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;gz‘nvceefgg;‘:ip“ed Epidemic spreading is a widely studied process due to its importance and possibly
Northwestern Switzerland grave consequences for society. While the classical context of epidemic spreading
FHNW, Riggenbachstrasse 16, refers to pathogens transmitted among humans or animals, it is straightforward to
?Eﬁﬁ)iggir;hi\g;trz;ﬁ?g?riaﬁon apply similar ideas to the spread of information (e.g. a rumor) or the spread of com-
is available at the end of the puter viruses. This paper addresses the question of how to optimally select nodes for
article monitoring in a network of timestamped contact events between individuals. We

consider three optimization objectives: the detection likelihood, the time until detec-
tion, and the population that is affected by an outbreak. The optimization approach
we use is based on a simple greedy approach and has been proposed in a seminal
paper focusing on information spreading and water contamination. We extend this
work to the setting of disease spreading and present its application with two example
networks: a timestamped network of sexual contacts and a network of animal trans-
ports between farms. We apply the optimization procedure to a large set of outbreak
scenarios that we generate with a susceptible-infectious-recovered model. We find that
simple heuristic methods that select nodes with high degree or many contacts com-
pare well in terms of outbreak detection performance with the (greedily) optimal set
of nodes. Furthermore, we observe that nodes optimized on past periods may not be
optimal for outbreak detection in future periods. However, seasonal effects may help
in determining which past period generalizes well to some future period. Finally, we
demonstrate that the detection performance depends on the simulation settings. In
general, if we force the simulator to generate larger outbreaks, the detection perfor-
mance will improve, as larger outbreaks tend to occur in the more connected part of
the network where the top monitoring nodes are typically located. A natural progres-
sion of this work is to analyze how a representative set of outbreak scenarios can be
generated, possibly taking into account more realistic propagation models.

Keywords: Outbreak detection, Epidemic spreading, Temporal networks, Submodular
functions, Greedy optimization

Introduction

Spreading processes in networks have been extensively studied in the literature.
Spreading can happen in a wide variety of contexts, including animal or human epi-
demic spreading (Rocha et al. 2011; Bajardi et al. 2012), computer virus spreading
(Pastor-Satorras and Vespignani 2001), and misinformation spreading over social
media (Budak et al. 2011). The spreading phenomena often have negative implications
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and it is of utmost importance to implement eradication strategies to avoid an uncon-
trolled result (e. g., a global pandemic or a political catastrophe). Sometimes, though,
the goal is to foster spreading, for example in the case of viral marketing (Kempe et al.
2003). In both cases, the core idea is that spreading happens in a physical or virtual
network, when pairs of nodes are coming into contact. Traditionally, spreading was
investigated under a static condition. However, with the rise of more fine-grained
tracking systems, which are able to log timestamped contact information, there is a
growing body of research studying the spreading problem based on temporal net-
works (e.g., Bajardi et al. 2012; Valdano et al. 2015).

The optimal selection of monitoring nodes for outbreak detection is a challeng-
ing task. Leskovec et al. (2007) address this problem in one of the most influential
research works in the field. The authors propose a near-optimal outbreak detec-
tion strategy that uses greedy optimization for selecting a (small) set of nodes to be
monitored. Crucially, the nodes are selected once and are then monitored constantly.
Leskovec et al. propose three optimization goals: detection likelihood (DL), time until
detection (DT), and the population that is affected by an outbreak (PA). The approach
works well when the network is static and the edges do not vary over time (e.g., a
water distribution network). However, for temporal networks, an optimal set of nodes
selected based on a past period may not generalize well to a future period of time,
especially if the network topology changes rapidly (Bajardi et al. 2012; Leskovec et al.
2007). In general, we may expect central nodes to be suitable for effective monitor-
ing strategies, as they tend to become infected before others (Christakis and Fowler
2010).

In our previous article (Sterchi et al. 2020), we attempt to maximize the likelihood of
detecting outbreaks of a disease at a given time ¢£. We define an outbreak of a disease as
a spreading process that is initialized by one particular node in the network becoming
infectious. This seed node then transmits the disease to at least one connected node in
the network. As long as a node is infectious it can further transmit the disease upon
contact with another node. In Sterchi et al. (2020), we slightly modify Leskovec et al’s
approach by optimizing the set of monitoring nodes on a given day ¢ with respect to a
large number of simulated outbreaks over the period [¢ — b, £] with b = 30, 60, 90 days.
More concretely, on a given day ¢, we select the nodes that detect the most outbreaks,
or, in other words, nodes that are most often reached by outbreaks. The sets of optimal
nodes may vary depending on t. As a consequence, we were restricted to the first of the
objectives proposed in Leskovec et al. (2007), namely the optimization of the detection
likelihood. In the present article, we avoid this restriction by replicating the approach
proposed by Leskovec et al. By applying their method to two empirical timestamped
contact networks and comparing the results with simple heuristic strategies that select
nodes based on their centrality, we provide further empirical evidence for the greedy
optimization method in the context of outbreak detection.

The approach consists of two main steps: (1) we simulate a large set of possible out-
break scenarios according to a simple susceptible-infected-recovered (SIR) propagation
model (Barrat et al. 2008). The simulations are run on a past period where contact data
are available. (2) we select nodes using a greedy strategy such that the three objectives
mentioned above (DL, DT, and PA) are optimized on this past period. The size of the
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monitoring set, k, depends on the monitoring resources available. Importantly, we
assume that the cost of monitoring a node is the same for all nodes.

The present study has two main objectives. First, we aim to investigate the characteris-
tics of the set of nodes selected according to the greedy optimization approach proposed
by Leskovec et al. (2007), as compared to simpler heuristics for node selection (based
on centrality). Second, we want to analyze the generalization property, i.e., how well is
a set of nodes optimized on a past period suited for outbreak detection on future data.
Equivalently, we could ask how strongly the temporal-topological structure of a network
changes over time leading to strong variations in the set of optimal nodes over time.
These questions have also been partially covered by Leskovec et al. (2007) and subse-
quent studies. However, we believe that an application of the approach in Leskovec et al.
(2007) to networks that are relevant for disease spreading among humans or livestock
holdings is still lacking. The reader should bear in mind that this paper does not aim to
examine a fully realistic disease spreading scenario. Instead, we use a simple SIR model
which makes this paper comparable to many other works in the field of optimal sur-
veillance and control (Bajardi et al. 2012; Holme 2018; Colman et al. 2019; Schirdewahn
et al. 2017). However, as will become clear later on, the greedy approach is model-agnos-
tic and can be applied to any spreading model that can be simulated on networks.

Related work

Greedy optimization of submodular set functions goes back to the seminal work by
Nembhauser et al. who provide “worst case bounds on the quality of the [greedy] approxi-
mations” Nemhauser et al. (1978). More concretely, they show that the solution found
by greedily optimizing a submodular set function will be no worse than1 — 1/e times the
often intractable optimal solution (= 63%). This result had a profound effect on research
communities in many different fields, as it provided a theoretical foundation for applying
the simple greedy optimization algorithm to set functions. Unsurprisingly, many papers
followed in the footsteps of Nemhauser et al. (1978). A popular application of greedy
optimization for submodular set functions arises in the context of influence propagation
in (online) social networks. Kempe et al. (2003) show that a greedily selected set of indi-
viduals, which maximizes the propagation of influence in a (static) social network, will
reach more individuals than if the initial set of individuals is selected based on network
centrality measures, such as degree centrality. Crucially, their approach employs exten-
sive Monte Carlo simulations of a stochastic diffusion process (e.g., independent cas-
cades (IC) or linear threshold (LT) models) in order to find the set of possible influence
paths and their probabilities. It is obvious that this procedure does not scale to very large
networks, which impedes the application of this approach to modern-day online social
networks. Therefore, Chen et al. (2010) adopt a heuristic approach for the IC model
that is based on local tree-like structures approximating the influence paths of a node.
Avoiding the expensive simulations results in good scalability and, at the same time,
the performance is close to that of Kempe et al. (2003). Another approach to avoid the
Monte Carlo simulations has been proposed by Panagopoulos et al. (2019) who suggest
using observed diffusion cascades. Instead of simulating the influence spread from every
node, they simply use the observed diffusion cascades that maximize the marginal gain,
which can be shown to be submodular. Finally, Budak et al. (2011) examine a variation of
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the influence propagation problem, namely the so-called influence limitation problem,
which can be formulated as a submodular function maximization problem. The influ-
ence limitation problem has important applications, such as minimizing the impact of
misinformation campaigns.

Optimal outbreak detection and influence maximization are two closely related prob-
lems. Maximizing influence corresponds to finding a set of seed nodes that maximize
the size of the set of nodes to which the influence will propagate. In contrast, for optimal
outbreak detection we aim to select a set of nodes that catches the maximum number
of possible spreading cascades (DL objective). Leskovec et al. (2007) demonstrate how
greedy optimization can be applied in the context of outbreak detection. In their seminal
work, they propose three objective functions: detection likelihood, detection time, and
the share of the population that is affected by the spreading process. All three objectives
satisfy submodularity and can thus be greedily maximized with theoretical guarantees.
One particular improvement of Leskovec et al. (2007) compared to previous approaches
is the so called lazy-forward function evaluation. It is based on the idea that if the cur-
rent marginal gain of a node i is larger than all other nodes’ marginal gains from the pre-
vious iteration, submodularity implies that i will also exhibit the largest marginal gain in
the current iteration. This can dramatically reduce the number of function evaluations.
However, Leskovec et al’s approach has a limited applicability in temporal networks. For
example, they show that the optimal node set selected based on observed blog network
information cascades in the past does not generalize well to future outbreak detection.
The reason for this is that blog networks are inherently dynamic and may change over
time, such that the optimal node set will change substantially over time. One of the main
objectives of this article is to assess this generalization problem in the context of epi-
demic spreading on a sexual contact network and an animal transport network. As men-
tioned above, the computationally expensive simulations may impair their use on large
or very dense networks. However, there have been recent contributions in this area that
substantially improve the efficiency of spreading simulations on temporal networks. For
example, Vestergaard and Génois (2015) propose an extension of the Gillespie algorithm
to temporal networks. Currently, the most efficient simulation approach seems to be
an event-driven algorithm that is described in detail in Kiss et al. (2017), St-Onge et al.
(2019), Holme (2020).

Both the outbreak detection and the influence maximization problem have been
addressed with inexpensive heuristics, such as simply selecting the most central nodes. For
example, Budak et al. (2011) note that a heuristic based on selecting nodes with high degree
centrality is comparable in performance to the (greedy) optimization approach. Christakis
and Fowler (2010) provide an intuitive explanation as to why central nodes can be good
detectors of outbreaks: central nodes tend to be infected sooner, as they are topologically
closer to the average node in a network. This has been confirmed by Holme (2018) who
finds that degree, i.e., the number of distinct neighbors, (for static networks) and strength,
i.e,, the total number of contacts, (for temporal networks) are generally the best structural
detectors of outbreaks for low transmission probabilities. A similar result comes from Sun
et al. (2014) who find that in a large-scale city-wide outbreak detection scheme the number
of contacts of an individual acts as the best detector in terms of early warnings about an
outbreak. Colman et al. (2019) assert that a strategy based on selecting high-degree nodes
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for outbreak detection can be suboptimal if a (static) network is highly modular and exhib-
its a rather low degree heterogeneity because those central nodes may be topologically
close. Therefore, they propose strategies that select high-degree nodes in different parts of
the network (modules or spatial regions). Taken together, these studies indicate that select-
ing central nodes for monitoring may be overall the optimal structural heuristic for out-
break detection.

A different idea for outbreak detection has been proposed in Bajardi et al. (2012) and
Schirdewahn et al. (2017) who suggest to monitor nodes that (1) are infected many times by
deterministic spreading cascades from every possible seed node and (2) exhibit low uncer-
tainty about the origin of the outbreak. However, this approach assumes that the starting
time of the outbreak is known and spreading cascades are only simulated from this one
starting time. Assuming that the specific contact patterns that underlie an emerging spread-
ing process are not available, Valdano et al. (2015) propose to monitor so called loyal nodes,
i.e, nodes that have been shown to repeat contact patterns over past periods. They show
that loyal nodes are more likely to be reached by infections than disloyal nodes.

Problem formulation

Let information about contacts between individuals be organized as a network G = (V, E)
where V denotes the set of nodes (individuals) and E the set of edges (contacts between
individuals). The edges in the network are timestamped. Accordingly, an edge can be repre-
sented as a triple (v;, v}, t) € E with v;,v; € V and ¢ a timestamp, indicating when the con-
tact took place. The network can be directed or undirected. We assume that a single node
introduced a disease into the network. The disease is then propagated along the edges in
accordance with a propagation model, which is assumed to be known. Here, we use the
classical susceptible-infectious-recovered (SIR) model: nodes get infected with probability S
if they are in contact with an infectious node and the time until recovery follows an expo-
nential distribution (Barrat et al. 2008; Holme 2018). The aim of the work presented here is
to identify an optimal set of nodes S C V such that some objective function is maximized
(or minimized). We consider the same three objectives as in Leskovec et al. (2007): the
detection likelihood (DL), the time until detection (DT), and the population affected (PA)
(i.e., the size of the outbreak at the time of detection). Obviously, we aim to maximize the
first and minimize the second and third objective. Once we find the optimal set of nodes,
we can constantly monitor them. Since our monitoring resources may be constricted, we
set a limit k on the number of nodes we can monitor. Thus, the optimization problem (for
the DL objective) is the following:

Smga‘); DL(S) subjectto |S| <k 1)

Similarly, we want to find the optimal node set S such that DT (S) and PA(S) are mini-
mized. Note that all three objectives are set functions that take a set of nodes S as the
input and return a real number. For example, for the PA objective, the set function would
return the aggregate outbreak sizes (over all outbreak scenarios) at the time of detection
by anodeinS.
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Outbreak detection

The outbreak detection approach used here is to a large extent identical with the
one proposed in Leskovec et al. (2007). However, the key distinction between the
information spreading example in Leskovec et al. (2007) and the disease outbreak
examples in this work is that in the latter case no underlying spreading data are
available. Hence, we need to simulate a set of outbreak scenarios. In this section, we
first provide the details about the optimization objectives and then discuss the simu-
lation approach we are going to use. Finally, we propose a fast implementation of the
greedy optimization process.

Objective functions
Leskovec et al. (2007) propose an alternative formulation of the optimization prob-
lem introduced in (1). Instead of directly optimizing the set functions, they suggest
to maximize so called penalty reductions. The benefit of that is based on the fact
that many nodes will have a penalty reduction of 0, which makes it a sparse optimi-
zation problem. The set of simulated outbreak scenarios can be denoted by Z with
i being one specific outbreak scenario. The penalty that scenario i incurs depends
on the time it is detected by the monitoring set S. We denote its detection time as
T(i,S) and the penalty for scenario i as m;(T(i,S)). For the DT objective, 7; equals
the time difference between the time of detection and the start of the outbreak in
scenario i. Note that the penalty will assume some maximal value if a scenario is
not detected. We can write this maximal penalty as 7;(00). For the DT objective, the
maximal penalty will be the time difference between the end of the simulation T and
the start of the outbreak #y. Similarly, the penalty for the PA objective corresponds
to the size of the outbreak at the time of detection 7'(i, S) = t*. For the PA objective,
the maximal penalty corresponds to the size of the outbreak (number of infected
nodes) at the end of the simulation. Finally, for the DL objective, the penalty is 0 for
all outbreaks that are detected and 1 otherwise.With this in mind, we can define the
penalty reduction for a given scenario i as ;(00) — m;(T (i, S)). For the DT objective,
the penalty reduction corresponds to the difference between the end of the consid-
ered period and the actual detection time. For the PA objective, the penalty reduc-
tion corresponds to the difference between the final outbreak size at the end of the
simulation and the outbreak size at the time of detection. Finally, for the DL objec-
tive, the penalty reduction will be 1 if S detects the outbreak in scenario i, and 0
otherwise. Figure 1 illustrates the computation of the penalty reductions with two
simple examples.

The weighted penalty reduction (PR) for a given set of nodes S can then be written
as follows:

PR(S) =) wi - (mi(00) = mi(T (i, S))) )
i€l

Note that in the remainder of this paper we will assume that all outbreak scenarios i have
the same weight w; = ¢ for some constant ¢ > 0 and therefore the weights have no influ-
ence on the optimal solution.
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9 infected
nodes
i=1 : :
tr=0 T=10
8 infected 15 infected
nodes nodes
. | | |
i=2 1 1 1
t=0 t*=6 T=10
Fig. 1 Two outbreak scenarios. In the first scenario (i = 1), the outbreak is not detected by S. The penalties
for the DT, PA, and DL objectives are 10,9, and 1, respectively. Obviously, the penalty reductions will be 0 for
all three objectives. In the second scenario (i = 2), the outbreak is detected at t* = 6 and the penalties are 6,
8,and 0. The corresponding penalty reductions are 4, 7,and 1

Outbreak simulations

As mentioned before, we do not usually observe exact disease infection cascades. Hence,
we need to simulate a large set N = |Z| of possible spreading scenarios on which we will
optimize the set of nodes to be monitored. For the simulations, we randomly select a
seed node and the time the seed node starts infecting other nodes. We then use the SIR
propagation model with known parameters to generate the spreading scenario. Simulat-
ing spreading scenarios can be expensive in terms of computation time, especially for
networks with a large number of nodes or very dense networks (St-Onge et al. 2019).
Kiss et al. (2017) propose an event-driven algorithm for static networks. The key idea
is that, once a node is infected, we can directly sample i) all further transmission events
originating from this node and ii) the node’s recovery time. By contrast, traditional sim-
ulation methods would require sampling for every edge between susceptible and infec-
tious nodes and for all possible time steps after a node is infected. In general, this leads
to a much larger number of random draws from the sampling distributions than for the
event-driven approach. All transmission and recovery events are organized in a priority
queue, which is ordered by the time of the events. The simulation stops when no more
events are left in the priority queue. The event-driven algorithm has been extended to
temporal networks by Holme (2020) whose implementation we use in this paper.

The simulation results are organized as an inverted index as suggested by Leskovec
et al. (2007). For every node in the network, we store an identifier for each simulation
run that infects it as well as the corresponding penalty reduction. The inverted index is
ideal for fast lookups of penalty reductions by individual nodes.

Greedy optimization

Optimizing the penalty reduction function in (2) is NP-hard as the number of possi-
ble sets S of a given size k becomes extremely large even for small graphs (Krause and
Golovin 2014). As an example, consider a graph with 50 nodes. If we want to find a set
of k = 10 nodes that maximizes the expected penalty reduction, we would have to evalu-
ate over 10 billion different sets. It is obvious that this problem becomes intractable very
quickly. However, it can be shown that the penalty reduction function in (2) has some
nice properties (Leskovec et al. 2007): it is O for empty node sets (PR() = 0) and it is
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monotone and submodular. A set function F is monotone if for any two sets of nodes A
and B with A C B C V, it holds that F(A) < F(B). Furthermore, F is submodular if it

satisfies
F(AU{v})) —F(A) = F(BU{v}) - F(B) . (3)

for v € V'\ B. Intuitively, submodularity implies diminishing marginal returns, i.e., the
marginal contribution of a new node v is larger when added to a smaller set .A compared
to a larger set B. A famous result by Nemhauser et al. (1978) states that non-negative
monotone and submodular set functions can be greedily optimized and will yield a solu-
tion that is within (1 — 1/e) of the optimal solution. In other words, the greedy solution
of the penalty reduction functions will be guaranteed to be within 63% of the optimal
(intractable) solution.

The greedy algorithm is simple and iteratively adds the node providing the largest
marginal increase in the penalty reduction to the monitoring set and stops when the size
of the set reaches k. In the most basic implementation, we would recompute all marginal
gains at every step of the iteration, resort them and pick the node with the highest mar-
ginal gain. However, Leskovec et al. (2007) have shown that lazy forward evaluations (cf.
Related work) allow us to avoid recomputing all marginal gains at every step, which can
improve the running time significantly. We propose to use a binary heap data structure
to facilitate the greedy optimization procedure and to avoid expensive resortings of mar-
ginal gains (Cormen et al. 2009). Algorithm 1 outlines our implementation of the greedy
optimization algorithm with lazy forward evaluations for the DL objective. The algo-
rithm can be easily adapted to the other objectives. Note that the functions up- heap and
down- heap are standard utility functions of a max-heap implementation and the heap is
sorted according to the marginal gains of nodes that are stored in an array G[ ] of length
| V]. We implemented the whole approach in C and the code is available on GitHub.!

! https://github.com/martinSter/epi-outbreak-detection.
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Algorithm 1 Greedy optimization with binary heap (DL objective)
Input: Set of nodes V' with v € V, size of monitoring set k, number of simulations

N, inverted index I containing for each node v an array id, I[v].id[ |, where id
contains the outbreak IDs 4 that v detects (0 < i < N —1).
Output: Greedily optimized set S of size k.

1: Initialize S = 0, empty array of marginal gains G[ ] of length |V, zero-initialized
array of penalty reductions per outbreak P[] = {0} of length N, empty array for
binary heap HJ | of length |V|, number of elements in heap nheap = 0, current
root of heap r.

2: for all v € V do

3: Compute marginal gain: G[v] = len(I[v].id[ ]) (for DL objective, this is simply
the number of detected outbreaks).

4 Add v to heap, H[nheap| = v, and increment counter, nheap += 1.

5: Insert node v at correct position in heap: up-heap(v).

6: end for

7: while |S| < k do

8: Get current root of heap: r = H[0]

o: Set marginal gain of r to 0: G[r] =0

10: for all i € I[r].id] ] do

11: if P[i] == 0 then

12: If outbreak ¢ is not yet detected: G[r] +=1

13: end if

14: end for

15: Insert root 7 at correct position in heap: down-heap(r)

16: if H[0] == r then

17: If r is still the root of the heap: S.add(r)

18: for all i € I[r].id] ] do

19: Set all detected outbreaks to 1: P[i] =1

20: end for

21: Remove root r and restore max-heap property (i.e., down-heap new root).

22: end if

23: end while

24: return S

Heuristic alternatives

In the sections below, where we present the results, we will compare the outbreak detec-
tion performance of the greedy optimization approach to simple heuristics where we
select monitoring nodes based on structural properties. The following heuristics will be

used:

Degree

Under certain conditions (cf. Related work), selecting high-degree nodes for monitor-
ing seems to be a good strategy for efficient outbreak detection (Holme 2018; Colman
et al. 2019). Note that we define the degree of a node as the number of distinct neighbors
during some specified period of time. The degree is a popular centrality measure in the
context of static networks, but its application is not limited to static networks and can be
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Table 1 Average run time (and standard deviation) in seconds of the simulation
of the outbreak scenarios and the greedy optimization for all three objectives
and different minimal outbreak sizes

Minimal outbreak size

1 2 5
Example 1
Simulations 85.81s (6.24) 127.02s (4.40) 202.83s (6.55)
Greedy opt. 0.89s (0.02) 7.615(0.28) 17.00s (0.08)
Example 2
Simulations 17.79s (0.61) 21.575(1.01) 161.18s (1.71)
Greedy opt. 0.04s (0.01) 0.09s (0.07) 0.18s (0.01)

Run times are averaged over 5 runs. For Example 1, we simulate 5 million scenarios and for Example 2, we simulate 1 million
scenarios. All experiments were run on a Intel Core i7 machine (1.80 GHz) with 16 GB RAM

easily extended to temporal settings. For directed networks, we define the in-degree of a
node i as the number of distinct neighbors with edges pointing to i. Similarly, we define
the out-degree of a node i as the number of distinct neighbors node i points to.

Number of contacts

We can also count the total number of contacts of a node during a specified period of
time. This is referred to as the strength of a node (Holme 2018). Nodes can be very dif-
ferent in terms of degree and number of contacts. For example, if a node is frequently in
contact with one other node, then its degree will be 1 but its total number of contacts
can be very high. Similarly to the definition of in- and out-degrees, we can distinguish
in- and out-links for directed networks.

Example 1: sexually transmitted infections

In the first example, we consider the spread of sexually transmitted infections (STIs).
We use a dataset of timestamped sexual contacts between sex workers and their cli-
ents, which is widely used in research on temporal contact networks (Rocha et al. 2011;
Valdano et al. 2015; Holme 2018; Antulov-Fantulin et al. 2015). The network is undi-
rected and bipartite and contacts are reported on a daily basis. This rather low temporal
resolution means that the order of contacts within a day is not known. We thus assume
that consecutive transmissions must be strictly increasing in time. The full dataset cov-
ers a period of 6 years from September 2002 to October 2008. We will focus on the last
3 years of the dataset and consider yearly periods. That is to say, we will optimize node
selection on a year’s worth of data. The 3-year network consists of 8220 sex-buyers and
5549 sex-sellers and thus 13, 769 nodes overall. A total of 40, 440 timestamped sexual
contacts have been registered during this 3-year period (11, 189, 14, 399, and 14, 852, for
each year respectively). The most active sex-seller is active 424 times during this 3-year
period, while the most active sex-buyer totals 128 contacts in the same period.

For the simulation of the spreading scenarios, we use the SIR model with infection
probability 8 = 0.3 and an average recovery time of 4~! = 100 days. These parameter
values are in accordance with related work on STIs (Rocha et al. 2011; Antulov-Fantulin
et al. 2015). Average run times of the simulations and the greedy optimization are given
in Table 1.
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Comparison of all optimization objectives

We greedily optimize the set of monitoring nodes for all three objectives on a year’s
worth of data and call this the training phase. For this training phase, we simulate 5 mil-
lion outbreak scenarios. As mentioned earlier, an outbreak is defined as a spreading pro-
cess including at least one transmission of the disease between any pair of nodes. This
is equivalent to a minimal outbreak size of 2. For the testing phase, we generate another
10, 000 outbreak scenarios (again with a minimal outbreak size of 2) either on the same
period as for the training phase or on another period. In this subsection, we will train
and test on the same period (year 3) and compare the relative performance of all three
objectives. Results for other years are similar. We set k = |V, that is, we optimize over
the whole sequence of nodes in the network. Then, we sequentially compute the penalty
reduction for the outbreak scenarios in the test set. The penalty reduction correspond-
ing to the monitoring set of size k = |V| (i.e., all nodes are monitored) is the maximal
possible penalty reduction, i.e., PR(V). Hence, for any monitoring set S of size k < | V|
we can compute a relative penalty reduction, rPR, as the fraction of the current penalty
reduction and the maximal possible penalty reduction, that is,

PR(S)
PR(V) "

rPR(S) =

Note that for the DL objective, the maximal possible penalty reduction is simply 10, 000
and the relative penalty reduction is thus equivalent to the fraction of detected scenar-
ios. In Fig. 2 we plot the relative penalty reduction (rPR) for the greedy approach and the
heuristic benchmarks. We plot the curves only for the top 200 nodes as this may corre-
spond to the size of a realistic monitoring set that matches actual monitoring resources.
As expected, the greedy curves for all three objectives are monotonically increasing but
with diminishing marginal gains. For the DL objective (Panel (a)) we can see that the
likelihood of detecting an outbreak with a monitoring set of 200 nodes is approximately
52%. What stands out is that for the PA objective (Panel (c)) we achieve a large pen-
alty reduction very quickly with 75 nodes covering 80% of the maximal possible penalty
reduction. Hence, the first few monitoring nodes for the PA objective seem to be part
of the more densely connected part of the network where larger outbreaks happen and

large penalty reductions are possible.
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Fig. 3 Comparison of three objectives and degree heuristic (Example 1). a Venn diagram representing the
overlap of the top 200 nodes for the three different objectives. b Overlap of the three objectives with the
degree heuristic (measured as the size of the intersection divided by k) for increasing k

Comparison with heuristic benchmarks
In Fig. 2, we also compare the greedy optimization approach to two simple bench-
marks (as introduced above): (1) monitoring nodes with high degree and (2) monitor-
ing nodes with the most contacts. In addition, we show results for a random baseline,
where randomly chosen nodes are incrementally added to the monitoring set. The
three Panels show the results for the DL, DT, and the PA objective, respectively. For
the DL and the DT objective, the difference between the benchmarks and the greedy
procedure is generally small but widens slightly with a larger monitoring set. For
example, the detection likelihood of the degree heuristic for kX = 200 is roughly 49% as
compared to the 52% of the greedy approach. In contrast, for the PA objective there is
almost no difference between the greedy procedure and the benchmarks, which indi-
cates that central nodes provide the largest penalty reductions for the PA objective.
Panel (a) of Fig. 3 shows the overlap of the node sets chosen according to the three
objectives. Interestingly, the three optimal node sets share a total of 129 nodes (65%).
Panel (b) plots the overlap of the three optimal node sets and the 200 most central
nodes (degree heuristic) as a function of k. We can see that, especially in the begin-
ning, the PA and the DT objective have a higher overlap with the degree heuristic
than the DL objective. For k = 200, the node set optimized with respect to PA con-
tains 83% of the top degree nodes. In contrast, the overlap for the DL and DT objec-
tive is 69% and 71%, respectively. Overall, the PA objective chooses more high degree
nodes than the other two objectives. A possible explanation for this may be that cen-
tral nodes are located in the larger connected components where larger outbreaks
and therefore larger penalty reductions are possible.

Training and testing on different periods
All previous results use the same period for the training and the testing phase. How-
ever, in a realistic setting we will have to optimize the set of nodes on past data and
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hope that the monitoring set will also perform well on future data. We presume that
the generalization to future data will be better if the network exhibits some regu-
larities or some backbone that does not change much over time. Panels (a), (b), and
(c) in Fig. 4 present the results for the DL, the DT, and the PA objective, respec-
tively. As expected, training and testing on the same period (year 3) always outper-
forms training and testing on different periods. The figures also reveal that training
on a period that is closer to the testing period (year 2 vs. year 1) is better in terms
of penalty reduction. The dashed lines show the performance of selecting nodes
by degree during the training phase. Panel (a) in Fig. 5 shows the overlap of edges
between different (yearly) periods. For this analysis, we ignore the temporal informa-
tion of edges and simply compare the static sets of edges E; with the set of (static)
edges in previous years, e.g., E;_1. The overlap is measured by the Jaccard index
J(Et, Et—1) = |[Ef N E;—1| / |E¢ U E¢_1|. From the figure, it can be seen that the overlap
is larger for consecutive years, which accords with the results in Fig. 4. The overlap
between year 1 and 3 is less than one third of the overlap between year 1 and 2 or
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Fig. 6 Effect of minimal outbreak size (Example 1). a Relative penalty reduction for the DL objective and
different minimal outbreak sizes (MOS). b Relative penalty reduction for the DT objective and different MOS. ¢
Relative penalty reduction for the PA objective and different MOS

year 2 and 3. Overall, however, the overlap between periods is small, which may be
the result of the nature of this network that seems to exhibit only a small degree of
organization.

Minimal outbreak size

The results thus far are based on outbreak simulations that require at least one trans-
mission of the disease. We can parameterize this by defining a minimal outbreak size
(MOS). The higher the MOS, the more we bias the set of outbreak scenarios towards
large outbreaks. For a minimal outbreak size of 1, the average outbreak size of the
10, 000 simulated outbreaks during the testing phase is 1.65 and the maximal outbreak
affects 207 nodes. For a minimal outbreak size of 2 (this corresponds to the setting that
we have considered so far), the average outbreak size is 10.75 and the maximal outbreak
size is 313. Finally, for a minimal outbreak size of 5, the average outbreak size is 25.88
and the maximal outbreak size is 347. It is obvious that the performance of the outbreak
detection methods is strongly affected by the way we simulate the outbreak scenarios.
If we bias them towards larger outbreaks, then the detection performance will be better
as large outbreaks occur in the more connected part of the network where the highly
central nodes will catch many of them. This is illustrated in Panels (a)—(c) in Fig. 6. The
effect of a larger MOS is more pronounced for the DL and the DT objective than for the
PA objective. This is a direct consequence of the PA objective: the largest penalty reduc-
tions can be achieved for large outbreaks. Hence, even for a minimal outbreak size of
1, the greedy optimization procedure is going to focus on the nodes that catch the few
large outbreaks early on.

Example 2: animal disease spreading

In the second example, we consider reported pig movements in Switzerland during
the year 2017 (Sterchi et al. 2019). The movements are reported as directed transports
between two animal holdings and contain a timestamp that indicates the day of trans-
port. All movements to slaughterhouses are discarded, as the goal is to monitor farms
and catch outbreaks before the final transport to the slaughterhouse. One movement is
not necessarily equivalent to one direct transport between the two holdings, but may
be part of a tour where multiple different herds of pigs are transported together. Here,

we restrict our focus to disease transmission through introduction of new animals in an
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Fig. 7 Relative penalty reductions (rPR) and comparison with benchmarks (Example 2). a Relative penalty
reduction for DL objective. The x-axis represents the size of the monitoring set k. We only plot the curves for
the top 200 nodes. Since the network is directed, we compare with both the in- and out-degree heuristic
as well as the in- and out-links heuristic. b Relative penalty reduction for DT objective. ¢ Relative penalty
reduction for PA objective

animal holding and neglect possible transmissions between herds during the transport.
In line with (Bajardi et al. 2012), within-farm dynamics are ignored and a movement is
regarded as a directed contact potentially transmitting a disease from one farm to the
other. We consider monthly networks because a period of 30 days has been considered
especially important for animal movement networks (Dubé et al. 2008; Noremark et al.
2011). This duration corresponds to the silent spread phase, which is typically the maxi-
mum time a disease can spread before incidental detection. The full dataset (1 year) con-
tains 6, 664 nodes and 48, 980 directed edges. The monthly networks contain on average
4, 082 edges. The most active node is involved in 615 recorded movements over the
course of the year.

As in Example 1, we use a SIR model to simulate the spreading scenarios. In accord-
ance with related work (Bajardi et al. 2012; Valdano et al. 2015; Schirdewahn et al. 2017),
we simplify the spreading process by assuming that the infection probability 8 does
not depend on the size of the herd that is transported. We use a rather high infection
probability of 8 = 0.6 that takes into account the nature of the contact, which is more
prone to transmission (multiple possibly infected pigs get introduced into a susceptible
farm) than for example in the case of human disease spreading. Note that (Bajardi et al.
2012; Valdano et al. 2015) use even higher infection probabilities (see their supplemen-
tary material). The average time until recovery we use is A~! = 7 days as in Bajardi et al.
(2012). Note, however, that in Bajardi et al. (2012) the time until recovery is determinis-
tically set to 7 days, whereas we use the stochastic version where the time until recovery
stochastically varies around the average value of 7 days. Average run times of the simula-
tions and the greedy optimization are given in Table 1.

Comparison of all optimization objectives

As mentioned above, the relevant time period we study in this example is 1 month. All
results below show the results for the month of December. Results for other months are
similar. Since the network of animal movements is smaller than the network in Exam-
ple 1 and we consider a shorter period of time (1 month vs. 1 year), we only simulate
1 million outbreak scenarios for the training phase. As before, we focus on a minimal
outbreak size of 2, i.e., there must be at least one transmission of the pathogen from
one animal holding to another. For the testing phase, we again simulate 10, 000 outbreak
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scenarios and we only present results for the top 200 nodes. Panels (a)—(c) in Fig. 7 show
the greedy curves for the three objectives. In contrast to Example 1, the relative pen-
alty reduction for the DL objective is higher than for the other two objectives. As we
will show below, the outbreak sizes are considerably smaller and less skewed to the right
in this Example as compared to Example 1. As a result, it is harder to optimize the PA
objective since smaller outbreaks that are harder to detect contribute comparatively
more to the overall penalty reduction. Based on the DL curve we can say that the overall
likelihood of detecting an outbreak given a monitoring set of 200 nodes is about 44%.

Comparison with heuristic benchmarks

If we compare the greedy optimization method with the heuristic benchmarks for the
three objectives, we get an interesting result. For the DL and DT objective (Panel (a)—(b)
in Fig. 7), the best heuristics select nodes based on their in-degree or the number of in-
links. For the PA objective (Panel (c)), the opposite is the case: the best heuristic consists
of selecting nodes with high out-degree or number of out-links. The reason for this is
that high in-degree nodes (or nodes with many in-links) are in general more likely to
catch outbreaks originating at different seed nodes, which crucially contributes to the
DL objective. By contrast, monitoring nodes with a large out-degree (or many out-links)
will lead to large penalty reductions for the PA objective since outbreaks with a large
spreading potential are caught at the beginning of the spread. Even though this result
seems somewhat trivial, it is important and shows that, especially in the case of directed
networks, different objectives lead to different sets of optimal nodes.

Panel (a)—(c) in Fig. 8 confirm the finding from the previous paragraph. The overlap of
nodes between the three objectives (54 nodes) is far smaller than in Example 1 and more
than half of all nodes selected by the PA objective (102 nodes) are not selected by the
other objectives (Panel (a)). We can also see that the DL and to a lesser degree the DT
objective share nodes with the in-degree heuristic (Panel (b)) whereas the PA objective

shares a lot of nodes with the out-degree heuristic (Panel (c)).

Training and testing on different periods
Since we use monthly networks in this example, we use 12 networks (January—Decem-
ber) for the training phase and test the results on outbreaks simulated on the December
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Fig. 9 Training and testing on different periods (Example 2). a Relative penalty reduction for the DL objective
and different training periods. Testing is always done in December. b Relative penalty reduction for the

DT objective and different training periods. c Relative penalty reduction for the PA objective and different
training periods

network. Panels (a)—(c) in Fig. 9 show the results for the DL, the DT, and the PA objec-
tive, respectively (for visual clarity, we only plot the interesting curves). What is striking
is that using the August or the April network seems to be better, especially for the DL
objective, than using the November network, which would be closer to the testing phase
in terms of time. This indicates that there are some sort of 4-month seasonal patterns
in the networks, a result that has been found in our previous work as well (Sterchi et al.
2020). A possible explanation for this somewhat surprising result may be the production
cycle that is inherent to the Swiss pig industry and which may be related to the length of
the gestation period of pigs (~ 4 months).

Panel (b) in Fig. 5 shows the overlap matrix for Example 2. From the matrix, it can be
seen that the overlap is almost consistently highest between month ¢ and month ¢ — 3.
For example, the Jaccard index assumes its highest value (0.22) between December and
August and between August and April. This is in accord with our observations above.
Overall, we can say that the overlap between periods is generally larger compared to the
sexual contact network in Example 1, which may be due to the higher degree of organi-

zation and coordination in this system.

Minimal outbreak size
We have noted above that the way we simulate the outbreak scenarios can strongly
impact the performance of the different outbreak detection objectives. Here, we also use
different minimal outbreak sizes (MOS). If MOS = 1, the average outbreak size for the
evaluation data (10, 000 outbreaks) is 1.06 while the maximal outbreak for this setting
affects 7 nodes. If we require at least one transmission (minimal outbreak size of 2), then
the average outbreak size increases to 2.25 with a maximal outbreak size of 14. For a
minimal outbreak size of 5 nodes, the average outbreak size is 6.03 and the largest out-
break affects 21 nodes. The outbreak sizes are considerably smaller than in Example 1,
which has multiple reasons. First, we only consider periods of 1 month as compared to
yearly periods. Second, the spreading process is strongly limited by the short average
recovery time of A~! = 7 days. Finally, the directed nature of the network restricts dis-
ease transmissions more strongly than the undirected network in Example 1.

Panels (a)—(c) in Fig. 10 show the performance of the greedy approach for the DL, the
DT, and the PA objective, respectively. In all three graphs, the performance is consid-
erably better if we require outbreaks of 5 or more nodes. In that case, it is enough to
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Fig. 10 Effect of minimal outbreak size (Example 2). a Relative penalty reduction for the DL objective and
different minimal outbreak sizes (MOS). b Relative penalty reduction for the DT objective and different MOS. ¢
Relative penalty reduction for the PA objective and different MOS

monitor 100 nodes in order to catch all of the 10, 000 outbreaks (DL objective). For the
PA objective, we observe that the performance of minimal outbreak sizes of 1 and 2 are
very similar and thus the larger outbreaks with large penalty reductions must be very

similar for the two configurations.

Discussion and conclusion

The aim of this paper is to extend the greedy optimization method for outbreak detec-
tion (Leskovec et al. 2007) to the setting of disease outbreak detection on temporal
contact networks. We focus on the same three objectives as in Leskovec et al. (2007):
maximizing the detection likelihood, minimizing the time until detection, and minimiz-
ing the population affected by an outbreak. These three objectives can be shown to be
submodular. Finding the optimal set of nodes that maximizes or minimizes these objec-
tives would be NP-hard. However, due to the submodularity property we have theoreti-
cal guarantees that the solution found by greedy optimization is a good approximation
to the theoretical optimum.

We used two temporal contact networks to evaluate the greedy approach and to com-
pare it to heuristic benchmarks based on the centrality of a node. One dataset contains
sexual contacts and thus represents a possible scenario for the spread of STIs. The other
dataset represents directed contacts between Swiss pig farms and may be relevant for
the spread of infectious diseases among animals, such as the foot-and-mouth disease
(FMD) or African swine fever (ASF). In line with the related work (Rocha et al. 2011;
Bajardi et al. 2012; Holme 2018; Colman et al. 2019; Schirdewahn et al. 2017; Antulov-
Fantulin et al. 2015), we use a SIR model, which, in most cases, corresponds to a strong
simplification of the true processes at work. Note however, that our approach is not con-
strained by the assumption of a SIR model and it is straightforward to adapt it to any
propagation model that can be simulated efficiently.

The results in this paper show that selecting nodes for surveillance based on the
greedy optimization approach performs at least as well as the heuristic methods and
sometimes even slightly better. However, heuristics such as selecting high-degree nodes
are computationally much cheaper and therefore provide a valuable alternative to the
optimization-based approach. This corroborates earlier findings in influence maximiza-
tion (Budak et al. 2011). Moreover, the degree heuristic has been shown to perform well
by Holme (2018) for small outbreaks and by Colman et al. (2019) for static networks
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with small modularity and high degree heterogeneity. This brings us to another impor-
tant implication of the greedy approach. It may outperform degree-based heuristics by
a larger margin for highly modular networks, especially for the DL objective. However,
more work is required to establish the connection between the network structure and
the optimization-based selection of monitoring nodes. Another important aspect noted
by Holme (2018) is that the degree of a node (or the number of links) is a local measure
and estimating it does not require knowledge of the network. The fact that the heuristics
are comparable in performance to the greedy optimization approach is promising and it
can thus be suggested that efficient outbreak detection is possible with limited computa-
tional resources and does not require knowledge of the full network structure.

An interesting aspect of our results is that the type of nodes chosen for surveillance
depends strongly on the type of network we consider. For the undirected network of
sexual contacts, the node sets selected according to the three objectives overlap strongly
and high-degree nodes seem to be crucial for all objectives. On the other hand, we
observe very dissimilar node sets for the directed network of pig transports. Nodes that
satisfy the PA objective (large out-degree) are different from nodes satisfying the DL and
DT objective (large in-degree). This may have to do with the structure of the Swiss live-
stock industry, which is organized in a hierarchical and decentralized way where farms
specialize on a specific task in the production process (Sterchi et al. 2019). As a result,
farms at the beginning of the production process tend to have a large out-degree and
are different from farms at the end of the production process typically exhibiting a large
in-degree.

Another important point is that optimizing node selection on past time periods and
applying the set of selected nodes for outbreak detection on future time periods may
not work well for networks that have strong structural variations between periods. For
example, the sexual contact network has a very small overlap in edges between periods
that may be due to a lack of organization in this system. Valdano et al. (2015) describe
this as a “lack of an intrinsic cycle of activity characterizing the system.” On the other
hand, the animal movement network exhibits larger overlaps between periods, indi-
cating a more organized system. While for the sexual contact network, selecting nodes
based on a period that is close to the testing period works best, the animal movement
network exhibits seasonalities that suggest selecting nodes in period ¢t — 3 for monitor-
ing in t. More research should be undertaken to investigate whether or not we can fur-
ther optimize node selection on past data by optimizing on different past periods and
possibly aggregating results over different time periods.

A further implication of this study is that the creation of the set of (realistic) outbreak
scenarios is not as straightforward as it seems. We introduced a minimal outbreak size
in order to set a lower bound for the size of an outbreak. However, this results in a heav-
ily skewed distribution of outbreak sizes as a large portion of the outbreak scenarios will
exhibit the minimal outbreak size. By increasing the minimal outbreak size we can force
the simulation approach to generate larger outbreaks, which will improve the detection
performance as demonstrated in this paper. This implies that the detection performance
of the greedy approach and the heuristics is strongly affected by the way we simulate
outbreaks (mostly in terms of size). Future work on defining and creating representative
sets of realistic outbreak scenarios is needed.
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Taken together, the findings of this study suggest that the optimal nodes for outbreak
detection are often the highly central nodes in the network because they are either
infected early on or they are the origin of a potentially large outbreak themselves. Fur-
thermore, the question which past period should be used to select nodes for future out-
break detection depends on the degree of organization a system exhibits but also on
seasonal patterns. The findings of our paper may be somewhat limited by the fact that
we only consider two example networks and one specific spreading process, namely a
SIR model. To develop a full picture of the greedy optimization approach for outbreak
detection and its comparison to heuristics, additional studies are needed that examine
its performance over a range of parameter values and for different network structures
and spreading models.
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