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Abstract 

Introduction:  The objective of this study is to show the importance of interspecies 
links and temporal network dynamics of a multi-species livestock movement network. 
Although both cattle and sheep networks have been previously studied, cattle-sheep 
multi-species networks have not generally been studied in-depth. The central ques‑
tion of this study is how the combination of cattle and sheep movements affects the 
potential for disease spread on the combined network.

Materials and methods:  Our analysis considers static and temporal representations 
of networks based on recorded animal movements. We computed network-based 
node importance measures of two single-species networks, and compared the top-
ranked premises with the ones in the multi-species network. We propose the use of a 
measure based on contact chains calculated in a network weighted with transmission 
probabilities to assess the importance of premises in an outbreak. To ground our inves‑
tigation in infectious disease epidemiology, we compared this suggested measure with 
the results of disease simulation models with asymmetric probabilities of transmission 
between species.

Results:  Our analysis of the temporal networks shows that the premises which are 
likely to drive the epidemic in this multi-species network differ from the ones in both 
the cattle and the sheep networks. Although sheep movements are highly seasonal, 
the estimated size of an epidemic is significantly larger in the multi-species network 
than in the cattle network, independently of the period of the year. Finally, we demon‑
strate that a measure based on contact chains allow us to identify around 30% of the 
key farms in a simulated epidemic, ignoring markets, whilst static network measures 
identify less than 10% of these farms.

Conclusion:  Our results ascertain the importance of combining species networks, as 
well as considering layers of temporal livestock movements in detail for the study of 
disease spread.

Keywords:  Livestock movements, Multi-species, Network analysis, Temporal network, 
Stochastic simulations
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Introduction
Infectious diseases in livestock are of great concern as they pose an economic burden, 
compromise animal health and welfare, and threaten human health by contributing to 
the emergence of new zoonotic diseases. Mathematical models of infectious disease 
spread are useful tools to help us understand the drivers of an outbreak, and inform 
policy decisions. In a world where pandemics are becoming more likely (Morse 2001; 
Jones et al. 2008; Madhav et al. 2017), the usefulness of modelling techniques is well rec-
ognised (Colizza et al. 2007; Dye and Gay 2003; Lessler et al. 2014). Presently, models of 
infectious disease spread at a population scale are typically based on two phenomena: (i) 
the infection dynamic, which depends on the characteristics of the disease itself (trans-
mission rate, infectious period, etc.), and (ii) the contact patterns allowing for disease 
transmission, depending on the transmission routes of the disease.

Here our interest is in the transmission of infectious livestock diseases, where the 
movements of live animals between farms are known to be one of the main transmis-
sion routes (Fèvre et al. 2006). Better knowledge and understanding of contact patterns 
is a key element for building realistic and useful models. However, detailed models can 
be computationally costly, and require a substantial amount of data in order to be fitted 
properly.

When outbreaks occur, policy makers need rapid and robust information to define 
their strategy and support decisions at the early stages of the epidemic, when data are 
still limited. A better understanding of the structure of the livestock movement network 
and its characteristics is therefore useful, both to understand their role in the spread of 
endemic diseases such as bovine Tuberculosis (Boehm et al. 2009; Palisson et al. 2016; 
Brooks-Pollock et  al. 2014; Green et  al. 2008), or BVD (Tinsley et  al. 2012)), and to 
inform policies to control a newly introduced disease in an early stage. The 2001 FMD 
epidemic provided considerable incentive to study and use livestock movements for 
network analysis (Ortiz-Pelaez et al. 2006; Christley et al. 2005; Kao et al. 2006; Robin-
son and Christley 2007; Robinson et al. 2007; Kiss et al. 2006; Vernon and Keeling 2009; 
Volkova et al. 2010). Analysis of contact networks has proven useful to help identify key 
actors in terms of disease spread.

Although most infectious diseases can affect several host species (Taylor et al. 2001), 
network analysis studies have generally focused on single species contact networks. 
Notable exceptions include Boehm et  al. (2009), Nöremark et  al. (2011), Kao et  al. 
(2006), and Mohr et al. (2018). Practically, aggregation of movement data from different 
species is often difficult, because (i) data are recorded separately, often stored in differ-
ent databases, and possibly managed by different administrative authorities; and (ii) the 
databases might have different formats or contain different levels of information, and 
therefore need to be homogenised before use.

The cattle and sheep farming systems are strongly linked in Scotland, because on 
approximately half of the cattle farms, sheep are also raised. This allows ample oppor-
tunity for transmission of diseases between the two species, with FMD and bluetongue 
virus (BTV) being notable examples of diseases affecting both species. As a conse-
quence, mixed-species farms can link groups of farms that would not be in contact in 
the network if the species were considered separately. From the network point of view, 
this might also have consequences for metrics describing the general structure, as well 
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as the ranking of importance of nodes. It is therefore crucial to explore the multi-species 
network in order to highlight and quantify potential consequences for disease risk.

Livestock movement network analyses have been performed mostly on static net-
works, where most analytic results are available (Newman 2018). A static network 
assumes that the change in the set of contacts are negligible over the course of the epi-
demic (Enright and Kao 2018). In reality, livestock movements have an inherent tempo-
ral component, that are highly relevant to transmission, as they occur on a daily basis 
and constitute discrete events. As well as being intermittent, movements of livestock 
are not necessarily consistent over time (Bajardi et al. 2011). A number of studies have 
shown that dynamic network analyses of livestock movements outperform those from 
static network analyses, when the aim is an in-depth understanding of disease spreading 
processes (Lentz et al. 2016; Vidondo and Voelkl 2018; Rossi et al. 2017), or predictions 
of epidemic risks (Valdano et  al. 2015). The study of the dynamics of the cattle-sheep 
network in Scotland is of interest, because as well as the general dynamics of livestock 
networks we consider two farming systems which have distinct seasonalities and varying 
trading behaviours, and the interaction between these systems.

The aim of this work is to understand how the sheep and cattle movement networks 
interact, and the implication for understanding disease spread. We first analyse the 
static movement networks, and compare the results of the single- and multi-species net-
works. Secondly we analyse and compare the cattle, sheep, and multi-species dynamic 
networks. Finally, we compared results of the static and dynamic network analyses with 
a disease simulation model explicitly incorporating the temporal dynamics of the net-
work. The dynamic network analysis exhibited important differences between the single-
species and the multi-species networks, providing evidence that the premises driving 
epidemics would not be the same in the single-species and the multi-species networks. 
These results would have important consequences for disease control. In addition, we 
showed that dynamic network measures outperform static network measures to identify 
the most important farms in the network.

Materials and methods
Cattle movement data were obtained from the Cattle Tracing System (CTS), Ani-
mal Plant and Health Agency (APHA), and sheep movement data were retrieved from 
ScotEID, the livestock traceability system for Scotland managed by the Scottish Agricul-
tural Organization Society (SOAS) on behalf of the Scottish Government. We consid-
ered movements within Scotland only: between premises, which can be farms, markets 
or shows. Our interest is in the control of an outbreak after introduction, and therefore 
movements to or from outside of Scotland were ignored. Births, deaths, and movements 
to slaughterhouses were also ignored, because the length of the period considered in the 
study (i.e. four weeks) is short compared to the turnover in the population. Some charac-
teristics of the data are summarised in Table 1.

Overall the sheep population is larger accounting for 6.83 million heads, while the 
cattle were 1.76 million. There were slightly more sheep farms than cattle farms; of 
these, 6,039 farms raised cattle and sheep on the same premises (i.e. 50% of the sheep 
farms, and 56% of the cattle farms). In addition to the farms, the data include 26 auction 
markets.
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We constructed networks by considering each premises as a node, and animal move-
ments between two premises as a directed link. If one movement of an animal between 
two premises occurred during the period considered, we assigned a permanent link 
between these two premises in the static network. The links were weighted depending 
on the number of animals moved and the probability of an animal being infected:

where µ is the probability of an animal being infected, and n the number of animals 
moved. The probabilities depend on the type of movement and the species. We used the 
parameter values estimated by Kao et al. (2006) in the 2001 FMD epidemic in GB:

µ1 = 0.02 for a sheep movement between two farms;
µ2 = 1 for a cattle movement between two farms;
µ3 = 0.004 for a sheep movement from a market;
µ4 = 0.02 for a cattle movement from a market.

These weights are relevant for an infectious disease similar to FMD, where the infec-
tiousness of sheep is lower than that of cattle (Geering 1967; Gibson and Donaldson 
1986; Sørensen et al. 2000; Ferguson et al. 2001).

In the dynamic network each link was annotated with a time variable equal to the date 
of the animal movement (i.e. we assume these movements occur on a single day).

Static network analysis

We considered the static networks in successive 4-week periods. This allows us to high-
light (i) short-term changes in the network structure, which would be relevant for the 
control of a fast-spreading disease, and (ii) temporal variation according to the season. 
Livestock movements are generally seasonal, depending on the species and type of pro-
duction. In Scotland the cattle network typically shows two peaks; the largest is observed 
in spring, and the second largest in autumn (Robinson and Christley 2006), whereas the 
sheep network has one main period of high trading activity around September (Kiss 
et al. 2006). These peaks can be seen in Fig. 1, which shows the number of cattle and 
sheep moved in each 4-week period of the year. The combined network is represented in 
Fig. 2, during the Spring and the Autumn peak, 5th adn 10th 4-week periods of the year 
respectively.

(1)1− (1− µ)n

Table 1  General characteristics of the setting in figures

The number of nodes describe the total number of farms raising cattle or sheep reporting at least one animal movement 
during 2016. The number of movements (batches), the total number of animal moved per species, as well as the headcount 
of cattle and sheep in Scotland are shown. The number of distinct movements correspond to the number of unique pair of 
origin and destination in each network

Network Nodes Movements Animals moved Distinct 
movements

Cattle [mixed] 10,731 [6,039] 89,963 591,933 33,271

Sheep [mixed] 12,078 [6,039] 67,453 2,406,062 26,514

Multi-species 16,758 – – 53,051
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We examined the overall characteristics of each network by calculating the average 
path length, clustering coefficient, edge density, component structure (number of com-
ponents and sizes of the giant strongly and weakly connected components (GSCC and 
GWCC respectively) and diameter (definitions in Table 2). These measures were calcu-
lated for the single-species networks and the multi-species network, for each 4-week 
period of the year 2016.

Fig. 1   Variation in volume of cattle and sheep movements. The graph shows the number of animals (axis on 
right), and the number of batches (axis on left) moved per species per 4-week period of the year

Table 2  Network analysis terminology

Measure Definition

Average Path Length Average length of the shortest path between all pairs of nodes of the 
network (Watts and Strogatz 1998)

Betweenness Frequency with which a node is in the shortest path between pairs of 
nodes (Freeman 1978)

Clustering Coefficient Number of triplets of nodes all connected to each other (closed triplets) 
over the total number of triplets in the network (Watts and Strogatz 
1998)

Component Subset of nodes of the network for which a path exists between any pair 
of nodes (Newman 2010)

Giant Weakly Connected Component Largest component of a directed network, when the directionality of 
edges is ignored (Newman 2010)

Giant Strongly Connected Component Largest subset of nodes for which a directed path exists between all 
pairs of them

Degree Number of links a node has (Freeman 1978)

Diameter Length of the shortest path between the two most distant nodes of the 
network (Wasserman and Faust 1994)

Edge density Proportion of links between nodes that actually exists in the network, 
calculated as the number of links, divided by the possible number of 
links (Wasserman and Faust 1994)

PageRank A variant of Eigenvector Centrality, primarily used for directed networks: 
measure of a node’s importance while giving consideration to the 
importance of its neighbors in a directed network (Newman 2010)
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We then calculated node centrality measures for all premises of the network, using 
the geometric mean degree, betweenness and PageRank (definitions in Table  2). In 
our case, degree centrality corresponds to the number of trading partners a farmer 
has. Because our network is directed, we differentiate in-degree (denoted degreein ), i.e. 
number of premises a farmer buys animals from, and out-degree (denoted degreeout ), 
i.e. number of premises a farmer sells animals to. The geometric mean of the degree 
√

degreein × degreeout  (denoted GM − Deg ), accounts for the risk of introducing the dis-
ease as well as spreading it further. Betweenness centrality is the frequency with which 
a premises is in the shortest path between pairs of premises in the network. Identifying 
high-betweenness premises is useful from a disease control point of view because these 
premises represent bridges, which can accelerate the epidemic by spreading diseases to 
previously unexposed communities of farms. PageRank centrality is based on an algo-
rithm used by Google to rank web pages in their search engine (Page et al. 1999). Pag-
eRank centrality can capture useful information relevant to diffusion processes, such as 
epidemics, in networks (Bucur and Holme 2019; Kandhway and Kuri 2017). Data manip-
ulation and analysis have been conducted in R (R Core Team 2019); the ‘igraph’ package 
(Csardi and Nepusz 2006) was used for the network analysis.

We used these measures to rank the premises in each 4-week period for the single-
species and multi-species networks respectively. The premises which showed the highest 
value (i.e. ranked first) was removed, and the measure was computed again. We focused 
on the top 100 premises in each network, and refer to these as the risky premises. These 
premises could be targeted for control strategies in the first stages of an epidemic.

We compared the set of risky premises from the multi-species network, with the set 
of risky premises in the cattle or sheep network by looking at the intersection. The size 
of the intersection in the set of risky premises between single-species and multi-species 
networks serves as a measure of how wrong one would be if considering only one spe-
cies or the other, instead of the combination of both in the context of an outbreak where 
both species would be involved in the epidemiology.

Dynamic network analysis

Livestock movements for trade are occasional and not necessarily recurrent over time. 
Animal movements occur and are recorded on a daily basis, giving the network a tempo-
ral dimension. Thus, it is a system where network dynamics are both likely to be impor-
tant and are well recorded. In the dynamic network, links are considered as an origin, a 
destination, and a date of occurrence. Two nodes are in contact if there exists a tempo-
rally logical path between them (see Fig. 3).

In order to assess the importance of premises in the dynamic network, we calcu-
lated temporal Outgoing Contact Chains (OCC) and Ingoing Contact Chains (ICC), 
which are derived from the reachability, as described by Holme (2005). Contact chains 
(CC) were used in the context of diseases in livestock systems by Dubé et al. (2008) 
under the name of infection chain. Here we used the method previously described 
by Konschake et al. (2013), where the OCC is defined as the number of premises that 
can be temporally reached from a primary infected node, considering an infectious 
period of k days. The ICC is the number of nodes from which a particular node can be 
temporally reached, accounting for the considered infectious period. We considered 
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an infectious period of seven days, consistent with a fast-spreading FMD-like disease. 
In other words, the OCC of a premises corresponds to the largest possible epidemic 
size if the outbreak started in this premises; and the ICC of a premises is proportional 
to its probability of being infected if an epidemic starts somewhere in the network. 
We used a method based on a Breadth-First-Search algorithm to calculate the contact 
chains for limited periods of four weeks. Starting from a designated node, we traverse 
the network by exploring all the neighbor nodes at the present depth prior to moving 

Fig. 2  Static network during the 5th and 10th periods of the year. Cattle movements are represented in 
blue, sheep movements in green. Nodes are represented by a pie chart where the light grey represents the 
proportion of outgoing movements, and the dark grey the proportion of ingoing movements. Built with 
Transmissiohttps​://www.gaelb​n.com/trans​missi​o

Fig. 3   An example of temporal paths. In this example there is a temporal path between node 1 and 3, if we 
consider an infectious period k, there is no path between 1 and 4. There is no temporal path between 1 and 
5, since the movement from 2 to 5 occurs prior to the movement from 1 to 2; if t3 − t0 < 28 days, node 1 and 
2 would be connected to 3, 4 and 5 in the static network

https://www.gaelbn.com/transmissio
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on to the nodes at the next depth level. We chose to compute the measure for a period 
of four weeks because: (i) we are interested in the early stage of the epidemic before 
the outbreak is detected and a movement ban applied; (ii) this makes our results com-
parable with the results of the static network analysis which had been performed for 
the same periods.

Unweighted in‑ and out‑going contact chains

We first considered unweighted links to avoid making assumptions about the charac-
teristics of the disease. This corresponds to the worst case scenario where the proba-
bility of transmission is certain given a link between premises. We compared the sets 
of risky premises according to the geometric mean of their contact chains ( GM − CC ), 
defined as 

√
ICC × OCC  , in the different networks, i.e. comparing the top hundred risky 

premises in the single-species network and the multi-species network. This measure has 
been proven useful to assess the infection potential for fast spreading disease (Rossi et al. 
2017). We also looked at the changes in the set of risky premises according to geometric 
mean degree and geometric mean contact chain sizes for the same network, to under-
stand the difference between considering a static or dynamic network.

In order to highlight potential shifts in estimated risk between the multi-species 
and the cattle systems, we looked at the difference in maximal epidemic size between 
these two systems, by quantifying the change in the OCC of cattle premises taking 
into account the movements of both species or cattle movements only (see schematic 

Fig. 4  Schematic representation of Outgoing Contact Chains in the multi-species and cattle networks, and 
the network with weighted links
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representation in Fig. 4). The maximal size of an epidemic is a critical parameter, often 
used in epidemiological studies to quantify the potential impact of an outbreak. Because 
we computed the OCC for a limited period of 28 days, the OCC is the potential size of 
the epidemic after 28 days of uncontrolled spread. We calculated for all cattle premises 
the factor by which their OCC was multiplied in the multi-species network; we called 
this factor the multiplication factor, defined as:

where OCCM and OCCC are the OCC in the multi-species and cattle networks 
respectively.

Weighted in‑ and out‑going contact chain in a multi‑species network

Assuming that all movements are equally important—regardless of the species type, 
the number of animals, or the characteristics of the premises—neglects important and 
potentially useful information affecting the spread of a disease. We therefore also cal-
culated weighted Outgoing Contact Chains ( OCCw ) where the weights are equal to For-
mula 1 and correspond to the probability of transmission given that the node is infected. 
We consider a network defined as a set of nodes V, and the set of edges E j

t,wj
−→i where 

i, j ∈ V  , t is a time, wj is a weight. We denote the probability of being infected for a node 
i at time t, pI (i, t) , the complementary probability of not being infected pNI (i, t) . The 
probability of disease transmission for a movement from j to i at time t is consequently 
equal to pI (j, t − 1)× wj.

We adapted the algorithm used in the previous section, using a similar method to the 
one proposed by Enright and Kao (2016). In the initial conditions, all nodes are suscep-
tible, except one root node u. At each discrete time step, we identify all edges E j

t,wj
−→i , 

where j has a non null probability of being infected. The probability of not being infected 
for the nodes i is updated by multiplying it by the probability for the edge j

t,wj
−→i to not 

transmit infection, which is 1− pI (j, t − 1)× wj . We keep track of the probability of not 
having been infected so far, to consider cases of multiple potential infections. We pre-
sent this algorithm as pseudo code in Algorithm 1.

(2)
OCCM

OCCC
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Likewise, we calculated the weighted ICC ( ICCw ) for all premises in the multi-spe-
cies network and the different periods of the year. We ranked premises according to the 
geometric mean of weighted contact chains ( GM − CCw defined as 

√
ICCw × OCCw  ), 

expecting this ranking to be relevant to the prioritisation of control strategies.

Disease simulations

To investigate agreement between the network analysis results and a more realistic situ-
ation, we stochastically simulated transmission of a fast-spreading disease in both cattle 
and sheep. The simulation is based on a Susceptible-Infected-Recovered (SIR) metap-
opulation model, compatible with an immunising infection. The time step is one day, 
to take into account the daily recorded animal movements, and disease transmission is 
frequency-dependent. We considered an infection with asymmetric transmission risk, 
where the rate of effective contacts β has the highest value between cattle, and the lowest 
from sheep to cattle (Table 3). The contact rate between sheep, and from cattle to sheep 
have intermediate values. The parameter values were chosen arbitrarily within the range 
of plausibility for a fast-spreading disease like FMD (Keeling 2005). Parameter values are 
given in Table 3.

For simplicity, we simulated epidemics starting only in premises having an OCC size 
greater than 100 premises, that is, premises that can potentially lead to an epidemic 
of 100 premises or more. The simulations were run for a limited period of four weeks, 
starting at the first day of each 4-week period of the year. We used the SimInf package 
(Widgren et al. 2019) in R to perform 100 simulations per seed, and recorded the size of 
the epidemic after four weeks, as well as the number of times a premises was involved in 
the outbreak over all simulations for each period.

We defined an indicator of the epidemic risk for each premises and each period as, 
ER = NE × NI , where NE is the average size of the epidemic at four weeks, and NI is the 
number of times the premises is infected during the epidemic and is proportional to the 
probability of getting infected.

To evaluate the performance of network measures in identifying the most important 
farms, we compared the 100 premises with the highest ER according to the simula-
tions with the 100 most risky premises according to the different measures ( GM − Deg , 
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betweenness, PageRank, GM − CC , and GM − CCw ). For this comparison we consid-
ered only farms in the ranking, because markets and shows are already known to be high 
risk and would be targeted first for control measures.

Results
The number of sheep movements was consistently higher than the number of cat-
tle movements (Fig. 1). The highest volume of trading activity in the Scottish network 
occurs in late summer to early autumn, when the sheep movement volumes peak. Over-
all, most of the recorded movements went through markets, accounting for 75% of the 
trading operations for cattle, and 93% for sheep.

Static network analysis

The sheep network is more dense than the cattle and the multi-species networks, 
whereas the cattle network is generally more clustered (Table  4). As expected, aver-
age path length is longest in the cattle network, and shortest in the multi-species net-
work. These shorter paths between pairs of premises enable faster spread of diseases. 
The sheep network is generally more connected, with typically only a single weakly con-
nected component, while the cattle network is sparser, counting on average 187.1 com-
ponents during any 4-week snapshot. The multi-species network is less fragmented than 
the cattle-movement network; this indicates that sheep movements connect different 
components of mixed or cattle premises in the multi-species network, which were dis-
connected in the cattle network.

The variation in sizes of the components follows the same pattern as the seasonality of 
the movements (Fig. 5), i.e. the sizes of the strongly and weakly connected components 
show two peaks in the cattle network during the 5th and 11th 4-week periods of the year, 
whereas the sizes of both components sharply increase around the 10th period of the 
year in the sheep network. Moreover, the membership to components across periods 
is mostly consistent, with over 60% of the premises constituting the GWCC of the cat-
tle networks being the same in periods 5 and 11, when cattle movements peak. In the 
multi-species network, over 70% of the premises in the GWCC are remaining the same 
between these periods. In addition, the size of the GSCC in the multi-species network is 
always larger than the sum of the GSCC in the cattle and the sheep networks. This high-
lights how interconnected the two farming systems are. This is important, because the 

Table 3  Daily rates for the parameters in the simulation model

Parameter Value Definition

βCC 0.2 Effective contact rate between cattle

βSC 0.19 Effective contact rate between 
susceptible sheep and infectious 
cattle

βSS 0.17 Effective contact rate between sheep

βCS 0.15 Effective contact rate between 
susceptible cattle and infectious 
sheep

γ 0.14 Recovery rate
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size of the GSCC corresponds to a lower bound on the maximum number of nodes that 
a newly introduced infectious agent might reach.

Figure 6 shows on the one hand that the three measures used are correlated, consist-
ently identifying mostly the same premises as risky; but on the other hand that, for all 
periods of the year, the most risky premises in the multi-species network are more simi-
lar to the ones in the cattle network. The graph also shows, during the 9th and 10th 
periods, an increase in the number of identical risky premises between the sheep and the 
multi-species systems, whilst a decrease in this number is observed between the multi-
species and cattle network. The majority (more than 96%, for all 4-week periods) of risky 
premises in the multi-species network were also considered most risky in the cattle net-
work, for all three network measures considered. However, only around 20% of the risky 
premises in the multi-species network were also identified as most risky in the sheep 
network, in any 4-week period.

Dynamic network analysis

In the dynamic network analysis, the risky premises are the top 100 premises with the 
largest GM − CC . The set of identified risky premises in the multi-species network 

Table 4  Static network measures for  the  4-week animal movement networks in  the  year 
2016 (mean [min, max])

Average values are calculated over the thirteen 4-week periods of the year 2016

Edge Density 
( ×10

−3)
Clustering  
( ×10

−3)
Mean Path 
Length

Diameter No. of Components

Multi-Species 2.3 [1.7, 3.1] 0.88 [0.6, 1.7] 4.2 [4.1, 4.7] 12 [10, 14] 138.6 [58, 218]

Cattle 3.2 [2.5, 3.7] 1.5 [0.9, 2.6] 4.5 [4.2, 5.4] 13 [11, 16] 187.1 [133, 275]

Sheep 4.9 [2.2, 9.0] 0.13 [0.01, 0.55] 4.32 [2.8, 4.9 9.8 [6, 13] 1.8 [1, 4]

Fig. 5   Component sizes of the successive 4-week static networks. This histogram shows the size of the 
GSCC, and GWCC in the multi-species (in grey) and single-species networks (cattle in blue, and sheep in 
green) along the year 2016
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are substantially different from the sets in the cattle or the sheep movement networks 
(Table 5). On average only 47.2% of the most risky premises in the multi-species net-
work are most risky in the cattle networks as well, and 32.4% in the sheep networks.

Although for most of the year, the set of risky premises in the multi-species net-
work is more similar to the one in the cattle network (Fig. 7), during the 9th and 10th 
periods of the year, the trend reverses with the risky premises in the multi-species 
network becoming more similar to the ones in the sheep network. In addition, over 
all periods on average 29% of the risky premises in the multi-species network are 
not identified as risky in any of the single-species networks. This suggests that some 
premises with the largest ICC and OCC in the multi-species network exhibit large 
contact chains only through combination of cattle and sheep movements. The pro-
portion of risky premises of this kind can be as high as 72% during the 11th period.

These results differ considerably from those of the static analysis. We compared 
the sets of risky premises according to GM − Deg  in the static networks, to the risky 
premises according to GM − CC in the dynamic networks (grey cells in Table 5). The 
percentage similarity between the risky premises according to these two measures is 
low, with on average only around 17% of the premises being the same.

Overall, 99.5% of the cattle premises considered have a larger OCC when including 
sheep movements, and therefore a multiplication factor greater than 1. Very few cat-
tle premises see their OCC unchanged when sheep movements are considered, even 
during the period of low activity in the sheep network (Fig. 8). Sheep movements con-
tribute to the construction of significantly larger OCC in most cases: over all peri-
ods of the year, half of the premises (54%) see their OCC multiplied by at least 2. As 
expected, large increases in OCC is more consistent during the period of high activity 

Fig. 6   Comparison of the single-species and multi-species static network analysis results. This graph 
details the variation in the number of identical risky premises between the multi-species and each of the 
single-species networks (cattle in blue, and sheep in green) along the year for the different static network 
measures
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in the sheep network, i.e. 10th period of the year. During this period, OCC of cattle 
premises are multiplied by an average of 8.9.

Almost all cattle premises see their OCC increased in the multi-species network 
(Fig. 9), but the range of OCC values as well as the range of increase are variable. The 
OCC values are similar in the 4th and 10th periods are similar for the cattle network, 
but differ considerably for the multi-species network, exhibiting sharper increases of the 
OCC during the 10th period. During the 10th period, on average 2513 additional prem-
ises can be reached in the multi-species network, which would not be reached through 
cattle movements only.

Disease simulations

The static network measures identified at most 11% of the top 100 farms involved 
in the simulation, and their performance is very poor in most time periods (Fig. 10). 

Table 5  Table showing average results in  dynamic network analysis and  comparing 
with static network analysis results

Number of identical risky premises identified in both single- and multi-species networks , and by dynamic and static 
measures. Values are averages over periods of the year, with standard deviations in brackets. GM-CC: geometric mean 
Contact Chain; GM-Deg: geometric mean degree

GM-CC GM-CC/GM-Deg

Multi-species 100 16.1 (± 2.4)

Cattle 47.2 (± 16.1) 16.8 (± 3.3)

Sheep 32.4 (± 12.3) 17.9 (± 9.2)

Fig. 7   Comparison of the single-species and multi-species dynamic network analysis results. Number of 
identical risky premises between networks after ranking premises according to geometric mean contact 
chains. In grey is shown the number of premises which are risky in the multi-species, the sheep, and the 
cattle networks, in blue and in green is shown the number of premises risky in the multi-species and the 
cattle network but not in the sheep network, and the multi-species and the sheep, but not in the cattle 
network respectively; the red area represents the premises which are risky in the multi-species network only
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Dynamic network measures offer a clear improvement. The static measures identi-
fied on average only 7% of the 100 farms potentially most important in the epidemic, 
whereas the dynamic measures identified on average over 30% of the main actors of 
an outbreak (after markets and shows).

Fig. 8  Multiplication factor distribution considering only cattle premises having an OCC of more than 10 
premises

Fig. 9   Multiplication factor of cattle premises in the multi-species network for three periods of the year. The 
graph shows the multiplication factor in log scale according to the OCC in the cattle network. Only premises 
with an OCC of at least ten premises are shown
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Discussion
The first objective of this study was to explore the Scottish cattle-sheep multi-species 
network characteristics to determine if this network was substantially different than 
the single-species ones. The temporal multi-species network exhibited significant 
differences in its structure, compared to the temporal cattle network. We found that 
more than a half of the risky premises in the multi-species network, were not identi-
fied as risky in the cattle network. If the cattle network was used to identify risky 
premises in a context of a disease involving sheep and cattle, these premises would 
be missed. More importantly, a number of risky premises are identified as such in the 
multi-species network only: 72% in the 11th period of the year, indicating that their 
risk is derived from interaction between the two farming systems. These differences 
indicate that, not only are the risks associated with multi-species epidemics higher, 
the premises likely to be driving those risks are also different. These differences are 
not captured by a static network representation of the system, and underlines the 
importance of temporality in livestock movement networks.

In the temporal network, most OCC of cattle premises were significantly larger 
in the multi-species network than in the cattle network, for all periods of the year. 
By constructing longer contact chains, interaction between the farming systems 
increases risk of larger epidemics throughout the year, and not only during the period 
of intensive trading in the sheep farming system, as one may expect.

Fig. 10   Matrix comparing the network analyses and simulations results per 4-week period. Percentage of 
most risky farms according to the simulations, correctly identified as such by the different network measures. 
GM− Deg : geometric mean degree; GM− CC : geometric mean unweighted contact chain; GM− CCw : 
geometric mean weighted contact chain
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Finally, when disease spread was simulated in the multi-species system, the tempo-
ral measures performed better at identifying the most important farms than the static 
network measures. The inability of static descriptors to reliably predict outbreak risk is 
expected (Vidondo and Voelkl 2018), when the pattern of contacts changes over time-
scales that are short compared to disease generation times. The measures based on con-
tact chains take into account the more important aspects of the movement networks, 
such as temporal paths, which are relevant in the occurrence of an epidemic (Holme 
2005; Lentz et al. 2016). Usefulness of a measure based on ingoing and outgoing contact 
chains for assessing disease risk was already confirmed by other studies (Frössling et al. 
2012; Vidondo and Voelkl 2018). We used similar metrics, but took into account trans-
mission probabilities. Our weighted contact chains performed better than the simpler 
contact chains. Here we used weightings in line with the 2001 FMD epidemic in the UK, 
which substantially improved the predictive power of the metric. This shows that even 
a mildly informed choice of transmission probability per link, without prior knowledge 
on the disease parameters, gives a better prediction of risk than an unweighted network.

Our work reinforces the importance of incorporating differences in transmission 
probability where they exist within a system (e.g. differences between host-species in a 
multi-species system (Dobson 2004)). Significant variation can lead to critically differ-
ent disease dynamics (Lloyd-Smith et  al. 2005) which must be captured for predictive 
modelling. In our weighted network, the weights incorporate variation due to both the 
volume and species traded, which allows our network metrics to explicitly include this 
information. Similar methods based on contact chains have included more explicit sim-
ulation rather than metric calculation: e.g. Knific et al. (2020) reports work which filters 
a weighted temporal network and then simulates scenarios with differing transmission 
probabilities, thus somewhat decoupling the disease model from the underlying net-
work. Our metric differs in that it incorporates transmission probabilities directly into 
network and metric, and is thus most useful when consider a particular pathogen with 
known transmission probabilities that vary by category of edge.

Future work is possible to improve the applicability of this approach to FMD, to 
broaden its use to other diseases and systems, and to improve the computational perfor-
mance of the method. While we demonstrated the importance of using a multi-species 
network to understand transmission of an FMD-like disease, additional work remains to 
be done. Cattle and sheep are not the only species vulnerable to FMD: in a future FMD 
epidemic, network layers including other species (e.g. pigs) could be included, as well as 
non-trade layers that could incorporate transmission risk due to shared equipment or 
human movements.

Because characteristics of the disease are included in our weighted temporal network 
construction, a number of adaptations would be needed to apply our work to other dis-
eases. In particular, the time of aggregation has important consequences for the net-
work’s interaction with the pathogen (Bajardi et al. 2011). The time scale in our approach 
should therefore be adapted to correspond to both the infectious period of a disease and 
the time scale of network dynamics (Kao et al. 2007).

While we have implemented our methods with reasonably efficient code, our focus has 
been on assessing the usefulness of the approaches as opposed to producing code opti-
mised for speed and memory requirement. Computational performance could likely be 
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improved, and further work may be required to deploy these approaches on very large or 
very dense networks.

Weighted contact chains can be a powerful tool to inform decisions in the early stages 
of an epidemic because it only relies on animal movement data that are immediately 
available. As well as being easy and fast to compute, it is deterministic, which means 
the metric can be calculated in a single computational run. In addition, the method pro-
posed showed that weighting the network with reasonable transmission probabilities 
helps to improve the prediction of risk, which could aid decision making in the early 
stages of an epidemic when disease parameters are still unknown.
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