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Introduction
Despite the commonality of spreading process—such as consensus, disease spread, 
and rumour propagation—De Arruda et  al. (2014) notes that the efficacy of centrality 
measures, in identifying effective spreaders, differs depending on the system dynamics. 
Given the clear relationship between random walk and spreading processes it is nota-
ble that the efficacy of eigenvector-based spreader selection also varies with the system 
dynamics; Clark et al. (2019) details the efficacy of eigenvector assessment for consensus 
dynamics, while De  Arruda et  al. (2014) notes the inferiority of eigenvector centrality 
for determining the influence of disease spreaders. In this work we introduce a new net-
work representation of disease spread dynamics, to demonstrate that eigenvector-based 
assessments can be effective across differing spreading processes as long as the network 
accurately captures the system dynamics.

Abstract 

Contact networks provide insights on disease spread due to the duration of close prox-
imity interactions. For systems governed by consensus dynamics, network structure is 
key to optimising the spread of information. For disease spread over contact networks, 
the structure would be expected to be similarly influential. However, metrics that are 
essentially agnostic to the network’s structure, such as weighted degree (strength) 
centrality and its variants, perform near-optimally in selecting effective spreaders. 
These degree-based metrics outperform eigenvector centrality, despite disease spread 
over a network being a random walk process. This paper improves eigenvector-based 
spreader selection by introducing the non-linear relationship between contact time 
and the probability of disease transmission into the assessment of network dynamics. 
This approximation of disease spread dynamics is achieved by altering the Laplacian 
matrix, which in turn highlights why nodes with a high degree are such influential 
disease spreaders. From this approach, a trichotomy emerges on the definition of an 
effective spreader where, for susceptible-infected simulations, eigenvector-based 
selections can either optimise the initial rate of infection, the average rate of infection, 
or produce the fastest time to full infection of the network. Simulated and real-world 
human contact networks are examined, with insights also drawn on the effective 
adaptation of ant colony contact networks to reduce pathogen spread and protect the 
queen ant.
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For disease spread dynamics, degree-based metrics (which include k-shell/k-core 
strategies) have been repeatedly found to identify a system’s effective spreaders as in 
De Arruda et al. (2014), Kitsak et al. (2010), Da Silva et al. (2012), Zeng and Zhang 
(2013), Wang et al. (2016), Liu et  al. (2016), Salamanos et  al. (2017) and Jiang et  al. 
(2019). While, k-shell and s-core [see Eidsaa and Almaas (2013)] strategies make 
some acknowledgment of the network structure, these methods are largely agnostic 
to the communities that may exist even if these are highly separated from each other. 
In consensus dynamics, Clark et al. (2019) note that the most effective strategies for 
spreading information often relies on distributing spreaders across multiple com-
munities rather than locating them centrally in the network. Liu and Hu (2005) and 
Stegehuis et al. (2016) found that community structure does influence the spread of 
disease on networks. Therefore we aim to highlight that, as with consensus dynamics, 
a system’s eigenvectors capture the interplay of dynamics and network structure that 
is fundamental to determining the effectiveness of disease spreaders.

Network structure, without considering the system dynamics, has been incorpo-
rated into the detection of effective spreaders, with Ghalmane et al. (2019) expanding 
on the concept of modular centrality to improve the performance of common central-
ity measures. Degree-based metrics have also been developed that only decentralise 
the spreader location rather than explicitly acknowledge the network’s structure, as in 
Kitsak et al. (2010), Zeng and Zhang (2013), Wang et al. (2016), Jiang et al. (2019) and 
Yang et  al. (2019). These include selecting spreaders from less prominent hubs [see 
Jiang et al. (2019)], preventing neighbouring spreaders from being selected [see Kitsak 
et al. (2010) and Wang et al. (2016)], altering the selected spreader’s degree to be neg-
ative to avoid selecting nodes with overlapping spheres of influence [see Yang et  al. 
(2019)], and acknowledging that selecting a spreader should diminish the importance 
of the links to an already infected node [see Zeng and Zhang (2013)]. These meth-
ods are agnostic to the interplay of topology and network dynamics, which can lead 
to inaccuracies for certain topologies, as acknowledged by Namtirtha et  al. (2020) 
where a tunable optimisation is developed. In contrast we ensure that every connec-
tion informs the spreader selection with the system’s eigenvectors providing a holistic 
assessment of the network, as demonstrated in Clark et  al. (2019) and Punzo et  al. 
(2016) for networks with linear consensus dynamics.

The networks considered herein are contact networks, constructed from close 
proximity contact durations and frequently used to analyse how disease can spread 
through a group of individuals as in Vanhems et al. (2013), Salathé et al. (2010), Ste-
hlé et al. (2011), Génois et al. (2015) and Génois and Barrat (2018). These networks 
are representative of human interactions where human-to-human disease spread 
can occur. Information on the order of interactions is lost by treating the system as a 
static network, but these networks are still useful for understanding likely pathways 
for disease progression. However, as discussed, a new approach for representing these 
contact networks is introduced in this work to capture the non-linear relationship 
between contact duration and the probability of disease spread. This relationship 
is often described with an exponential function, as in Kiss et  al. (2017) where it is 
used to simulate disease spread on networks. In this paper, we shall explore how to 
account for this exponential relationship when using eigenvectors to detect effective 
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spreaders, and as a consequence highlight the important role contact network struc-
ture can play in disease spread.

Methods
Network definition

A graph is defined as G = (V ,E) , where there is a set of V  vertices and E edges, which are 
unordered pairs of elements of V  for an undirected graph and ordered pairs in a directed 
graph. The adjacency matrix, A, is a square N×N matrix when representing a graph 
of N vertices. This matrix captures the network’s connections where (A)ij = (A)ji > 0 
if there exists an edge connecting vertex i and j and 0 otherwise. This paper only con-
cerns the detection of effective spreaders, therefore all contact networks are scaled to be 
within the same range, 0 ≤ (A)ij ≤ 1 ∀ i, j ∈ V  . Variable edge weights contain informa-
tion on the relative strength of interactions, which for contact networks is defined by 
contact duration. The adjacency matrices throughout this paper are symmetric, but it 
will be important to note that the nonzero row entries of A indicate outgoing links from 
which a node can contract disease. Whereas the nonzero column entries are incoming 
links that a node can use to spread disease to its contacts.

Communities of dynamical influence

The communities of dynamical influence (CDI), introduced by Clark et  al. (2019), are 
used to provide evidence of the prominent role network structure can play in determin-
ing a node’s influence as a spreader of disease. This community detection attempts to 
capture the dynamical influence of nodes, where Klemm et al. (2012) defines dynamical 
influence as the influence a node has over the dynamic state of other nodes in the net-
work. CDI are defined by global and local dynamical influence, with these communities 
identified by embedding the network in a Euclidean space defined by the real part of the 
system’s three most dominant eigenvectors. Community leaders are identified as nodes 
that are further from the origin of this coordinate frame than their neighbours. The 
nodes belonging to each leader’s community must have a directed path connecting them 
to the leader. If multiple leaders are viable then assignment is based on alignment to a 
leader, assessed using the scalar projection of each node’s position vector in Euclidean 
space with respect to the viable leaders. In terms of dynamical influence, with respect 
to the whole network (i.e. global), this approach produces the same results as eigenvec-
tor centrality. However, Clark et al. (2019) show that more localised influence can also 
be identified by incorporating the 2nd and 3rd dominant eigenvectors, with community 
leaders not necessarily prominent according to eigenvector centrality.

Susceptible‑infected (SI) simulations

The main focus of this paper is the effectiveness of disease spreaders on contact net-
works. The performance of spreaders is analysed using susceptible-infected (SI) sim-
ulations, see Miller and Ting (2020), where edge weight affects the probability of 
transmission, with the time to infection exponentially distributed as described by Kiss 
et  al. (2017). This paper is primarily concerned with the influence of a node on the 
spread of disease, therefore susceptible-infected-susceptible (SIS) and susceptible-
infected-recovered (SIR) models are not considered to reduce the effect of stochastic 
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resusceptibility and recovery events. SI simulations guarantee that all nodes with a 
directed path to an infected node will eventually become infected, therefore the effec-
tiveness of disease spreaders are monitored by tracking the time taken for 25%, 50%, 
75%, and 100% of the network to become infected.

Exponentially Distributed Contact Networks

For simulating the spread of disease through a network, exponentially distributed times 
to infection [as in Miller and Ting (2020)] are commonly assumed but contact network 
analysis frequently uses contact times to weight the adjacency matrix, such as in Salathé 
et al. (2010). In this work, the adjacency matrix is altered to reflect the exponential rela-
tionship between contact time and risk of disease spread, with the aim of improving the 
identification of effective spreaders of disease. The first step is to apply a commonly used 
exponential function for converting contact time into a weight that more accurately rep-
resents the increased risk of transmission due to the passage of time,

where t is a contact time between two nodes in the network and τ is the transmission 
rate, see Kiss et al. (2017). By scaling each contact time according to Eq. 1, an exponen-
tially adjusted adjacency matrix, Ae is produced where

Therefore, Ae is more representative of the probability that an infection will travel over 
an edge than A.

When multiple infected nodes are connected to a susceptible node, the system dynam-
ics are no longer accurately captured by the adjusted adjacency. For example, when two 
infected nodes are in contact with the same susceptible node the risk of transmission 
is less than the sum of the two edge weights (even when using Ae ). Instead, the risk of 
transmission is more accurately captured by applying Eq. 1 when t is equal to the sum of 
the contact times with both of the infected nodes. Therefore, an exponentially adjusted 
Laplacian matrix, Le , is also proposed where the diagonal elements are equal to P in Eq. 1 
when t =

∑

j(A)ij , i.e. the sum of all contact times for a given node. The off-diagonal ele-
ment are composed of the, negated, adjusted adjacency matrix values, i.e.

where (De�t )ii = diag(1− exp(−
∑

m(A)im)) . Hence,

Understanding influence in disease spread

The assessment of influence in directed networks, following linear consensus, can be 
captured by the first left eigenvector v1 as described by Clark et al. (2019). The ratio of 
indegree to outdegree affects v1 , where nodes with a high indegree and low outdegree 

(1)P = 1− exp(−τ t)

(2)(Ae)ij :=

{

1− exp(−τ (A)ij), if (A)ij > 0.
0, otherwise.

(3)Le = De�t − Ae

(4)(Le)ij :=







−(1− exp(−τ (A)ij)), if (A)ij > 0.
1− exp(−

�

m(A)im), if i = j
0, otherwise.
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wield more influence since their state has a greater impact on their neighbours than their 
neighbours’ states have on them, see Clark et al. (2019). This is not usually relevant for 
undirected networks but, as discussed, the exponentially adjusted Laplacian Le creates 
an imbalance between incoming connections (along which it can spread disease) and the 
diagonal entry—that usually is the sum of outgoing connections—but now equals the 
exponentially adjusted sum of contact times. The ratio between incoming edge weights 
and the magnitude of a node’s diagonal entry is greatest for nodes with a high degree. 
This results in high degree nodes being rewarded with an amplification of their influ-
ence, as determined by v1 , when compared with a linear system. Influence in this context 
means that a node is effective at spreading the disease to others, while not being easily 
infected itself by a more influential node. Both aspects, the ability to spread and the dif-
ficulty to infect, will be important in the following sections where we will describe how 
to optimise Le to select effective spreaders.

Disease spreader selection

A challenge in this work is translating approaches from linear consensus to disease 
spread. Finite resources were allocated to nodes in Clark et al. (2019) to drive any net-
work to rapid consensus. Resource were allocated with an optimisation based on CDI’s 
community designations and the first left eigenvector ( v1 ). Such an approach needs to 
be adapted when considering disease spread; nodes have susceptible and infected states 
that are binary unlike the variable resource allocations and smooth transitions seen in 
consensus models. The first left eigenvector v1 is still the basis of spreader selection 
presented herein, but to select any number of disease spreaders an iterative process of 
spreader selection and network alteration is introduced. For an undirected Laplacian 
matrix L ( L = D − A where D is a diagonal matrix of degree), v1 (where �1 = 0 ) is a uni-
form vector. The exponentially adjusted Laplacian Le is still undirected but the imbal-
ance between incoming weight sum and the magnitude of the diagonal entry means that 
v1 of Le is no longer uniform and can be used to select influential spreaders. Also �1  = 0 , 
but �1 is still the smallest eigenvalue of Le.

Spreader selection is an iterative process, where the node associated with the larg-
est entry of |v1| is the first selected. If more spreaders are to be selected, then the 
i-th selected node γ [i] has its incoming and outgoing connections removed, i.e. 
(Le)γ [i]j = (Le)jγ [i] = 0 ∀ j �= γ [i] ∈ V , and (Le)γ [i]γ [i] =

∑

j(Le)jj . A new v1 is calculated 
for this updated Le matrix and the process repeats until all spreaders are selected. By set-
ting (Le)γ [i]γ [i] =

∑

j(Le)jj , this ensures that the smallest eigenvalue of Le is not associ-
ated with an already chosen spreader node but instead concerns the giant component of 
the graph. The spreader selection algorithm is detailed in pseudo-code in Algorithm 1. 
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Optimising spreader selection

The exponentially adjusted Laplacian Le is only an approximation of disease spread dynam-
ics. This section details how understanding the implications of that approximation enables 
different types of effective spreader to be identified. Spreaders can provide a fast initial rate 
of infection, a fast time to full infection of the network, or a compromise between those two 
that provides a more consistent rate of infection.

Spectral analysis, in the form of the first left eigenvector, uses Le to compare a node’s abil-
ity to spread infection, when all its neighbours are susceptible, with the ability of its neigh-
bours, if they were all infected, to spread disease to it. This is obviously a comparison of 
two extremes, which as discussed previously provides greater reward to nodes with a high 
degree. The matrix Le represents the maximum reward, in terms of influence, that could be 
expected from the non-linear relationship between contact duration and the probability of 
disease spread. By scaling the contact durations so that they are reduced in the adjacency 
matrix A, before creating Le , the ratio of incoming connection weights (ability to spread 
disease) to the magnitude of the diagonal entry of Le (ability to catch disease) is reduced. 
Hence, the reward in terms of influence for high degree nodes can also be reduced through 
scaling the adjacency matrix.

Scaling the adjacency matrix is achieved by adjusting s , where the exponentially adjusted 
adjacency becomes

The exponentially adjusted Laplacian becomes

It is anticipated that s values close to 1, which reward high degree nodes, will be most 
effective for detecting spreader selections that maximise the initial rate of spread. Con-
versely, low s values are expected to result in selections that identify nodes belonging 
to more isolated communities in the network and hence provide better results when 
looking to infect the whole network. However, the best value of s varies depend-
ing on the network so an optimisation is introduced where a set of discrete values 
between 1 and 0.001, S = {0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} , are tested 

(5)(Ae)ij :=

{

1− exp(−τ s(A)ij), if (A)ij > 0.
0, otherwise.

(6)(Le)ij :=







−(1− exp(−τ s(A)ij)), if (A)ij > 0.
1− exp(−

�

m τ s(A)im), if i = j
0, otherwise.
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where s ∈ S . For each value of s, a spreader selection is generated and all unique selec-
tions tested with SI simulations described in Miller and Ting (2020). While the set 
of S provides effective selections for most of the topologies tested, the results shall 
highlight certain artificial topologies for which a smaller range of values, such as 
S = {0.001, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} , produces superior 
selections.

Initial—maximising initial spread

The Initial selection aims to maximise the initial rate of infection spread, by comparing 
the time to 25% infected for each of the candidate spreader selections. The chosen selec-
tion produces the minimum median time from 10 SI simulations.

Averaged—consistent performance

Times are recorded at 25%, 50%, 75%, and 100% intervals of network infection from 10 SI 
simulations. For a given candidate spreader selection, the Averaged selection records the 
median times produced at each percentage interval. The median times are then divided 
by the mean of these medians, producing a normalised median time at each percentage 
interval, with the sum of these normalised medians assessed. The selection that mini-
mises the sum of normalised median times is selected.

End—fast time to full infection

The End selection minimises the time to 100% infected, by comparing each of the candi-
date spreader selections and selecting the option that produces the minimum mean time 
from 10 SI simulations.

Weighted degree (no neighbours)

The benchmark for performance presented in the paper is weighted degree (no neigh-
bours), which is shown by Kitsak et  al. (2010) to be highly effective at spreader selec-
tion. This method combines weighted degree-based selection with the restriction that 
neighbours of spreaders already selected are not viable for inclusion, referred to here as 
weighted degree (no neighbours). This approach is an acknowledgment that weighted 
degree centrality, and also k-shell strategy [see Kitsak et al. (2010)], are largely ignorant 
to the network structure and susceptible to error when weakly connected communi-
ties are present. However, the effectiveness of the no neighbour restriction only con-
firms that a node becomes less influential, in terms of disease spread, when a neighbour 
becomes infected. This reduction in influence could be expected as an infected node has 
no influence over a node that is already infected.

Other benchmarks were used—including eigenvector centrality, s-core strategy (a 
weighted degree version of k-core/k-shell), and betweenness centrality—and the results 
from these approaches are included in Additional file 1: Fig. S1 and S2.

Results
Visualising spreader selection

Algorithm  1 is shown in operation in Fig.  1 for s = 1 (in Fig.  1a, b, c) and s = 0.1 (in 
Fig. 1d, e, f ), where it is applied to a hospital ward contact network from Vanhems et al. 
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(2013) to identify three spreaders. Fig. 1 presents a Euclidean space defined by the first 
two left eigenvectors of the exponentially adjusted Laplacian matrix ( v1 and v2 ). In 
Fig. 1a the most prominent node according to v1 is the first chosen spreader from the 
network defined using s = 1 . The communities of dynamical influence (CDI), described 
in the Communities of dynamical influence section, divides the network into communi-
ties with their influence dependent on the largest v1 entry. Fig. 1b details how removal of 
this chosen spreader, from the influential nurse-dominated community, results in other 
nodes in that community losing influence (i.e. a smaller v1 value) as the number of nodes 
and pathways for spreading disease in that community has decreased. When a second 
node from the same community is removed, Fig. 1c details further loss of influence for 
the nurse community with the chosen spreader now located in a doctor-dominated 
community.

Community infl uence

highest lowest 

Admin
Doctor

Nurse
Patient

d e f

a b cs=1 s=1 s=1

s=0.1 s=0.1 s=0.1

Chosen spreader

Fig. 1  Spreader selection for hospital ward contact network ( τ = 1 ). CDI determined communities, defined 
for a are highlighted in b–f to visualise the iterative process of spreader selection when s = 1 (a–c) and s = 0.1 
(d–f). In a, d the original network is embedded in a Euclidean space defined by the dominant eigenvectors 
( v1 and v2 ) of Le . The node with the largest v1 value is the chosen spreader. In b, e, Le is updated by removing 
connections from the chosen spreader. In c, f Le is updated again by removing connections from the chosen 
spreader in b, e respectively. Markers denote hospital role and dot colour denotes community where 
community influence is ranked in a according to largest v1 entry in each community. Node size is mostly 
proportional to weighted degree, with a minimum size limit used to aid visibility
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When s = 0.1 the process of spreader selection follows the same pattern, but as can 
be seen already in Fig.  1d the least influential community from Fig.  1a is given more 
prominence. In fact, after removing two chosen spreaders, the most prominent node in 
Fig. 1f is a node from this least influential community (where communities are kept the 
same as defined for the network in Fig. 1a). Importantly, and unlike degree based met-
rics, after selecting a spreader the next spreader is chosen based on a holistic assess-
ment of node influence, i.e. an updated v1 for the updated network topology after chosen 
spreader removal. In this way, every spreader selection in this eigenvector-based selec-
tion is dependent on and responsive to network structure.

When s = 1 , two nurses are selected in Fig. 1a, b from the same community with the 
high weighted degree nodes ensuring rapid initial spread of disease. In Fig. 1c, a doctor 
is selected as the next most effective spreader as there is a clear separation between the 
doctor and nurse dominated communities. In contrast, when s = 0.1 , for Fig. 1e–f the 
system dynamics give more prominence to isolated nodes and communities that are dif-
ficult to infect. In Fig. 1d the chosen spreader is the same prominent nurse as selected 
in Fig.  1a. However, in Fig.  1e a doctor from the less influential doctor community is 
chosen, rather than another nurse. Finally, in Fig. 1f an isolated member of admin staff 
is selected since they are hard to infect due to their limited contact with others in the 
network.

Community spread

The eigenvector-based selection, visualised in Fig. 1, selects spreaders from different 
communities. Fig. 2 reveals why this is an effective strategy, as the initial spread of 
disease from prominent community nodes is primarily within their own community. 
The choice of τ = 1 is not intended to be representative of a particular disease, there-
fore time is reported without units and used only for comparison throughout this 
section. In Fig.  2a, disease is spread from the most prominent nurse in the nurse-
dominated community, highlighted in Fig. 1a. The smallest mean times to infection 
are within the nurse community with a couple of the most prominent doctors also 

Fig. 2  Simulated initial spread of disease from key nodes in a hospital ward contact network. A black outline 
defines the initially infected node in a, b. The mean time to infection, from 100 SI simulations ( τ = 1 ), is 
differentiated by colour for values below 3. Connections between nodes are also displayed
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receiving early infection. In Fig. 2b the infection is spread from the most prominent 
doctor, which was selected in Fig. 1b as the chosen spreader. Again the prominent 
nodes within this doctor’s community are amongst the earliest infected, with a selec-
tion of the most prominent nurses also being consistently infected within this initial 
time period. Since the initial disease spread is primarily contained within communi-
ties, distributing spreaders across these eigenvector-based communities can be an 
effective tactic, when looking to rapidly infect a network, as will be demonstrated in 
the following sections.

Infection spread—real‑world networks

The ability to identify the most effective spreaders of disease is of most relevance 
when applied to real-world contact networks, such as those generated from data 
gathered using proximity sensors. In this section, the performance of spreader selec-
tion is evaluated in Fig. 3 for seven real-world contact networks. These contact net-
works include a hospital ward (Fig. 3a; N = 75 ), a primary school (b, c N = 235 and 
N = 238 ), a high school (d N = 788 ), a workplace (e, f; N = 92 and N = 217 ), and a 
conference (g; N = 403).

The results in Fig.  3 highlight how the eigenvector-based selections can achieve 
three different measures of effectiveness, by varying the s value when creating the 
exponentially adjusted Laplacian matrix that represents the system. Thereby achiev-
ing fast times to 25% infection with Initial, consistently good performance with 
Averaged, or fast times to 100% infected with End. The s values selected are detailed 
above each plot in Fig. 3 for these three selections where s = [Initial,Averaged,End].

The performance of weighted degree (no neighbours) appears to be most simi-
lar to the Initial selection, where there is only a clear difference in the time to 25% 
for Fig. 3a, f with Initial producing a faster infection rate. The End selection almost 
always produces the fastest time to 100% infection, but this can be seen to come at 
the cost of performance for all prior percentage intervals. The End selection also 
demonstrates that isolated nodes and communities appear to be common in human 
contact networks, as there is a very significant benefit to using this selection for the 
100% infected times in Fig. 3a, c, d, e, f,  g. The Averaged selection consistently posi-
tions itself between the times recorded for the Initial and End selections. In Fig. 3a, 
e, g this ensures a good performance at 100%, but without the large sacrifice in per-
formance at lower percentage intervals.

These trends are not specific to the numbers of spreaders in the system, where 
results are detailed in the Additional file 1: Fig. S3 for various numbers of selected 
spreaders. These results also include comparisons with eigenvector centrality, 
betweenness centrality, and s-core (no neighbours). S-core (no neighbours) per-
forms similarly to the weighted degree (no neighbours) metric, while eigenvector 
and betweenness centrality are frequently the least accurate metrics for selecting 
effective disease spreaders. Finally it is worth noting that for these examples, and 
those that follow, that varying τ does not result in changes to the relative perfor-
mance of these methods and is not a focus of this paper for that reason.
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Fig. 3  Results from SI simulations ( τ = 1 ) of real-world contact networks using four selected spreaders. 
The contact networks are, a a hospital ward (Vanhems et al. 2013), b, c, a primary school (Stehlé et al. 
2011), d a high school (Salathé et al. 2010), e, f a workplace (Génois et al. 2015; Génois and Barrat 2018) 
and, g a conference (Génois and Barrat 2018). Times are recorded from 100 SI simulations when 25%, 50%, 
75%, and 100% of network are infected and then normalised with the mean of all times recorded at each 
percentage. From left to right; times are detailed for the weighted degree (no neighbours) selection, then the 
eigenvector-based selections for initial rate (Initial), average performance (Averaged), and time to all infected 
(End). The y-axes of a, c, f, g are cropped to exclude extreme values
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Infection spread—artificial networks

It is useful to investigate the consistency of spreader selection performance on networks 
with controllable topology. Proximity Graphs are used here to demonstrate that the per-
formance of both the eigenvector-based and weighted degree (no neighbours) selections 
can vary with the topology. The definition of the proximity graph used here, referred 
to as proximity-nearest neighbour (P-NNR), is as follows: Distribute 100 points—rep-
resenting network nodes—in a Euclidean plane with a uniform random distribution for 
the x and y coordinates between 0 and 1. Define a proximity threshold (d), and any two 
points separated by a Euclidean distance that is less than d are connected. The weights of 
all connections are then defined using a uniform random distribution between 0 and 1.

In Fig.  4, 100 P-NNR graphs are investigated, with four different d values defining 
the topology construction, where each graph undergoes 100 SI simulations. While the 
eigenvector-based selections appear to perform similarly to the examples in Fig. 3, the 
d = 0.2 and d = 0.3 cases (Fig. 3a, b) require an alternative selection of s values. These 
results are achieved by employing a smaller range for the set S of possible values, namely 
S = {0.001, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} . The nominal range was 
defined between 0.001 and 1, but this produces a notably poorer performance in the 
d = 0.2 and 0.3 cases for the Initial and Averaged selections. P-NNR topologies can pro-
duce strongly connected hubs, with the requirement for smaller s values likely neces-
sary to reduce the influence of the most prominent community after the first chosen 
spreader’s removal and therefore enabling the selection of spreaders from less influential 
communities.

The weighted degree (no neighbours) selection also has a variable performance 
dependent on the d value. In particular, for d ≥ 0.4 the weighted degree selection no 
longer produces a fast initial spread. This appears to be due to the no neighbours con-
straint, with larger d values creating more neighbours for each node. Therefore, there are 
fewer nodes that are not connected to a chosen spreader and hence available for selec-
tion. In fact, for d = 0.5 the s-core and weighted degree selections are allowed to select 
any available nodes when there are no nodes remaining that are not connected to a cho-
sen spreader.

Ant pathogen response

The previous results emphasise the importance of community structure to disease 
spread in contact networks. By understanding the role of communities in effectively 
spreading disease, it is also possible to highlight effective network structures for prevent-
ing spread. In this section, the adaptation of ant colony contact networks in the presence 
of pathogen spreaders shall be presented, using the network eigenvectors, in a similar 
manner to Figs. 1 and 2.

The experiment reported in Stroeymeyt et al. (2018) exposed a number of ants to a 
pathogen, monitored all ant contacts for a period of 9 days and recorded which ants 
died during that period. The separation of the queen ant from the pathogen carri-
ers is noted by Stroeymeyt et  al. (2018), and can also be seen clearly by looking at 
Fig.  5 where the network is embedded in a Euclidean space defined by the system 
eigenvectors with the communities of dynamical influence (CDI), described in the 
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Communities of dynamical influence section, also detailed. Six of the eleven moni-
tored colonies are presented in the figure. From these it can be seen that infected ants 
can still maintain relatively long durations of contact, as denoted by the size of each 
node’s marker that is proportional to weighted degree. There are examples of infected 
ants with minimal contacts during the experiment, but a more consistent sign of 
colony adaptation to the presence of pathogen is seen in the network structure. The 
communities are defined by CDI using the first three eigenvectors of the adjacency 
matrix, with Fig.  5 presenting two of these three dimensions. In Fig.  5, the queen’s 
community is either free from pathogen carriers or pathogen carriers are at the ori-
gin of the eigenvector defined Euclidean space, which indicates that they have very 
limited contact with other ants. In many of the examples, no ants in the queen’s com-
munity die during this survival experiment, indicating that they are unlikely to have 

Fig. 4  Results from SI simulations ( τ = 1 ) of artificial contact networks using four selected spreaders. The 
median times from 100 artificially generated proximity networks are reported, where each median was 
assessed from 100 SI simulations. The proximity networks (P-NNR) are defined by the Euclidean distance 
threshold (d). In a d = 0.2, a d = 0.3, a d = 0.4, and a d = 0.5 where connection weights are given a value 
between 0 and 1 according to a uniform random distribution. Times are recorded when 25%, 50%, 75% 
and 100% of network are infected then normalised using division by the mean of all times recorded at each 
percentage. From left to right; times are detailed for the weighted degree (no neighbours) selection, then the 
optimised selections for initial rate (Initial), average performance (Averaged), and time to all infected (End). The 
y-axes of a, b are cropped to exclude extreme values
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contracted significant quantities of the pathogen. Furthermore, the relative influence 
of communities are indicated in Fig. 5, based on the largest first eigenvector entry of 
the adjacency matrix (eigenvector centrality) from each community. Pathogen carry-
ing ants are commonly located in the least influential communities, as seen for 8 out 
of the 11 colonies investigated, where they have less ability to infect the rest of the 
network. Whereas pathogen carriers were only present in the most influential com-
munity in 2 out of the 11 colonies. In both of these cases, the pathogen carriers were 
closer to the origin of the Euclidean frame than the majority of their community’s 
members, indicating their lack of influence in this most influential community. All 11 
ant colonies are presented in the Additional file 1, including both the vA1 and vA2 (Fig. 
S4) and vA2 and vA3 (Fig. S5) perspectives.

For the survival experiments in Stroeymeyt et  al. (2018), the pathogen was given 
exclusively to forager ants which are those most likely to pick it up when venturing 
outside of the nest. It is, therefore, interesting to note that this separation of forager 

Queen
Died
Pathogen carrier

Community influence

highest lowest 

Fig. 5  Community structure from ant colony contact network after pathogen introduction. CDI determined 
communities are detailed for contact networks of ant colonies infected with a pathogen during a survival 
experiment [see Stroeymeyt et al. 2018]. Node size is proportional to weighted degree, and colours denote 
community designation with each community’s influence ranked according to the magnitude of the largest 
entry of the first eigenvector ( vA1 ). There are markers indicating the queen ant, ants carrying pathogen at 
the start of the experiment and ants that died during the experiment. vA1 and vA2 are the two dominant 
eigenvectors of the adjacency matrix composed of pairwise contact durations
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communities from the queen is detected even in colonies that were monitored when 
none were infected and provides an example of effective network topology for miti-
gating epidemic spread. As forager isolation after infection, noted by Stroeymeyt 
et al. (2018), can be achieved without significant reorganisation of the colony’s con-
tact network.

Finally, Fig. 5 presents the eigenvectors of the adjacency composed of contact dura-
tion, rather than the exponentially adjusted Laplacian, as the probability of pathogen 
spread in ants differs from that of human disease spread. For ants carrying pathogens, 
Stroeymeyt et al. (2018) notes that the probability also depends on the quantity of patho-
gen spores an ant is carrying.

Discussion
The manipulation of the Laplacian matrix to better represent the dynamics of disease 
spread highlights a potential pitfall for centrality measures where the best performing 
measure can be chosen without a clear justification for why it should be effective [see 
Brandes (2020) for further discussion on the appropriate use of centrality measures]. In 
this case, it is logical that weighted degree should perform well when identifying effec-
tive spreaders, but given the clear relationship between disease spread and random 
walk assessments it is less reasonable that it should significantly and consistently out-
perform an eigenvector-based assessment. This paper has demonstrated that there is 
an issue with analysing the contact network composed of contact durations, when what 
is of primary concern is the probability of disease transmission. We have attempted to 
provide a better representation of a disease transmission network, by introducing the 
exponentially adjusted Laplacian. In doing so, we have highlighted why weighted degree 
selections perform well in the specific application of disease spread; this is not a new 
observation as De Arruda et al. (2014) notes that selection metrics differ depending on 
the underlying dynamics. But here we go further by illuminating why these dynamics 
essentially alter the balance between the probabilities of spreading and receiving disease, 
which amplify the influence of high degree nodes.

The three spreader selections Initial, Averaged, and End take advantage of understand-
ing the trade-off between the most influential nodes in terms of immediate neighbours 
(those with multiple, high weight, connections) and the nodes that are only locally influ-
ential but are part of isolated communities. An optimisation is required to make these 
selections, but the results show that reducing the magnitude of weights in the adjacency 
matrix, before creating the exponentially adjusted Laplacian, changes selections from 
Initial, to Averaged, and then finally produces an End selection. This occurs because the 
scaling affects the ratio between incoming connection weights (relative probabilities of 
spreading infection) and the magnitude of the diagonal matrix entry (the relative prob-
ability of receiving infection).

The Initial and Averaged selections are of obvious interest to disease spread, both in 
terms of targets for testing—where effective spreaders would be the most damaging to 
go unnoticed - and potentially as candidates for vaccination. However, testing and vac-
cination optimisation are notably different problems to the detection of effective spread-
ers, so for example there is no guarantee that the most effective spreaders are the most 
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effective to vaccinate. Also the spread of disease on susceptible-infected-susceptible 
(SIS) simulations has been shown by Nadini et al. (2018) to differ from the susceptible-
infected-recovered (SIR) models of infection spread, so these results may not translate 
exactly to real-world implementation.
End selections may be of limited interest in preventing disease spread in humans, 

where the focus usually centres on preventing rapid initial spread of infection. But 
instead there may be applications in pursuits such as the sterilisation of mosquitoes 
through the intentional spread of genes as described in Callaway (2015), where the goal 
is to spread engineered genes throughout the entire populace.

The link between eigenvector-based spreader selection—that incorporates connection 
removal—and the communities defined by CDI is explored in the hospital ward contact 
network (Fig. 1), where weighted degree and also eigenvector centrality would fail to rec-
ognise the importance of targeting the less influential community comprised of doctors. 
This raises the question of why community detection is not part of Algorithm 1 for iden-
tifying spreaders, but as can be seen in Fig. 1 and as demonstrated by Clark et al. (2016) 
the removal of node connections is a method for revealing network communities. In the 
context of disease spread, it also provides a more accurate representation of the system 
after node infection, given that infected nodes cannot be influenced (infected) by others.

Another observation from the hospital ward network (Fig. 1) is its division into com-
munities dominated by influential nurses and doctors, with patients presenting as far 
less effective spreaders. Focused testing in health care facilities was a recommenda-
tion from the World Health Organisation for combating the COVID-19 epidemic [see 
World Health Organization and others (2020)]. Given the insights found on a hospital 
ward network of 75 people, a similar application could be envisioned for key hospital 
wards where proximity sensors are deployed and the insights of network analysis used to 
inform testing and interventions in response to an infection outbreak.

The majority of this paper concerns the detection of effective spreaders using the sys-
tem’s eigenvectors, when accounting for the exponential relationship between contact 
duration and risk of transmission. For the ant colony examples, the relationship between 
contact duration and risk of transmission depends on the quantity of pathogen spores, 
see Stroeymeyt et  al. (2018). Modelling this ant pathogen transmission risk is beyond 
the scope of the paper, therefore the eigenvectors are assessed using an adjacency matrix 
of contact durations. This emphasises that contact duration analysis can still provide 
insights into the spreading dynamics of a system and, in this case, the effective adap-
tation of ant colony structure. However, as has been shown throughout this paper, 
the analysis of the ant colonies using a matrix representation that captures the risk of 
transmission, and not just contact duration, would be more accurate and possibly more 
insightful.

Conclusions
Network structure influences the location of the most effective spreaders of disease; evi-
denced by ant colony networks and the effectiveness of eigenvector-based identification 
of effective spreaders, on both simulated and real-world contact networks. The system 
eigenvectors capture the influence of disease spreaders, when the network dynamics are 
accurately represented. We show that disease spread dynamics can be approximated by 
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adjusting the construction of the Laplacian matrix to capture the non-linear relationship 
between contact time and the probability of disease spread. By representing the dynam-
ics in this way, the success of degree based metrics—in identifying effective spreaders of 
disease—is shown to be due, in part, to the non-linear dynamics rewarding high degree 
nodes with greater influence. The concept of an effective spreader is shown to be ill-
defined, where—for the newly introduced exponentially adjusted Laplacian—altering 
the ratio of incoming connection weight versus the magnitude of the diagonal entry 
creates a trichotomy on the concept of effective spreading. A spreader selection can be 
identified that can outperform the benchmark metric of weighted degree (applying a no 
neighbour constraint) in terms of the initial rate of infection, the average rate of infec-
tion, or the time to full infection of the network.
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