (2015), it is possible 
to show that in the absence of a recovered compartment, a static network of two linked 
vertices for non-zero initial conditions has probabilities of being infected which con-
verge according to limn→∞�In0 � = limn→∞�In1 � = 1 for the TIB model.

Temporal pair‑based model

In contrast to the TIB model, instead of assuming independence of vertices we can 
approximate the marginal probabilities in terms of combinations of lower order mar-
ginals using some form of moment closure (Frasca and Sharkey 2016; Sharkey and 
Wilkinson 2015). Here, we make an equivalent assumption to that of the message pass-
ing approaches (Karrer and Newman 2010; Shrestha et  al. 2015). We assume the net-
work contains no time-respecting non-backtracking cycles. In other words, starting at 
some initial vertex i that leaves via vertex j, there is no way to find a time-respecting path 
returning to this vertex that does not return via j. This is equivalent to a tree network 
when the temporal network is viewed in its static embedding of the supra-adjacency rep-
resentation (Bianconi 2018). This allows us to write all higher order moments in Eq. (5a) 
as a combination of pairs 〈Sni I

n
k 〉 . To show why this is possible, consider the three vertices 

i, j, k connected by two edges through i. If conditional independence of these vertices is 
assumed given we have the state of i, then one can make the following assumption,

This has the effect of assuming the network is tree-like in structure as it implies any 
interaction between vertices j and k must occur through vertex i. Thus, the process is 
exact on networks that contain no time-respecting non-backtracking cycles and other-
wise provides an improved approximation of varying degree, which depends on the true 
network structure. The result obtained in Eq.  (9) is often referred to as the Kirkwood 

(7)�In+1
i |Sni � = 1−

∏

k∈V

(

1− βA
[n]
ki �I

n
k �

)

.

(8a)�Sn+1
i � = �Sni �

∏

k∈V

(

1− βA
[n]
ki �I

n
k �

)

(8b)�In+1
i � = �Ini �(1− µ)+ �Sni �

(

1−
∏

k∈V

(

1− βA
[n]
ki �I

n
k �

)

)

.

(9)�Xn
i X

n
j X

n
k � = �Xn

j X
n
k |X

n
i ��X

n
i � =

�Xn
i X

n
j ��X

n
i X

n
k �

�Xn
i �

.
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closure (Kirkwood 1935). Under the assumption that the network is tree like, the follow-
ing simplification is obtained for Eq. (5a),

However, we run into the problem that we have no description for pairs of vertices. Thus, 
we derive expressions for their evolution from the RMEs for pairs of vertices which is 
given by,

For �Sn+1
i In+1

j � , we obtain

Note that the RME for 〈Sni S
n
j 〉 is also required, which we find to be the following

Since only the probabilities 〈Sni I
n
j 〉 and 〈Sni S

n
j 〉 are needed in order to describe the RMEs 

in Eq.  (10), we consider those two combinations of states. From Frasca and Sharkey 
(2016), we obtain the exact transition rates for pairs of vertices and find that we can 
factorise the pair-wise transition rates similar to Eq. (5a). Here, we give the expression 
for �Sn+1

i In+1
j |Sni S

n
j � only while the rest of the pair-wise transition rates are given in 

“Appendix”:
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In the above equation, the term in the first pair of square brackets corresponds to the 
probability that vertex i does not become infected and the term in the second pair of 
square brackets corresponds to the probability that vertex j becomes infected. Upon 
applying our moment closure technique Eq. (14) may be written as

By introducing the following functions, the RMEs for pairs as well as the individual 
vertices can be written more concisely. The probability that vertex i does not become 
infected at time step n+ 1 , given that i is not infected at time step n is denoted by

Similarly, the probability that vertex i does not become infected at time step n+ 1 , given 
that i is not infected at time step n while excluding any interaction with j, is given by

Then, the evolution of the state of every vertex in the network is determined by the fol-
lowing closed set of equations, 

This approximation allows a large increase in accuracy compared to TIB model 
while only adding two equations to the final model. All past dynamic correlations 
are now tracked by the model and so the echo chamber effect is eliminated, but only 
with direct neighbours, that is, vertices which share an edge. A major benefit of this 
particular TPB model over other existing iterations (Koher et al. 2019; Gómez et al. 
2010) is that this model can be implemented as an element-wise sparse matrix mul-
tiplication rather than having to iterate through all edges for every time step, making 
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it extremely computationally efficient and fast on even large networks. It also benefits 
from a low conceptual cost by not deviating from a vertex-based perspective, like the 
contact-based models, which move to the perspective of edges and thus define the 
model in terms of the line-graphs and non-backtracking matrices (Koher et al. 2019).

Similar to Shrestha et al. (2015), we can compare pair-based models to the TIB model 
using the two vertex example. In that illustrative configuration, we consider two vertices 
connected by an undirected static edge and give the two vertices some initial non-zero 
probability �I00 � = �I01 � = z of being infected. We then run the TIB and TPB models for 
some given parameters β and µ and compare it to the ground truth, which is the average of 
a number of Monte-Carlo(MC) realisations.

From Fig. 1, it becomes apparent how the TIB model fails to capture the true SIR process 
on the network due to the previously discussed echo chamber induced by assuming statisti-
cal independence of vertices. It becomes clear that the TPB model accurately describes the 
underlying SIR process for this simple example as each vertex is able to recover the dynamic 
correlations of past interactions with direct neighbours.

Equivalence between the contact‑based and pair‑based models

In the contact-based model (Koher et al. 2019), the central component is θnij , which is the 
probability that node j has not passed infection to node i up to time step n. From θnij , the 
quantity 〈Sni 〉 may be computed as

(19)�Sn+1
i � = �S0i �

∏

j∈V

θn+1
ij .

〈I00 〉 = 0.2 〈I01 〉 = 0.2

Fig. 1 Running 25 time steps of the TIB (blue dashed) and TPB (green solid) SIR model as well as the average 
over 105 Monte-Carlo (MC) simulations (red dash-dotted) for the two vertex example. Parameters: β = 0.4 , 
µ = 0.2 , and �I0

0
� = �I0

1
� = 0.2
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This equation is the basis for the contact-based model and allows us to easily compare 
with the pair-based model as it describes the same quantity as our Eq. (18a). The authors 
also assume that the evolution of θnij satisfies the following relation

In the pair-based model, the evolution of the susceptible probability, given by Eq. (18a), 
can similarly be rewritten in terms of its initial conditions, 

 From equating (19) and (21) it is clear that if the models are exactly equivalent then θij is 
defined by

However, this contradicts the assumption made by Eq.  (20). Thus the pair-based and 
contact-based models are only equivalent if the following linearisation is assumed:

which then implies (22) can be written as 

 This shows that the contact-based model is a linearised version of the pair-based model.

Epidemic threshold
One of the most important metrics used in epidemiology is the epidemic threshold, 
which determines the critical values of the model parameters at which a transition in 
qualitative behaviour occurs and the disease-free equilibrium (DFE), which we define as
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where �S∗i � + �R∗
i � = 1 . From this definition it is clear that there exists a whole class of 

DFEs, which must considered. At this critical point, the DFE becomes unstable and on 
average an epidemic occurs. Calculating the epidemic threshold is a bit more difficult 
with the SIR model compared with the SIS due to the fact that the flow of probability is 
in only one direction between compartments S → I → R . Therefore, the class of DFE 
solutions are always asymptotically stable. Thus, we will look at classifying the initial sta-
bility of the SIR model as we perturb it from the state,

which we shall define as the pre-disease equilibrium (PDE). If it is unstable that means 
the disease has a chance to take hold and will spread through the network causing an 
epidemic before dying out. We now look at small perturbations from the PDE, if they 
vanish then the disease will die out and will not have a chance to propagate through the 
network. We shall define an epidemic in the SIR model as instability of the PDE under 
such perturbations. First, we look to linearise the difference equation for �In+1

i � near the 
PDE, this translates to linearising the non-linear function �n

i  . Under the assumption 
�Ini � = ǫi for every vertex i such that 0 < ǫi ≪ 1, we find

by the fact that for the joint probability �Sni I
n
j � ≤ min{�Sni �, �I

n
j �} . Thus for ǫi ≪ 1 we may 

assume 
�Sni I

n
j �

�Sni �
≈ ǫj . Upon substituting this into �n

i  we find that

We can then use this to linearise �In+1
j � from (18). While ǫi ≪ 1 holds, so does the 

approximation,

This linearisation eliminates 〈Sni 〉 from the equation. Interestingly, this is exactly the form 
of the SIS model in the TIB framework for which the epidemic threshold is easily found 
(Valdano et al. 2015). Therefore, we find that the SIS and SIR models share the same epi-
demic threshold condition. We introduce the matrix M[n] , called the infection propaga-
tor, which is a linear map that describes the evolution of the SIR model close to the DFE:

Following Valdano et al. (2015), we find that the condition required for an epidemic to 
occur is given by

(25)�Sni � = S∗i , �Ini � = 0, �Rn
i � = R∗

i ∀i,

(26)�Sni � = 1, �Ini � = 0, �Rn
i � = 0 ∀i,

(27)0 ≤
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(30)M
[n]
ij = βA

[n]
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For the values of β and µ which the above is satisfied, implies that when a disease is 
introduced into the network the PDE is unstable for a period of time. What this means 
is that in the equivalent SIS model with the same parameters, the proportion of infected 
vertices never settles on the PDE.

Results
In this section, we compare the accuracy of the TIB model and the TPB model against 
the ground truth MC average, that is, direct stochastic simulations. In short, we show 
how the TPB model can offer a massive increase in accuracy and also discuss when it 
fails to accurately capture the true dynamics of the stochastic SIR process. Furthermore, 
we validate the analytical epidemic threshold.

Tree network

The assumption in the TPB model is conditional independence between vertices with a 
neighbour in common given the common neighbours state. This is equivalent to assum-
ing the network contains no time-respecting non-backtracking cycles (Hashimoto 1989; 
Bordenave et  al. 2015). To illustrate this reasoning, we consider a static tree network, 
that is, tree networks contain no cycles of length 3 or greater, made up of 100 vertices. 
All vertices start from some initial non-zero probability �I0i � = z of being infected. We 
then run the TIB model and the TPB model for some given parameters β and µ and 
compare it to the ground truth, which is the average of a number of MC realisations.

Figure 2b shows how the TIB model fails to capture the true SIR process on the net-
work due to the previously discussed echo chamber induced by assuming statistical 
independence of vertices. It becomes clear that the TPB model accurately describes 
the underlying SIR process for this simple example as each vertex is able to recover the 
dynamic correlations of past interactions with direct neighbours. As we will see from the 
next section, temporal networks that are well approximated by tree networks are also 
well approximated by the TPB model.

(31)ρ

(

n
∏

m=0

M[m]

)

> 1.

Fig. 2 a A random tree network made up of 100 vertices. b Time series of the TIB (blue dashed) and TPB 
(green solid) SIR model as well as 105 Monte-Carlo (MC) simulations (red dash-dotted) for the tree network 
shown in a. Parameters: β = 0.4 , µ = 0.02 , and �I0

0
� = �I0

1
� = 0.03
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Empirical networks

In the following section, we consider two empirical temporal networks that all vary in 
both structure and temporal activity. For each of the empirical networks we wish to 
test our our findings that the TPB model offers an increase in accuracy over the TIB 
model. We observe a change in behaviour as the model parameters cross the epidemic 
threshold. We run the TIB and TPB SIR models for all our networks for different val-
ues of β and µ and then compare them to the average of a sufficiently large number 
of MC simulations. This allows us to quantify how well the different models approxi-
mate the dynamics of the true SIR process. At each time step, the average prevalence 
of states within the network are collected and denoted as 〈Snavg〉 , 〈Inavg〉 and 〈Rn

avg〉 with 
the cumulative prevalence of infection being taken as �Inavg� + �Rn

avg� . Then, we vali-
date our analytical finding for the epidemic threshold of the TPB SIR process. For this 
purpose, we fix a value for µ and then, for increasing values of β , perform a number of 
MC simulations for long times in order to get a distribution of the final out break size, 
which is given by limn→∞�Inavg� + �Rn

avg� . In the long-term dynamics of the SIR process, 
limn→∞�Inavg� + �Rn

avg� will usually exceed the observation time of the network. There-
fore, periodicity of the networks is assumed in a similar way to Valdano et  al. (2015) 
when computing the final outbreak sizes.

Irish Cattle Trade

The Cattle Trades network consists of all trades between herds within the Republic 
of Ireland during the year 2017 with a temporal resolution of one day (Tratalos et  al. 
2020) (cf. Table  1). Due to the nature of the trade data, interactions are directional. 
Thus, this data set is modelled by a directed network, where each vertex represents a 
herd and each edge represents a trade weighted by the number of animals traded. The 
aggregated degree distribution of the network as shown in Fig. 3a indicates a scale-free 
behaviour often seen in empirical networks. The network appears to be quite sparse as 
is evident from Fig. 3b, with an average of only 347 edges per day while having an aggre-
gated 1,041,054 edges over the entire year. The data also displays a strong bi-modal sea-
sonal trend with there being two distinct peaks while there tends to be very little trades 
occurring on Sundays when the data points lie near zero. Although we ignore external 
drivers of the disease, this model still offers insight into how susceptible to epidemics 
the network is, as trade is the main vector of non-local transmission. There are a num-
ber of infectious diseases that affect cattle, such as Foot and Mouth Disease and Bovine 
Tuberculosis, the latter of which is still a major problem in Ireland, thus effective models 
for the spread of infectious diseases among herds are incredibly useful tools. In the pre-
sent study, we focus on the SIR dynamics, but the TPB model framework can easily be 
extended to other models,

Table 1 List of empirical networks

Network list

Network Vertices Agg. edges Avg. edges Snapshots

Conference 405 9699 20.02 3509

Cattle trades 111,513 1,041,054 347.17 365
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From Fig. 4 we can compare the performance of the TIB and TPB models on the 
cattle trades network. The figure shows a year worth of simulations of both models 
plotted against the average of 103 MC realisations for the same choice of parameters. 
As is evident from the figure, the TPB model offers a significant improvement over 

Fig. 3 a In- and out-degree of the network aggregated over the entire year worth of data. b Time series 
of number of active edges per day in the network. c Trades at the level of counties aggregated over the 
observation period. The number of trades is indicated by the edge width and colour

Fig. 4 TIB (blue dashed) and TPB (green solid) SIR models on the Irish cattle trade network together with the 
average of 103 Monte-Carlo simulations (red dash-dotted). a, c The time series for the prevalence of infection 
in the network and b, d the cumulative prevalence of infection within the network. The probability of 
infection is set to β = 0.3 in a, b and β = 0.5 in c, d. The initial chance of infection is 0.03. Other parameters: 
µ = 0.005
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the TIB model as there is a clear agreement with the MC average in the both the aver-
age and cumulative average disease prevalence for both choices of parameters. The 
reason for such a significant improvement can be explained by the fact that the TPB 
model is exact on networks with no non-backtracking cycles. However, because the 
cattle trade network is a production network, there exist very few non-backtracking 
cycles making the network structure highly tree-like in its supra-adjacency embed-
ding. This can be explained by the fact that the existence of such cycles are inefficient 
and cost prohibitive in the trade process. As a result the network is well approximated 
by a tree network and contains very few non-backtracking cycles. Therefore, the SIR 
process is well approximated by the TPB model for such a network. As shown in Fig. 5 
the number of non-backtracking cycles as a fraction of the total number of paths in 
the network is very small, peaking at just over 0.025%. Hence, the network is unlikely 
to suffer from the echo chamber effect in the TPB model. However, there are very 
many reciprocal (bi-directional) links in the network, meaning many farms trade in 
both directions. The reason for the difference in prediction between the TIB and TPB 
models is that the TPB model is able to account for all these reciprocal edges.

Next, we test our analytical findings for the epidemic threshold on the cattle trade 
network. Figure 5b depicts the average final outbreak sizes of a number of realisations 
against increasing values for β while keeping µ fixed at 0.005. The critical β which gives 
rise to an epidemic according to the analytically computed epidemic threshold for such 
a fixed µ in the TPB model is given as βcrit ≈ 0.025 . For values of β that are greater than 
the computed epidemic threshold, there is an obvious but gradual change in dynamics as 
local outbreaks no longer die out, but now propagate throughout the network leading to 
larger final outbreak sizes as the value for β gets larger, thus showing agreement with the 
analytical result for the epidemic threshold. Overall, we find that such trade networks 
are a good candidate for the TPB model as they avoid many non-backtracking cycles.

Conference contacts

The second data set (cf. Table  1) is the Conference network described in Génois and 
Barrat (2018). It includes the face-to-face interactions of 405 participants at the SFHH 
conference held in Nice, France 2009. Each snapshot of the network represents the 

Fig. 5 a Proportion (bars) and number of all non-backtracking (NBT) paths (blue solid) and cycles (blue 
dashed) that close at each respective time step. b Final outbreak sizes for varying values of β with µ = 0.005 . 
The vertical line shows the critical probability βcrit obtained from the TPB model. The average of the 
Monte-Carlo (MC) is shown as green curve
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aggregated contacts in windows of 20s. Since this data set describes face-to-face interac-
tions, each contact is bi-directional and so an undirected network is the natural choice 
to model these interactions.

Because of the small number of nodes in the network, it is difficult to draw detailed 
conclusions from the degree distribution. As shown in Fig. 6a, there is a clear heavy tail 
with most vertices having a relatively small aggregated degree. In Fig. 6b we see that the 
network activity in this case shows a number of peaks occurring then quickly dying out. 
These are explained by breaks between sessions at the conference during which the par-
ticipants converse and interact. Because of the time scale and observation period of this 
particular temporal network, it is not feasible to model the spread of disease as infection 
and recovery is unlikely to occur within the observation period, which is approximately 
20 h. However, we can use our model to simulate the spread of viral information or “gos-
sip” using the same dynamics as the SIR model. Infection is equivalent to receiving some 
information in such a way that it becomes interesting enough to for the individual to 
try and spread to those they contact in the future and recovery is equivalent to growing 
tired of the information and no longer inform others they meet.

Figure 7 shows the time series of the different models for two probabilities of infec-
tion: β = 0.3 in (a),(b) and β = 0.5 in (c),(d). Again, one can observe that in every case 
the TPB approximation offers an improvement over the TIB. However, compared to 
the MC simulations the TPB model does not offer perfect agreement in contrast to the 
cattle trade network. An interesting observation is that in panel (a) we see the average 
prevalence of the infection, according to the TPB model, has a higher peak than the TIB 
model and it may appear as though the TIB model performs better. However, when we 
look at the corresponding plot in panel (b), which shows the cumulative average preva-
lence of the disease, the TPB model is closer to the MC average at every time step. The 
reason the peak is bigger for the TPB model is that the TIB model has a sustained higher 
first peak, which uses up the pool of susceptible individuals leaving a smaller population 
available to catch the disease.

The reason we do not see a good agreement with the MC average for this particular 
data set is due to the underlying topology of the network that is a physical social interac-
tion network where individuals congregate in groups and most or all in the group inter-
act with one another. This leads to large clusters that give rise to many non-backtracking 
cycles. The more time-respecting non-backtracking cycles that occur, the worse the TPB 

Fig. 6 a Degree of the conference network aggregated over the entire observation period. b Time series of 
number of active edges per time step in the network
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model will perform. It is for this reason that we see a relatively large deviation from the 
MC simulations for the TPB model. This can be explained by Fig. 8a, which in contrast 
to the cattle network shows that the number of NBT cycles is relatively dense at many 
points in time, reaching as high as 12%.

In Fig. 8b we see the distribution of final outbreak proportions against the critical β com-
puted for the epidemic threshold of the TPB model. Again, for values of β that are greater 
than the computed epidemic threshold, there is an obvious but gradual change in dynamics 
as local outbreaks no longer die out, but now propagate throughout the network leading to 
larger final outbreak sizes as the value for β gets larger, thus showing agreement with the 

Fig. 7 TIB (blue dashed) and TPB (green solid) SIR models on the conference network together with the 
average of 103 Monte-Carlo (MC) simulations (red dash-dotted). a, c The time series for the prevalence 
of infection in the network. b, d Depict the cumulative prevalence of infection within the network. The 
probability of infection is set to β = 0.3 in a, b and β = 0.5 in c, d. The initial chance of infection is 0.03. Other 
parameters: µ = 0.005

Fig. 8 a Proportion (bars) and number of all non-backtracking (NBT) paths (blue solid) and cycles (blue 
dashed) that close at each respective time step. b Final outbreak sizes for varying values of β with µ = 0.005



Page 17 of 19Humphries et al. Appl Netw Sci            (2021) 6:23  

analytical result for the epidemic threshold. However, the agreement with the final outbreak 
sizes only remains consistent with the MC average for values of β below and slightly above 
the epidemic threshold.

Conclusions
In this paper, we have presented work done on SIR pair-based models by systematically 
extending them to a temporal setting and investigating the effect of non-backtracking cycles 
on the accuracy of the model on arbitrary network structures. We have found that the exist-
ence of many such non-backtracking cycles leads to a deviation in the pair-based model 
from the true SIR process due to the echo chamber effect they induce. Thus, the pair-based 
model is best suited to network structures which do not contain many cycles, such as pro-
duction networks. We also find that our analytical finding for the epidemic threshold holds 
up when compared to numerical simulations, by showing a qualitative change in the final 
outbreak proportion.

Appendix: Vertex pair transition rates for the PB model
In this Appendix, we provide the transition rates used in Eqs. (14): 
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