
Exploring the step function distribution 
of the threshold fraction of adopted neighbors 
versus minimum fraction of nodes as initial 
adopters to assess the cascade blocking 
intra‑cluster density of complex real‑world 
networks
Natarajan Meghanathan* 

Introduction
Information cascade in complex networks is a phenomenon by which one or more nodes 
in a network adopt a decision based on the decision made by their neighbor nodes. 
Information cascade in complex networks is typically initiated through a set of nodes 
called the Initial Adopters (considered to have adopted a particular decision) and the 
cascade proceeds in a sequence of iterations. We follow a threshold-based complex con-
tagion model (Watts 2002) for sequential information cascade: A node (that has hitherto 
not adopted a decision) adopts a decision in a particular iteration if the fraction of its 
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neighbors who have adopted the decision is greater than or equal to a threshold frac-
tion (q). The iterations stop if all the nodes have adopted some decision or no new node 
adopts a decision in the latest iteration. An information cascade is said to be "complete" 
(Easley and Kleinberg 2010) if all the nodes in the network arrive at a unanimous deci-
sion starting with a set of initial adopters who also adopt the same decision. We focus 
on complete information cascade (also referred to as global cascade in the literature) in 
this paper. For a given set of initial adopters, the largest possible value for the threshold 
fraction (q) of adopted neighbors that would lead to a complete information cascade is 
called the cascade capacity of the network (Easley and Kleinberg 2010). The larger the 
size of the set of initial adopters and more central are the initial adopter nodes, the larger 
the cascade capacity of a network. We use nodes with larger degree centrality (DEG) 
(Newman 2010) or betweenness centrality (BWC) (Freeman 1977) as the nodes that are 
part of the set of initial adopters. These two centrality metrics have been observed (Jalili 
and Perc 2017) to be effective in speeding up the adoption process for the rest of the 
nodes in the network.

Clusters are perceived as the major bottleneck for complete information cascade 
(Easley and Kleinberg 2010). A cluster in a network is a subset of the nodes that have 
more links among themselves compared to links with the rest of the nodes in the net-
work (Newman 2010). The intra-cluster density of a cluster is a measure of the number 
of links connecting two nodes within the cluster and the inter-cluster density of a cluster 
is a measure of the number of links connecting the nodes in the cluster to nodes outside 
the cluster. The intra-cluster density of a cluster is computed as the minimum of the 
intra-cluster densities of the bridge nodes (nodes that have edges with nodes both inside 
and outside the cluster) of the cluster (Easley and Kleinberg 2010). The intra-cluster den-
sity of a bridge node is the ratio of the number of neighbors inside the cluster and the 
total number of neighbors.

We begin our research in this paper to find a solution for the following problem: For 
a given threshold fraction (q) of the adopted neighbors that would result in a complete 
information cascade, what is the minimum number of nodes in a network that need to 
be used as the initial adopters (IAmin)? An efficient binary search approach for the above 
problem is not currently available or used in any of the related works in the literature. 
With a search space of (0, …, N], where N is the number of nodes in the network, we 
propose a binary search algorithm to find the actual value of IAmin for a network for 
a given q. The minimum fraction of nodes as initial adopters ( f min

IA  ) corresponding to 
IAmin is then computed as IAmin/N. Using this binary search algorithm, we proceed fur-
ther and build a distribution of the q versus f min

IA  values. To our surprise, we observe the 
q versus f min

IA  distribution to exhibit a step function pattern for 37 of the 40 complex 
real-world networks analyzed in this research, wherein there is an abrupt increase in 
f min
IA  beyond a certain value of q (qstep); the f min

IA  values at qstep and the next measurable 
value of q are represented as f min

IA  and f min
IA  respectively. We developed a second binary 

search algorithm (that makes use of the algorithm to determine IAmin) to determine the 
actual value of qstep for each of the 40 complex networks and the centrality metrics: DEG 
and BWC. The differences between the f min

IA  and f min
IA  values were observed to be signif-

icantly high for several complex networks. We claim that the value of "1 − qstep" for a net-
work could be perceived as a measure of the intra-cluster density of the blocking cluster 
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of the network that could not be penetrated unless we include one or more nodes of this 
blocking cluster as part of the set of initial adopters (justified by the sharp increase in the 
f min
IA  values from f min

IA  to f min
IA  in the vicinity of qstep).

A cluster is referred to as a blocking cluster if the fraction of adopted neighbors for the 
bridge nodes of the cluster is less than the threshold fraction (q) of adopted neighbors 
and information cascade cannot penetrate through such a cluster. The sharp increase in 
the f min

IA  values from f min
IA  to f min

IA  in the vicinity of qstep for a network suggests that there 
should be at least one such blocking cluster (of intra-cluster density measured in the 
form of 1 − qstep) for which starting with f min

IA  fraction of initial adopters is not sufficient 
and one or more nodes (typically the bridge nodes and some internal nodes) from this 
cluster need to be part of the set of initial adopters (corresponding to the f min

IA  fraction) 
to accomplish complete information cascade. We propose that "1 − qstep" be called the 
Cascade Blocking Index (CBI) of a network, a quantitative measure of the difficulty in 
penetrating through the blocking cluster(s) of the network. The larger the CBI value for 
a network, the larger the intra-cluster density of the blocking clusters of the network and 
vice-versa. While a lower CBI value is preferred for positive information to seamlessly 
get adopted by the nodes in the network, a larger CBI value is preferred for a network to 
keep away the epidemics/pandemics from infecting and spreading through the nodes.

As information cascade is observed to be more successful in clustered networks rather 
than non-clustered networks (Ikeda et  al. 2010), the problem of inferring community 
structures of complex networks solely on the basis of information cascade (i.e., the 
underlying network structure is not known) gained attention in the literature (Rodriguez 
et al. 2014; Ramezani et al. 2018; Prokhorenkova et al. 2019) in recent times. To the best 
of our knowledge, there has been no work in the literature to quantify the maximum 
(or the minimum or the distribution) of the intra-cluster densities of the clusters with-
out actually determining the clusters. The pioneering book chapter (# 19) in Easley and 
Kleinberg (2010) relates intra-cluster density with the threshold fraction (q) of adopted 
neighbors and refers to a cluster as a blocking cluster if its intra-cluster density exceeds 
1 − q. Other than this, there is no other work reported in the literature that relates intra-
cluster density with the threshold fraction of adopted neighbors for information cas-
cade. The CBI value for a network (proposed in this paper) could be considered as an 
upper bound for the intra-cluster density (also a measure of the clusterability of the net-
work) that could be expected of the clusters determined by the community detection 
algorithms.

The proposed methodology definitely has advantages over clustering, because with the 
latter approach: one has to first determine all the clusters of a network and then iden-
tify the blocking cluster (the cluster with the largest intra-cluster density) of the net-
work. There are a multitude of clustering algorithms in the literature, each with different 
time complexities as well as the output (the set of clusters) of one clustering algorithm 
might be different from another for the same graph. In Sect.  5.2, we demonstrate a 
strong correlation (both rank-wise and prediction-wise) between the CBI values and the 
largest of the intra-cluster density values (with the clusters determined using the Lou-
vain algorithm) of the real-world networks. We thus claim our work of quantifying the 
intra-cluster density of the blocking cluster for information cascade (without running 
any clustering algorithm) by using the threshold fraction of adopted neighbors and the 
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minimum fraction of nodes as initial adopters is a novel and significant contribution to 
the literature.

The rest of the paper is organized as follows: Sect. 2 presents an iterative algorithm 
used in this paper to conduct information cascade in a network for a given set of initial 
adopters and threshold fraction of adopted neighbors. Section 3 presents the proposed 
binary search algorithm to determine the f min

IA  value for a network for a given threshold 
fraction (q) of adopted neighbors. Section 4 first presents the procedure used to build 
the step function distribution for q versus f min

IA  as well as a binary search algorithm (that 
makes use of the algorithm of Sect. 3) to determine the qstep value and the correspond-
ing f min

IA  and f min
IA  values for a network. Section 4 also explains how the "1 − qstep" value 

(referred to as the Cascade Blocking Index, CBI) for a network could be related to the 
intra-cluster density of the blocking cluster of the network as well as provides a qualita-
tive analysis of the significance of CBI from the standpoints of information cascade and 
infection spread. Section 5 first introduces a suite of 40 real-world networks analyzed in 
this research, presents the (qstep, CBI, f min

IA  , f min
IA  ) values for these networks with respect 

to the DEG and BWC centrality metrics and discusses the results from an information 
cascade standpoint as well as from an infection spread standpoint. Section 5 also runs 
the well-known Louvain community detection algorithm (Blondel et al. 2008) on the 40 
real-world networks, evaluates the intra-cluster densities of the clusters/communities 
determined for each of these networks, presents a visual comparison of these values with 
the CBI values observed for these networks as well as analyzes the distribution of the 
initial adopter nodes in the Louvain clusters of the real-world networks and its impact 
on the qstep, f min

IA  and f min
IA  measures. Finally, Sect. 5 demonstrates the scalability of the 

binary search algorithms proposed in Sects. 2–4 by measuring and modeling the com-
putation times to determine the qstep, f min

IA  and f min
IA  measures for the real-world net-

works. Section 6 discusses related work in the literature. Section 7 concludes the paper 
and outlines plans for future work. Throughout the paper, the terms ‘node’ and ‘vertex’, 
‘edge’ and ‘link’, ‘network’ and ‘graph’, ‘cluster’ and ‘community’, ‘metric’ and ‘measure’ are 
used interchangeably. They mean the same.

Iterative algorithm for information cascade
We use an iterative algorithm (refer to Algorithm 1 for the pseudo code) to conduct 
information cascade in a network for a given set of initial adopters (IA) and thresh-
old fraction (q) of adopted neighbors. The algorithm runs until all the nodes in the 
network become part of the set IA (i.e., adopted the unanimous decision, leading to a 
complete information cascade) or no new node adopted the decision in the latest iter-
ation (tracked through the boolean variable CascadeProgress and the set LatestAdopt-
edVertices that are reset to false and φ respectively at the beginning of each iteration). 
In any iteration, we go through the vertices that have not yet adopted the decision 
and determine the fraction (f) of their neighbors that have adopted the decision. For 
any such node u (that has not yet adopted) whose f ≥ q (i.e., the fraction of adopted 
neighbors of the node is greater than or equal to the threshold fraction of adopted 
neighbors), we include node u to the set LatestAdoptedVertices. If CascadeProgress 
stays false at the end of an iteration, it implies no new node adopted the decision dur-
ing the iteration and the algorithm ends prematurely with the information cascade 
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declared to be not complete. If CascadeProgress is true at the end of an iteration, it 
implies that at least one node has adopted the decision during the iteration and all 
such vertices in the set LatestAdoptedVertices are appended to the set IA. Figure  1 
illustrates the working of the algorithm.

The algorithm would need to be run for at most |V| − |IA| iterations (a scenario 
in which just one vertex per iteration adopts the decision) and in each iteration, we 
go through at most |E| edges of the graph and determine the fraction of adopted 
neighbors for each vertex in the set V − IA. Thus, the overall time complexity of the 
iterative algorithm is O(|V||E|), simply written as O(VE). As seen in the example of 
Fig. 1 and the analysis of the real-world networks in Sect. 5, the number of iterations 
needed to accomplish complete information cascade need not be as large as |V| − |IA| 
iterations. In Fig. 1, we accomplish complete information cascade in just 2 iterations 
(wherein |V| − |IA|= 6).

Fig. 1  Execution of the iterative information cascade algorithm for a given set of initial adopters and the 
threshold fraction (q) of adopted neighbors
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Binary search algorithm to determine the minimum number of initial adopters 
for a threshold fraction of adopted neighbors
In this section, we present our proposed binary search algorithm (refer to Algorithm 2 
for the pseudo code) to determine the minimum number of initial adopters (IAmin) 
needed to operate a network with a threshold fraction (q) of adopted neighbors to 
accomplish complete information cascade. The minimum fraction of nodes as initial 
adopters ( f min

IA  ) for a network is the minimum number of initial adopters (IAmin) deter-
mined by the binary search algorithm divided by the number of nodes (N) in the net-
work. The nodes constituting the set of initial adopters are chosen based on a centrality 
metric (DEG or BWC). As nodes with larger DEG or BWC values were observed to be 
effective in speeding up the cascade process (Jalili and Perc 2017), in each iteration of 
the binary search algorithm, we identify the top nodes (nodes having the larger central-
ity metric values) that constitute the required number of nodes needed as initial adop-
ters (corresponds to the Middle Index value, as explained below and in the pseudo code: 
Algorithm 2) for the particular iteration. Any ties in choosing the nodes based on the 
centrality metric are broken arbitrarily. We observe this tie-breaking policy to not result 
in any significant difference in the results: (qstep, f min

IA  , f min
IA  ) values of a network across 

multiple runs of the algorithm in Sect. 5.
Binary search (Cormen et al. 2009) is a classical divide and conquer algorithm design 

strategy of logarithmic time complexity such that the search space (spanning from a Left 
Index to the Right Index) gets reduced by half in each iteration and the algorithm stops 
when the difference between the Right Index and Left Index gets below or equals a ter-
mination threshold. The search space for IAmin is the range (0, …, N], where N =|V|, the 
number of nodes in the network. We maintain the following invariant throughout the 
execution of the algorithm for a given q: the minimum value for the number of initial 
adopters needed to accomplish complete information cascade is in the range: (Left Index 
… Right Index]. That is, the information cascade will not be complete if the number of 
nodes used as initial adopters corresponds to the Left Index (initially set to 0) and the 
information cascade will be complete if the number of nodes used as initial adopters 
corresponds to the Right Index (initially set to N).

In the beginning of each iteration of the binary search algorithm, we determine the 
Middle Index as the average of the Left Index and Right Index. We then build a set IA 
of initial adopters (based on a particular centrality metric C) such that the number 
of nodes constituting the set IA among the nodes in the network equals the value 
of the Middle Index. We then conduct information cascade on the network (by run-
ning the Iterative Information Cascade algorithm of Sect. 2) with the set IA of initial 
adopters and the threshold fraction (q) of adopted neighbors. If the Iterative Informa-
tion Cascade algorithm run for the set IA corresponding to the Middle Index and 
q is complete, it implies the cascade will also be complete for |IA| values (i.e., the 
number of initial adopters) greater than the Middle Index. Hence, in such a case, we 
move the Right Index to the left (as part of the binary search strategy of halving the 
search space in each iteration) and set the Right Index = Middle Index. If the Itera-
tive Information Cascade algorithm run for the set IA corresponding to the Middle 
Index and q is not complete, it implies the cascade will also not be complete for |IA| 
values lower than the Middle Index. Hence, in such a case, we move the Left Index to 
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the right and set the Left Index = Middle Index. We stop the iterations when the dif-
ference between the Right Index and Left Index equals 1 and we consider the latest 
value of the Right Index as the minimum number of initial adopters (IAmin) needed 
to operate the network with a threshold fraction (q) of adopted neighbors leading to a 
complete information cascade. We return f min

IA  =| IAmin |/N as the minimum fraction 
of initiator nodes needed to operate the network with a threshold q.

The number of iterations of the proposed binary search algorithm is log2(|V|), 
where |V| is the number of nodes in the network and is the size of the search space 
at the beginning of the first iteration. The overall time complexity of the algorithm 
depends on the number of iterations of the algorithm and the time complexity of the 
Iterative Information Cascade algorithm run for each iteration. The overall time com-
plexity of the Iterative Information Cascade algorithm is O(|V|*|E|). The overall time 
complexity of the proposed Minimum_Initial_Adopters binary search algorithm is 
then O(|V|*|E|*log2(|V|)) and is simply denoted as O(EVlogV).

Figure  2 presents an example to illustrate the working of the Minimum_Initial_
Adopters binary search algorithm. The example graph has 8 vertices and we seek to 
find the minimum number/minimum fraction of initial adopters needed to operate 
the network at a threshold fraction (q = 2/3) of adopted neighbors to lead to a com-
plete information cascade. Assume the centrality metric used is the degree centrality 
(DEG) metric, which is the number of neighbors for a node. The initial values of the 
Left Index (LI) and Right Index (RI) are 0 and 8 respectively. In the first iteration, the 
Middle Index (MI) value = (0 + 8)/2 = 4. The top four vertices with the largest DEG 
centrality are: 2, 6, 4 and 5. With these four vertices as initial adopters, we see the 
fraction of adopted neighbors for the other four vertices 1, 3, 7 and 8 to be 2/3 each, 
which is equal to q. Hence, all the four vertices 1, 3, 7 and 8 adopt the decision of their 
neighbors, leading to a complete information cascade. Hence, we move the Right 
Index to the left and set the Right Index = Middle Index = 4.
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In the second iteration, the value for the Middle Index is (0 + 4)/2 = 2. The top two 
vertices with the largest DEG centrality are 2 and 6. With these two initial adopters, the 
fraction of adopted neighbors for vertices 4 and 5 are 2/4 = 1/2 each and for the other 
four vertices 1, 3, 7 and 8 are 1/3 each. None of these fractions of adopted neighbors 
are greater than or equal to q = 2/3. Hence, the information cascade is considered to be 
not complete and we move the Left Index to the right by setting Left Index = Middle 
Index = 2. In the third iteration, the value for the Middle Index is (2 + 4)/2 = 3. The top 
three vertices with the largest DEG centrality are 2, 6 and 4 (we can pick either 4 or 
5; we break the tie arbitrarily in favor of 4). With these three initial adopters, vertices 
1 and 3 will have 2/3rd of adopted neighbors, which is equal to q and hence will get 
added to the set of adopters. However, the fractions of adopted neighbors for vertices 
5, 7 and 8 will not be affected by this and they will remain to be less than 2/3 as shown 
in Fig. 2. Hence, the information cascade has to be declared not complete and we set the 
Left Index = Middle Index = 3. At the end of the third iteration, the difference between 
the Right Index and Left Index has reached 1 and we exit the algorithm. The minimum 
number of initial adopters needed is 4 (the latest value of the Right Index) to operate the 
network at a threshold fraction q = 2/3 of adopted neighbors. The corresponding mini-
mum fraction of nodes as initial adopters is 4/8 = 0.5.

Analysis of the relationship between the threshold fraction of adopted 
neighbors versus the minimum fraction of nodes as initial adopters 
and the intra‑cluster density of blocking cluster
In this section, we first empirically analyze the relationship between the threshold 
fraction (q) of adopted neighbors for a complete information cascade versus the mini-
mum fraction of nodes to be used as initial adopters ( f min

IA  ). We then analyze the rela-
tionship between the intra-cluster density of the blocking cluster of a network and the 
above two parameters (q and f min

IA ).

Given Graph                        Iteration 1: Complete Cascade     Iteration 2: Not Complete Cascade
(Before) LI = 0; RI = 8; MI = 4       (Before) LI = 0; RI = 4; MI = 2

                                                                (After) LI = 0; RI = 4                          (After) LI = 2; RI = 4

Iteration 3: Not Complete Cascade
(Before) LI = 2; RI = 4; MI = 3         (After) LI = 3; RI = 4; STOP!

Fig. 2  Example to illustrate the execution of the binary search algorithm with the threshold fraction (q = 2/3) 
of adopted neighbors
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Analysis of the relationship: q versus fmin

IA

For each of the 40 complex real-world networks analyzed in this paper and a centrality 
metric (DEG or BWC), we ran the binary search algorithm of Sect. 3 for q values ranging 
from 0.05 to 0.95, in increments of 0.05, and recorded the f min

IA  values. We plot the q ver-
sus f min

IA  values in a two-dimensional coordinate system and observed the distribution to 
exhibit a step function pattern for 37 of the 40 complex real-world networks considered 
and the two centrality metrics. As we increase the q value, there appear one or more 
spikes in the f min

IA  values. We refer to the spike that has the "largest" increase in the f min
IA  

value as the jump zone (see Fig. 4), which is of width 0.05 (spanned by the q values qL 

Fig. 3  Step function patterns observed for the q versus fmin

IA
 distribution for real-world networks with respect 

to degree centrality

Fig. 4  Visualization of the jump zone for a q versus fmin

IA
 distribution
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and qR to the left and right) and height f min,T
IA − f min,B

IA  , wherein f min,T
IA  and f min,B

IA  are 
the f min

IA  values when q = qR and q = qL respectively (i.e., at the top and bottom of the 
jump zone corresponding to the f min

IA  axis).
Figure 3 shows the typical step function patterns that we noticed for the real-world 

networks analyzed in this research: (a) There is only one jump zone and the f min
IA  values 

appear not to change much before and after the jump zone. (b) There are two or more 
spikes and the first spike in the f min

IA  value corresponds to the jump zone. (c) There is 
only one spike, but the f min

IA  value gradually increases (with increase in q) before and/or 
after the jump zone. (d) There are two or more spikes and the second spike in the f min

IA  
value corresponds to the jump zone. The Copperfield network exemplifies that the first 
spike in the f min

IA  value (unlike the Karate network) need not always correspond to the 
jump zone.

Our next step in the analysis is to zoom on the jump zone and determine the exact 
value of q (referred to as qstep) and the corresponding f min

IA  values (referred to as f min
IA  

and f min
IA  ) such that f min,B

IA  ~  f min
IA  <  f min,T

IA  and f min,B
IA  <  f min

IA  ~  f min,T
IA  . Note that f min

IA  is 

the f min
IA  value when q = qstep and f min

IA  is the f min
IA  value at the next measurable value of 

q beyond qstep. Overall, f min,B
IA  ≤  f min

IA  <  f min
IA  ≤  f min,T

IA  in the f min
IA -axis and qL ≤ qstep < qR 

in the q-axis. Figure 4 presents a visualization of the variables qstep, f min
IA  and f min

IA  for a 
jump zone of width qR − qL and height f min,T

IA − f min,B
IA  . The absolute value of the differ-

ence between qstep and the next measurable value of q is less than or equal to ε (ε = 0.001 
in this paper), a parameter referred to as the termination threshold of the binary search 
algorithm that we will now describe to determine the exact value of qstep.

The binary search algorithm (referred to as Jump Zone Analyzer; pseudo code 
in Algorithm  3) to determine the exact value of qstep has a search space of [qL, …, 
qR). Appropriately, the algorithm starts with the Left Index set to qL and the Right 
Index set to qR whose corresponding f min

IA  values are f min,B
IA  and f min,T

IA  respec-
tively. The following invariant is satisfied throughout the execution of the algo-
rithm: The Left Index always takes up a q value for which the corresponding f min

IA  
value (indicated as f

min,LeftIndex
IA  ) is much closer to f min,B

IA  and much lower than 
f min,T
IA  . That is, |f min,LeftIndex

IA − f min,B
IA | <|f min,T

IA − f
min,LeftIndex
IA | . Similarly, the Right 

Index always takes up a q value for which the corresponding f min
IA  value (indicated 

as f
min,RightIndex
IA  ) is much closer to f min,T

IA  and much greater than f min,B
IA  . That is 

|f min,T
IA − f

min,RightIndex
IA | <|f min,RightIndex

IA − f min,B
IA |.
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In the beginning of each iteration of the algorithm, we determine the Middle Index 
to be the average of the Left Index and Right Index and use the binary search algorithm 
(Algorithm Minimum_Initial_Adopters) of Sect. 3 to determine the f min

IA  value (indicated 
as f min,MiddleIndex

IA  ) when the Middle Index value is used as the threshold fraction (q) of 
adopted neighbors. If |f min,MiddleIndex

IA − f
min,LefttIndex
IA | ≤|f min,RightIndex

IA − f min,MiddleIndex
IA | , 

it implies the f min,MiddleIndex
IA  value is much closer to f min,LeftIndex

IA  and is lower than 

f
min,RightIndex
IA  : This will be the case for any q value ranging from the Left Index to the 

Middle Index. Hence, we move the Left Index to the right and set the Left Index = Mid-

dle Index. If |f min,RightIndex
IA − f min,MiddleIndex

IA | <|f min,MiddleIndex
IA − f

min,LeftIndex
IA | , it implies 

the f min,MiddleIndex
IA  value is much closer to f min,RightIndex

IA  and is greater than f min,LeftIndex
IA  : 

This will be the case for any q value ranging from the Middle Index to the Right Index. 
Hence, we move the Right Index to the left and set the Right Index = Middle Index. We 
continue the iterations as long as the absolute difference between the Right Index and 
Left Index stays greater than or equal to a termination threshold (ε). We stop the algo-
rithm when the absolute difference between the Right Index and Left Index becomes less 
than ε and declare the latest values of the Left Index, f min,LeftIndex

IA  and f min,RightIndex
IA  as 

qstep, f min
IA  and f min

IA  respectively.
With a search space of width 0.05 and termination threshold ε = 0.001, the number 

of iterations of the Jump Zone Analyzer algorithm is log2(0.05/0.001) ~ 6. As we run the 
binary search algorithm Minimum_Initial_Adopters of Sect. 3 in each of the six itera-
tions, the overall time complexity of the binary search algorithm Jump Zone Analyzer to 
determine the qstep value is the same as the overall time complexity of the binary search 
algorithm Minimum_Initial_Adopters.

Table  1 illustrates the execution of the Jump Zone Analyzer binary search algo-
rithm for the jump zone of the Karate Club network of Fig. 3b whose qL and qR values 
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are 0.30 (initial Left Index) and 0.35 (initial Right Index) respectively, and the termina-
tion threshold ε = 0.001. For ease of accommodating multiple columns in Table  1, we 
refer to the Left Index, Right Index and Middle Index using the acronyms LI, RI and MI 
respectively. Based on the initial LI (qL) and RI (qR) values, the initial values for f min,LI

IA

( f min,LeftIndex
IA  ) and f min,RI

IA ( f min,RightIndex
IA  ) are 0.0294 and 0.4118 respectively. All values 

are rounded to four decimals for ease of representation in Table 1 (note that there is no 
rounding of numbers in the executions conducted on real-world networks in Sect. 5). 
As noticed in Table 1, there are a total of 6 complete iterations and the algorithm stops 
at the beginning of the 7th iteration (with the difference between RI and LI becoming 
less than 0.001). The algorithm outputs the latest values of the LI, f min,LI

IA  and f min,RI
IA  as 

qstep = 0.3329, f min
IA  = 0.0294 and f min

IA  = 0.3823 respectively.

Cascade Blocking Index: 1 − qstep and intra‑cluster density of blocking cluster

Clusters are expected to have a larger intra-cluster density and lower inter-cluster den-
sity, and such clusters are referred to as modular clusters (Easley and Kleinberg 2010; 
Newman 2010). Modular clusters have the potential to block information cascade from 
penetrating to nodes inside the cluster. For information cascade to penetrate into a clus-
ter and result in a complete cascade, the bridge nodes of the cluster need to first adopt 
the unanimous decision: the internal nodes of the cluster would be able to adopt a deci-
sion only if at least the threshold fraction of its neighbor nodes (primarily the bridge 
nodes) have adopted the decision. For a bridge node to adopt a decision, its fraction of 
adopted neighbors (that are outside the cluster) should be greater than or equal to the 
threshold fraction (q) of adopted neighbors for the cascade. For a cluster with high intra-
cluster density, the bridge nodes of the cluster are also expected to have a larger intra-
cluster density: i.e., the fraction of adopted neighbors (outside the cluster) of the bridge 
nodes is expected to be lower. Hence, for information cascade to penetrate into such a 
cluster with high intra-cluster density, the threshold fraction (q) of adopted neighbors 
must be lower. Conversely, the larger the threshold fraction (q) of adopted neighbors 
with which we can accomplish complete information cascade in a network, lower the 
intra-cluster density of the clusters in the network.

For a cluster of intra-cluster density ρ, the fraction of adopted neighbors (outside the 
cluster) possible for a bridge node is at most 1 − ρ. In order to make the bridge node 
to adopt the unanimous decision needed for complete information cascade, 1 − ρ ≥ q; 

Table 1  Execution of  the  Jump Zone Analyzer binary search algorithm on  the  jump zone 
for the karate club network

It # LI RI |RI—LI|, ≥ 0.001, ? MI f
min,LI

IA
f
min,RI

IA
f
min,MI

IA

(

|f
min,MI

IA
− f

min,LI

IA
| ≤

|f
min,RI

IA
− f

min,MI

IA
|

)

 , ?
Change

1 0.30 0.35 0.05, Yes 0.325 0.0294 0.4118 0.0294 0 ≤ 0.3824, Yes LI = MI

2 0.325 0.35 0.025, Yes 0.3375 0.0294 0.4118 0.3823 0.3529 ≤ 0.0295, No RI = MI

3 0.325 0.3375 0.0125, Yes 0.3313 0.0294 0.3823 0.0294 0 ≤ 0.3529, Yes LI = MI

4 0.3313 0.3375 0.0062, Yes 0.3344 0.0294 0.3823 0.3823 0.3529 ≤ 0, No RI = MI

5 0.3313 0.3344 0.0031, Yes 0.3329 0.0294 0.3823 0.0294 0 ≤ 0.3529, Yes LI = MI

6 0.3329 0.3344 0.0015, Yes 0.3337 0.0294 0.3823 0.3529 0.3235 ≤ 0.0294, No RI = MI

7 0.3329 0.3337 0.0008, No STOP!! qstep = 0.3329; fmin

IA
 = 0.0294; fmin

IA
 = 0.3823
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i.e., the intra-cluster density ρ ≤ 1 − q. If 1 − < q (i.e., ρ > 1 − q), the cluster will not be 
penetrable (i.e., the bridge nodes cannot be made to adopt a decision) and will become 
a blocking cluster. Hence, in order to be able penetrate such blocking clusters of high 
intra-cluster density, it becomes imperative to include one or more bridge nodes of these 
blocking clusters as part of the set of initial adopters.

In Sect. 4.1, we noticed that the minimum fraction of nodes as initial adopters needed 
for complete information cascade increased in a step function pattern from f min

IA  to f min
IA  

and qstep (corresponding to f min
IA  ) is the last measurable value of q beyond which we 

needed to increase the minimum fraction of nodes as initial adopters from f min
IA  to f min

IA  
in order to accomplish complete information cascade. That is, when the intra-cluster 
densities (ρ values) of the clusters in the network were all less than or equal to 1 − qstep, 
we were able to accomplish complete information cascade with f min

IA  values ≤  f min
IA  . Any 

further increase in q (beyond qstep) would make the intra-cluster density of at least one 
cluster to become greater than 1 − q and we will not be able to penetrate such a cluster 
with f min

IA  fraction of initial adopters and will need to increase the minimum fraction 
of initial adopters to f min

IA  , with f min
IA  appreciably greater than f min

IA  for most of the net-
works. Hence, in order to capture the intra-cluster density of such blocking clusters, we 
refer to the jump zone (refer Figs. 3, 4) as the bounded area in the q versus f min

IA  distribu-
tion that encounters the largest increase in the f min

IA  values. The value of "1 − qstep" for a 
network could be thus used to assess the intra-cluster density of the blocking cluster(s) 
for the network. We propose that the 1 − qstep value for a network be called the Cascade 
Blocking Index (CBI) of the network (whose values range from 0 to 1), a quantitative 
measure of the intra-cluster density of the blocking cluster(s) of the network. The larger 
the CBI value for a network, the larger the intra-cluster density of the blocking cluster(s) 
of the network and vice-versa.

Cascade Blocking Index: information cascade versus infection spread

It is important to note that the CBI metric can be used to decide on the nature of val-
ues for the threshold fraction of adopted neighbors for accomplishing complete infor-
mation cascade. For networks with a lower CBI value, one could impose a larger value 
for the threshold fraction of adopted neighbors that are needed for a node to adopt a 
decision and be able to still accomplish complete information cascade (the bridge nodes 
of the clusters will have a larger fraction of neighbors that are outside the clusters and if 
these neighbors adopt a decision, the bridge nodes will also be in a position to adopt the 
decision). For networks with lower CBI value, it is thus possible to make the nodes to 
consensually adopt the unanimous decision (needed for accomplishing complete infor-
mation cascade) only after a majority of its neighbors adopt the same decision (i.e., the 
nodes need not be in a rush to adopt the decision when only a minority of their neigh-
bors have adopted). On the other hand, for networks with a larger CBI value, one would 
have to operate at relatively lower values for the threshold fraction of adopted neighbors 
to accomplish complete information cascade. That is, for networks with a larger CBI 
value, nodes (especially, the bridge nodes) may be forced to adopt the unanimous deci-
sion needed for complete information cascade even if a majority of its neighbors have 
not yet decided by then.
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From an epidemic standpoint, we do not want a virus/disease to be able to penetrate 
the clusters of a network and spread. In this context, if the bridge nodes are say vacci-
nated (to be immune to the disease; i.e., operating at q values closer to 1), unless all the 
neighbors become infected, the bridge nodes are not vulnerable to get infected and the 
virus/disease cannot penetrate through the clusters. For clusters with lower intra-cluster 
density (i.e., lower CBI values), the bridge nodes are expected to have a larger fraction of 
neighbors who are outside the cluster. If the bridge nodes are not immune to the disease 
(i.e., the q value at which the network can be operated is lower) and the network has a 
lower CBI value, it is possible for the bridge nodes to get infected even if a lower frac-
tion of the outside neighbors get infected and the disease can easily penetrate through 
the clusters. Thus, if the network has a lower CBI value, it is essential to immunize the 
bridge nodes of the clusters. On the other hand, if a network has a larger CBI value (i.e., 
a lower fraction of the neighbors for the bridge nodes are outside the clusters) and the 
bridge nodes are immune to the disease (i.e., the q value at which the network can be 
operated could be higher, closer to 1), it will be difficult for the infection to penetrate 
through a cluster from outside through these bridge nodes.

Quantitative analysis of the real‑world networks
We analyzed a suite of 40 real-world networks of diverse domains. Table 2 presents a 
listing of the 40 real-world networks along with the number of nodes and edges, their 
references, domain and the three-character code used to refer to these networks later in 
the paper. The networks analyzed are spread over several domains (the numbers inside 
the parenthesis indicate the number of networks analyzed from these domains) like co-
appearance networks (7), biological networks (4), collaboration networks (3), literature 
networks (2), employee networks (3), transportation networks (2), game network (1), 
geographical network (1), citation network (1), social networks (13) and web networks 
(3). All the networks are considered as undirected graphs and are connected (i.e., the 
vertices in a graph are reachable to each other and exist as a single component). Table 3 
(obtained by running the Jump Analyzer binary search algorithm of Sect.  4) presents 
the CBI = 1 − qstep, f min

IA  and f min
IA  values for the 40 real-world networks with respect to 

the degree (DEG) and betweenness (BWC) centrality metrics (for choosing the initial 
adopters).

Figure 5 plots the difference f min
IA − f min

IA  in the f min
IA  values in the vicinity of qstep val-

ues in the jump zones observed for the 40 real-world networks. We observe an appreci-
able difference (of 0.14 or more) in the f min

IA − f min
IA  values (with respect to both DEG 

and BWC) for 37 of the 40 real-world networks. The median of the f min
IA − f min

IA  val-
ues is observed to be 0.44 for DEG-based analysis and 0.32 for BWC-based analysis. We 
observe the difference to go as large as 0.70, justifying our association of the increase in 
the f min

IA  values in the vicinity of qstep to the cascade capacity of the blocking cluster(s) of 
the networks.

Analysis of the CBI values

Figure 6 displays the CBI values for the 40 real-world networks with respect to DEG and 
BWC. The median for both the CBI(DEG) and CBI(BWC) values is 0.50. We observe 
the CBI(DEG) values to be 0.50 or more for 30 of the 40 networks (i.e., for 75% of the 
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Table 2  Real-world networks used for the analysis

# Network name # Nodes # Edges References Domain Code

1 Word adjacency network 112 425 Newman (2006) Co-appearance net ADJ

2 Anna Karnenina network 138 493 Knuth (1993) Co-appearance net AKN

3 Jazz band network 198 2742 Geiser and Danon (2003) Co-appearance net JBN

4 Cat brain network 65 730 Scannell et al. (1995) Biological network CBN

5 C. Elegans neural network 297 2148 White et al. (1986) Biological network CEN

6 C. Elegans metabolic 
network

453 2025 Duch and Arenas (2005) Biological network CMN

7 Centrality literature network 118 613 Hummon et al. (1990) Literature network CLN

8 Copperfield network 87 406 Knuth (1993) Co-appearance net CFN

9 CS Department Aarhus 
Network

61 219 Magnani et al. (1303) Employee network CSA

10 Dolphin network 62 159 Lusseau et al. (2003) Social network DON

11 Dutch literature 1976 
network

35 80 Nooy (1999) Literature network DLN

12 EU air transportation 
network

418 1999 Cadrillo et al. (1344) Transportation net EUT

13 Facebook network 324 2218 Blagus et al. (2012) Social network FBN

14 Friendship ties in a hi-tech 
firm

33 147 Krackhardt (1999) Employee network FHT

15 Flensburg fjord biological 
food web

180 1577 Zander (2011) Web network BFW

16 Florida food web carbon 
exchange

128 2106 Ulanowicz and Donald 
(2005)

Web network FFW

17 Flying teams cadet network 48 170 Mareno (1960) Social network FTC

18 GD’96 network 180 229 Batagelj et al. (2006) Citation network GDN

19 Infectious socio-patterns 
network

309 1924 Isella et al. (2011) Social network ISP

20 Java dependency network 1538 8032 Batagelj et al. (2006) Collaboration net JDN

21 Karate club network 34 78 Zachary (1977) Social network KCN

22 Korea family planning 
network

35 84 Rogers and Kincaid (1980) Social network KFP

23 Les Miserables network 77 254 Knuth (1993) Co-appearance net LMN

24 Manufacturing company 
employee net

77 2326 Cross et al. (2004) Employee network MCE

25 ModMath network 30 61 Batagelj et al. (2006) Social network MMN

26 Perl developers network 839 2111 Failed (2009) Collaboration net PDL

27 US politics books network 105 441 Krebs (2003) Co-appearance net PBN

28 Primary school contact 
network

238 5539 Gemmetto et al. (2014) Social network PSN

29 Prison friendship network 67 182 MacRae (1960) Social network PFN

30 RVU email network 1133 10,903 Guimera et al. (2003) Collaboration net RVU

31 San Juan Sur family network 75 155 Loomis et al. (1953) Social network SJN

32 Senator press release 
network

92 477 Grimmer (2010) Co-appearance net SPR

33 Soccer World Cup 1998 
Network

35 118 Batagelj et al. (2006) Game network SWC

34 Taro Exchange Network 22 39 Schwimmer (1973) Social network TEN

35 UK Faculty Friendship 
Network

81 577 Nepusz et al. (2008) Social network UKF

36 US Airports 1997 Network 332 2126 Batagelj et al. (2006) Transportation net APN

37 US States Network 49 107 Meghanathan (2017a) Geographical net USS

38 Web Graph of Amazon 
Pages

2879 3886 Subelj and Bajec (2012) Web network WGA​
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Table 2  (continued)

# Network name # Nodes # Edges References Domain Code

39 Residence Hall Friendship 
Network

217 1839 Freeman et al. (1998) Social network RHF

40 Yeast Transcription Network 4441 12,873 Bhardwaj et al. (2010) Biological network YTN

Table 3  Results obtained for the Real-World Networks

Results with respect to DEG centrality Results with respect to BWC centrality

# Net. code CBI: 1 − qstep f
min

IA f
min

IA

# Net. code CBI: 1 − qstep f
min

IA f
min

IA

1 ADJ 0.4000 0.1607 0.6339 1 ADJ 0.3336 0.2411 0.4911

2 AKN 0.5000 0.0435 0.7464 2 AKN 0.5000 0.0435 0.7101

3 JBN 0.5000 0.2273 0.9394 3 JBN 0.3336 0.4040 0.7121

4 CBN 0.3336 0.3846 0.8000 4 CBN 0.3750 0.3077 0.4462

5 CEN 0.4000 0.1549 0.3367 5 CEN 0.3750 0.1650 0.5051

6 CMN 0.7500 0.0022 0.6534 6 CMN 0.6672 0.1656 0.8764

7 CLN 0.3336 0.2627 0.7797 7 CLN 0.4000 0.1441 0.3729

8 CFN 0.5000 0.3103 0.8621 8 CFN 0.5563 0.0575 0.5862

9 CSA 0.5000 0.0328 0.0492 9 CSA 0.5000 0.0328 0.0492

10 DON 0.5000 0.1774 0.7903 10 DON 0.5000 0.2097 0.7581

11 DLN 0.5000 0.0857 0.8000 11 DLN 0.5000 0.1714 0.4286

12 EUT 0.5000 0.0311 0.0550 12 EUT 0.5000 0.0383 0.0502

13 FBN 0.6930 0.0370 0.4321 13 FBN 0.6250 0.1420 0.5833

14 FHT 0.5000 0.1212 0.4848 14 FHT 0.2500 0.3939 0.6364

15 BFW 0.6000 0.0444 0.4611 15 BFW 0.1672 0.2667 0.6833

16 FFW 0.2922 0.3125 0.7656 16 FFW 0.1539 0.4531 0.8594

17 FTC 0.5000 0.2708 0.5000 17 FTC 0.5719 0.0833 0.3333

18 GDN 0.5000 0.0444 0.6556 18 GDN 0.5000 0.0444 0.5778

19 ISP 0.5719 0.3463 0.7282 19 ISP 0.5719 0.0874 0.4919

20 JDN 0.8578 0.0007 0.3875 20 JDN 0.5000 0.2341 0.7191

21 KCN 0.6672 0.0294 0.3824 21 KCN 0.3336 0.3529 0.6176

22 KFP 0.6672 0.0571 0.7714 22 KFP 0.6672 0.1143 0.3143

23 LMN 0.7148 0.0130 0.3636 23 LMN 0.7148 0.0130 0.4545

24 MCE 0.3672 0.4545 0.6494 24 MCE 0.3688 0.3766 0.5455

25 MMN 0.5000 0.2667 0.9000 25 MMN 0.5000 0.2000 0.7333

26 PDL 0.5000 0.0083 0.4994 26 PDL 0.5000 0.0083 0.4994

27 PBN 0.5000 0.0952 0.5333 27 PBN 0.5000 0.1714 0.6000

28 PSN 0.4766 0.1933 0.8235 28 PSN 0.4766 0.2101 0.5084

29 PFN 0.5000 0.2836 0.8806 29 PFN 0.6672 0.0299 0.4179

30 RVU 0.5000 0.3875 0.8482 30 RVU 0.5000 0.2365 0.9126

31 SJN 0.5000 0.2400 0.8667 31 SJN 0.6000 0.0800 0.3600

32 SPR 0.4000 0.1739 0.6957 32 SPR 0.2500 0.5217 0.7935

33 SWC 0.3336 0.2000 0.8000 33 SWC 0.2500 0.4857 0.7714

34 TEN 0.6672 0.0455 0.4091 34 TEN 0.6672 0.0455 0.4545

35 UKF 0.5719 0.1111 0.5556 35 UKF 0.2227 0.4691 0.7654

36 APN 0.7500 0.2440 0.5151 36 APN 0.6672 0.0572 0.6657

37 USS 0.6672 0.0408 0.3673 37 USS 0.3336 0.5510 0.8367

38 WGA​ 0.6203 0.0031 0.0049 38 WGA​ 0.6961 0.0024 0.0035

39 RHF 0.3281 0.4885 0.6866 39 RHF 0.2859 0.5161 0.8203

40 YTN 0.5000 0.0059 0.3605 40 YTN 0.5000 0.0065 0.4970



Page 17 of 33Meghanathan ﻿Appl Netw Sci            (2020) 5:97 	

networks) and the CBI(BWC) values to be 0.50 or more for 24 of the 40 networks (i.e., 
for 60% of the networks). Thus, for about 2/3rds of the real-world networks, we need to 
operate at lower values for the threshold fraction (1-CBI; q < 0.50) of adopted neighbors 
and the corresponding f min

IA  fraction of initial adopters to accomplish complete informa-
tion cascade. When we apply the qualitative discussion of Sect.  4.3 (CBI: Information 
Cascade vs. Infection Spread) to the results observed in this section, we can say that for 
about 2/3rds of the 40 real-world networks analyzed in this paper (that have a larger 
CBI value), a bridge node is more likely to adopt the unanimous decision (needed for 
complete information cascade) when less than half of its neighbors have adopted the 
decision. On the other hand, from an epidemic standpoint, 2/3rds of the 40 real-world 
networks (that have a larger CBI value) are not vulnerable for an infection spread if the 
bridge nodes of the clusters are vaccinated to the related virus/disease.

With regards to the difference in the CBI values with respect to the DEG and BWC 
metrics, we observe no difference in the CBI(DEG) and CBI(BWC) values for 11 of the 

Fig. 5  fmin

IA
− f

min

IA
 values for the real-world networks with respect to DEG and BWC metrics

Fig. 6  Cascade Blocking Index (CBI) values for the real-world networks with respect to DEG and BWC metrics
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40 real-world networks (i.e., for 28% of the networks) and a difference of more than 
0.10 for only 10 of the 40 real-world networks (i.e., for only 25% of the networks). The 
median difference in the CBI values is 0.049. On the basis of the raw values, we observe 
the CBI(DEG) values to be numerically larger than the CBI(BWC) values for 20 of the 40 
real-world networks (i.e., for 50% of the networks). We can thus conclude the choice of 
the centrality metric would only have at most a moderate impact on the CBI values for a 
network. The relatively lower CBI(BWC) values for certain networks could be due to the 
larger BWC values for the bridge nodes of the clusters and their preferential inclusion 
in the set of initial adopters by the Minimum Initial Adopters algorithm. As a result, for 
networks with relatively lower CBI(BWC) values, there is a relatively better chance for 
accomplishing complete information cascade with larger q values (lowering the 1 − qstep 
values) when nodes with larger BWC are considered for inclusion to the set of initial 
adopters.

CBI values versus intra‑cluster densities of the clusters

We ran the Louvain community detection algorithm (Blondel et al. 2008) on the 40 real-
world networks and determined the intra-cluster densities of the clusters (identified by 
the Louvain algorithm) in these networks. The composition of the clusters/communi-
ties of a network could vary with the community detection algorithm used to determine 
them. We chose to use the Louvain community detection algorithm as it is a well-known, 
computationally-less intensive and commonly used algorithm in the literature and in 
software packages [like Gephi (Gephi 2020)] to determine modular clusters. The Lou-
vain community detection algorithm is a hierarchical community detection algorithm 
that recursively merges the communities (initially, each node is in its own community) 
such that the sum of the modularity scores of the communities is maximized. A cluster/
community has a larger modularity score if the intra-cluster density of the cluster is sig-
nificantly larger than the inter-cluster density. Recall, the intra-cluster density for a clus-
ter is computed as the minimum of the intra-cluster densities of the bridge nodes of the 
cluster, and the intra-cluster density for a node (including a bridge node) in a cluster is 
the fraction of its neighbor nodes that are within the same cluster. Figure 7 plots the dis-
tribution of the intra-cluster densities of the clusters (in yellow colored-smaller circles) 
in the 40 real-world networks along with the CBI(DEG) and CBI(BWC) values in red 
and green-colored larger circles respectively. If the CBI(DEG) and CBI(BWC) values for 
a network are the same, the red and green circles are placed on top of each other.

With regards to DEG or BWC, we observe CBI(DEG) to be a better choice to quantify 
the intra-cluster densities of the blocking clusters of the network: the CBI(DEG) values 
appear as an upper bound for the intra-cluster densities for about 32 of the 40 networks 
(i.e., for 80% of the networks); the CBI(BWC) values appear as an upper bound for the 
intra-cluster densities for about 27 of the 40 networks (i.e., for slightly more than 2/3rds 
of the networks). Either way, the largest of the intra-cluster densities of the clusters 
(these are the blocking clusters that decide the success or failure of information cascade 
for a given threshold fraction of adopted neighbors) determined for at least 2/3rds of the 
real-world networks are less than or equal to the CBI values (with respect to both DEG 
and BWC) reported in our research.
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Figure 8 plots the largest of the intra-cluster densities of the Louvain clusters (could 
be considered as the intra-cluster density of the blocking cluster) of the real-world 
networks versus the CBI(DEG) and CBI(BWC) values. Table 4 presents the correla-
tion coefficient values observed between these measures: the upper diagonal presents 
the Pearson’s (P) linear regression-based correlation coefficient values and the lower 
diagonal presents the Spearman’s (S) rank-based correlation coefficient values. We 
observe a strong positive correlation (correlation coefficient values > 0.7) between the 
CBI(DEG) values for the 40 real-world networks and the largest of the intra-cluster 
densities of the Louvain clusters in these networks. A strong positive correlation also 
implies that we could predict the intra-cluster density of the blocking cluster of a net-
work using its CBI value as well as the ranking of the networks based on their CBI 

Fig. 7  Comparison of the intra-cluster densities of the clusters (determined using the Louvain algorithm) of 
the real-world networks with the CBI(DEG) and CBI(BWC) values
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values would be almost the same as the ranking of the networks based on the intra-
cluster densities of the blocking clusters of the networks.

We observe a moderately positive correlation (correlation coefficient values in the 
range of 0.5, …, 0.7) between the CBI(BWC) values for the 40 real-world networks and 
the largest of the intra-cluster densities of the Louvain clusters in these networks. We 
also observe a moderately positive correlation between the CBI(DEG) and CBI(BWC) 
values for the 40 real-world networks, justifying our observations in Sect. 5.1 that the 
choice of the centrality metric could at most have a moderate impact on the CBI values 
of the networks. Putting together the observations in Sects. 5.1 and 5.2, we could con-
clude CBI(DEG) to be an ideal choice for quantifying as well as predicting/ranking the 
intra-cluster densities of the blocking clusters of complex real-world networks.

Distribution of the initial adopters in the Louvain clusters

For each real-world network and centrality metric (DEG and BWC), we determine the 
distribution of the initial adopter nodes corresponding to the f min

IA  value (whose cor-
responding threshold fraction of adopted neighbors is qstep = 1-CBI) in the clusters 
computed using the Louvain algorithm. Table 5 displays the number of initial adopters 
(corresponding to the f min

IA  value) in each of the Louvain clusters for the real-world net-
works. We refer to "Fraction of IA clusters ( f ClustersIA  )" as the ratio of the number of clus-
ters that have at least one initial adopter node in them and the total number of clusters. 
We use the notations f ClustersIA,DEG  and f ClustersIA,BWC  to respectively indicate the fraction of IA clus-
ters observed with respect to the DEG and BWC centrality metrics. Figure 9i plots the 
f ClustersIA,DEG  and f ClustersIA,BWC  in the decreasing order of their values for the real-world networks: 
the f ClustersIA,DEG  and f ClustersIA,BWC  values were equal to 1.00 (implying there was at least one initial 
adopter in each cluster) for respectively 19 and 27 of the 40 real-world networks, and 

Fig. 8  Largest of the intra-cluster densities of the Louvain clusters versus the CBI values for the complex 
real-world networks

Table 4  Pearson’s (P) and Spearman’s (S) correlation coefficient values

Largest of the intra-cluster densities 
of the Louvain clusters

CBI(DEG) CBI(BWC)

Largest of the intra-cluster densities 
of the Louvain clusters

1.0 0.7250 (P) 0.5129 (P)

CBI(DEG) 0.7181 (S) 1.0 0.5411 (P)

CBI(BWC) 0.5315 (S) 0.5572 (S) 1.0
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greater than 0.5 for respectively 31 and 36 of the real-world networks. From both Fig. 9-
(i, ii), we could also infer that for a majority of the real-world networks (35 of the 40 real-
world networks), the f ClustersIA,BWC  values are greater than or equal to the f ClustersIA,DEG  values.

Table 5  Distribution of  the  initial adopter nodes (chosen based on  the  DEG and  BWC 
centrality metrics) in the Louvain clusters of the real-world networks

# Net. code # Initial adopters/cluster 
deg-based selection

f
Clusters

IA,DEG
# Net. code # Initial adopters/cluster 

BWC-based selection
f
Clusters

IA,BWC

1 ADJ 3, 5, 3, 3, 2, 2 1.00 1 ADJ 5, 6, 5, 3, 3, 5 1.00

2 AKN 1, 2, 1, 1, 1, 0 0.83 2 AKN 1, 2, 1, 1, 1, 0 0.83

3 JBN 6, 15, 20, 4 1.00 3 JBN 21, 25, 29, 6 1.00

4 CBN 4, 10, 6, 3 1.00 4 CBN 5, 7, 5, 3 1.00

5 CEN 2, 6, 5, 10, 3, 18 1.00 5 CEN 2, 6, 7, 23, 12, 22 1.00

6 CMN 1, 0, 0, 0, 0, 0, 0, 0, 0 0.11 6 CMN 10, 6, 12, 18, 2, 6, 10, 3, 8 1.00

7 CLN 10, 3, 3, 4, 2, 6, 3 1.00 7 CLN 3, 1, 3, 3, 3, 2, 2 1.00

8 CFN 1, 1, 1, 6, 2, 4, 12 1.00 8 CFN 0, 1, 0, 1, 0, 2, 2 0.57

9 CSA 2, 0, 0, 0 0.25 9 CSA 2, 0, 0, 0 0.25

10 DON 3, 0, 4, 3 0.75 10 DON 2, 2, 4, 5 1.00

11 DLN 0, 0, 0, 3, 0 0.20 11 DLN 1, 0, 2, 3, 0 0.60

12 EUT 2, 3, 2, 1, 2, 1, 1, 1 1.00 12 EUT 3, 1, 2, 1, 5, 1, 2, 1 1.00

13 FBN 0, 1, 0, 0, 1, 1, 2, 8 0.63 13 FBN 2, 6, 1, 1, 9, 4, 8, 15 1.00

14 FHT 0, 2, 2, 0 0.50 14 FHT 1, 4, 3, 5 1.00

15 BFW 1, 2, 0, 4, 0 0.60 15 BFW 13, 28, 13, 9, 7 1.00

16 FFW 8, 7, 7, 19 1.00 16 FFW 12, 15, 21, 24 1.00

17 FTC 1, 4, 2, 4 1.00 17 FTC 1, 3, 2, 3 1.00

18 GDN 1, 1, 1, 1, 1, 1, 1, 1 1.00 18 GDN 1, 1, 1, 1, 1, 1, 1, 1 1.00

19 ISP 6, 43, 36, 32 1.00 19 ISP 11, 11, 12, 3 1.00

20 JDN 2, 1, 3, 3, 3, 0, 0, 3, 0, 0, 7 0.64 20 JDN 38, 54, 73, 44, 29, 2, 8, 10, 26, 
22, 2, 51, 1

1.00

21 KCN 0, 0, 0, 1 0.25 21 KCN 3, 4, 1, 4 1.00

22 KFP 0, 2, 0, 0, 0 0.20 22 KFP 0, 2, 0, 1, 1 0.60

23 LMN 0, 0, 0, 0, 1, 0 0.17 23 LMN 0, 0, 0, 0, 1, 0 0.17

24 MCE 2, 3, 15, 11, 10 1.00 24 MCE 2, 3, 12, 9, 9 1.00

25 MMN 1, 1, 1, 2, 2 1.00 25 MMN 1, 0, 2, 2, 1 0.80

26 PDL 1, 1, 1, 1, 2, 1, 0, 0, 0 0.67 26 PDL 1, 1, 1, 1, 2, 1, 0, 0, 0 0.67

27 PBN 1, 4, 0, 5 0.75 27 PBN 4, 7, 1, 6 1.00

28 PSN 22, 4, 15, 14, 1 1.00 28 PSN 24, 5, 12, 6, 7 1.00

29 PFN 4, 2, 2, 2, 1, 2, 2, 2 1.00 29 PFN 0, 1, 0, 1, 0, 0, 0,0 0.25

30 RVU 6, 12, 7, 4 1.00 30 RVU 5, 10, 8, 3 1.00

31 SJN 2, 4, 2, 5, 3, 1, 2 1.00 31 SJN 1, 1, 1, 2, 0, 0, 1 0.71

32 SPR 8, 1, 4, 1, 3, 0 0.83 32 SPR 15, 2, 12, 4, 9, 6 1.00

33 SWC 2, 1, 2, 1, 0 0.80 33 SWC 4, 2, 5, 3, 3 1.00

34 TEN 1, 0, 0, 0, 0 0.20 34 TEN 0, 0, 1, 0, 0 0.20

35 UKF 2, 1, 3, 4 1.00 35 UKF 12, 1, 15, 13 1.00

36 APN 39, 18, 13, 0, 4, 3, 2 0.86 36 APN 3, 7, 2, 1, 2, 2, 2 1.00

37 USS 1, 0, 0, 0, 0, 1 0.33 37 USS 5, 5, 4, 4, 4, 5 1.00

38 WGA​ 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1 0.77 38 WGA​ 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1 0.54

39 RHF 16, 23, 18, 6, 18, 21 1.00 39 RHF 20, 27, 20, 8, 16, 21 1.00

40 YTN 2, 4, 1, 3, 0, 2, 0, 2, 1, 1, 6, 0, 1, 
1, 2, 0, 0

0.70 40 YTN 2, 4, 2, 4, 0, 2, 0, 3, 1, 1, 5, 1, 
1, 1

0.85
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Figure 10 shows the distribution of the nodes (nodes with larger DEG and BWC values 
are bigger in size) in the different Louvain clusters of the four sample real-world net-
works that were shown in Fig. 3 (Step Function Patterns Observed for the q versus Dis-
tribution for Real-World Networks with respect to Degree Centrality). We observe nodes 
with larger DEG (in Fig. 10-i) and BWC (in Fig. 10-ii) values (that are candidates to be 
selected as the initial adopter nodes) to be distributed in all the Louvain clusters. Though 
we just present a sample of the real-world networks in Fig. 10-(i) and (ii), from Figs. 9 
and 10, we could confidently conclude that the initial adopters chosen on the basis of the 
DEG or BWC metrics are not concentrated in just one cluster and are spread over multi-
ple clusters of the real-world networks.

We now analyze the impact of the fraction of IA clusters on the CBI, f min
IA  and f min

IA  
values observed for the real-world networks. Figure 11 presents plots of f ClustersIA,DEG  versus 

Fig. 9  Distribution of the f Clusters
IA,DEG

 and f Clusters
IA,BWC

 values for the real-world networks

nna Karnenina Net.

(i) Node Size is Proportional to the Degree (DEG) Centrality

a A b Karate Club Net. c Soccer World Cup'98 Net.   d Copperfield Net.

a Anna Karnenina Net. b Karate Club Net. c Soccer World Cup'98 Net.  d Copperfield Net.

(ii) Node Size is Proportional to the Betweenness (BWC) Centrality

Fig. 10  Distribution of the nodes in the louvain clusters of the real-world networks
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CBI(DEG) and f ClustersIA,BWC  versus CBI(BWC) measures, wherein we observe only at most a 
moderate correlation (Pearson’s correlation coefficient less than 0.60) between the meas-
ures. This implies that the CBI value for a real-world network is not heavily dependent 
on the presence or absence of one or more initial adopters in any particular cluster of the 
real-world networks. Likewise, Fig. 12 presents plots of f ClustersIA,DEG  versus the f min

IA  values 

and the f min
IA  values for DEG and BWC-based initial adopter selection (denoted as 

f min
IA,DEG  , f min

IA,BWC  , f min
IA,DEG  and f min

IA,BWC  in Fig. 12), wherein we only observe weak-moder-

ate correlation (Pearson’s correlation coefficients in the range of 0.4 to 0.6) in the case of 
DEG and no correlation (Pearson’s correlation coefficients in the range of 0.0 to 0.1) in 
the case of BWC.

Analysis of the computation times of the algorithms for the real‑world networks

In this sub section, we discuss the computation times observed for the binary search 
approach of Algorithm  3 to determine the qstep value for a real-world network with 
respect to a centrality metric (used to choose the initial adopters) as well as for the 
binary search approach of Algorithm  2 (which uses Algorithm  1 for running iterative 
information cascade) to determine the f min

IA  and f min
IA  values needed to operate the net-

work to accomplish complete information cascade at qstep and the next measurable value 
of qstep respectively. These computation times are reported in Table 6. All the three algo-
rithms (Algorithms 1, 2 and 3) are implemented in Java and run on a desktop Windows 
7 computer (Intel i7-2620 M CPU @ 2.70 GHz with 8 GB RAM). The computation times 

Fig. 11  Fraction of Louvain clusters with at least one initial adopter (IA) node versus Custer blocking index 
(CBI) values for the real-world networks

Fig. 12  Fraction of Louvain clusters with at least one initial adopter (IA) node versus the fmin

IA
 and fmin

IA
 values 

for the real-world networks
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of the centrality metrics (DEG and BWC) of the vertices in the real-world networks are 
not accounted for in the computation times reported in Table 6.

For both the centrality metrics and for each of the 40 real-world networks, we 
observe the computation times for f min

IA  to be greater than that of f min
IA  . Though the 

Table 6  Computation times for the qstep, fmin

IA
 and fmin

IA
 values for the real-world networks

Computation times (milliseconds) with respect 
to DEG centrality

Computation times (milliseconds) with respect 
to BWC centrality

# Net. code qstep f
min

IA f
min

IA

# Net. code qstep f
min

IA f
min

IA

1 ADJ 22.2 14.4 3.6 1 ADJ 34.9 16.5 4.5

2 AKN 15.8 4.5 2.2 2 AKN 15.6 5.1 2.4

3 JBN 42.8 20.3 3.6 3 JBN 70.1 20.9 4.5

4 CBN 12.6 2.5 0.7 4 CBN 13.8 2.6 2.0

5 CEN 161.9 64.1 23.0 5 CEN 175.3 45.9 11.1

6 CMN 84.2 25.1 9.4 6 CMN 62.5 12.7 6.4

7 CLN 9.5 1.6 0.5 7 CLN 9.9 2.9 1.1

8 CFN 2.8 0.8 0.4 8 CFN 5.9 1.4 0.3

9 CSA 2.4 0.3 0.3 9 CSA 1.8 0.3 0.2

10 DON 2.7 1.0 0.3 10 DON 1.6 0.6 0.2

11 DLN 1.0 0.3 0.1 11 DLN 1.1 0.2 0.2

12 EUT 81.3 10.4 10.5 12 EUT 78.0 18.7 9.4

13 FBN 167.5 35.7 14.0 13 FBN 84.3 21.3 5.7

14 FHT 1.1 0.2 0.1 14 FHT 0.6 0.3 0.2

15 BFW 19.2 8.3 1.8 15 BFW 14.4 2.9 1.2

16 FFW 29.6 7.9 1.8 16 FFW 20.3 4.1 1.8

17 FTC 2.1 0.4 0.2 17 FTC 3.7 0.5 0.2

18 GDN 8.4 2.6 1.2 18 GDN 7.5 2.1 0.8

19 ISP 77.9 18.2 5.5 19 ISP 177.5 32.1 6.9

20 JDN 1032.1 146.6 84.2 20 JDN 536.7 136.6 58.0

21 KCN 1.1 0.2 0.1 21 KCN 0.8 0.1 0.1

22 KFP 1.6 0.3 0.1 22 KFP 1.6 0.2 0.2

23 LMN 7.9 1.1 0.7 23 LMN 6.9 0.9 0.3

24 MCE 11.3 2.0 1.1 24 MCE 13.0 1.8 1.0

25 MMN 1.2 0.2 0.1 25 MMN 0.7 0.2 0.1

26 PDL 152.4 66.4 14.3 26 PDL 148.6 43.4 13.8

27 PBN 8.1 3.0 0.7 27 PBN 6.7 2.7 0.6

28 PSN 172.2 48.1 4.5 28 PSN 214.0 30.9 7.8

29 PFN 2.0 0.6 0.2 29 PFN 4.4 0.7 0.4

30 RVU 467.0 132.0 50.7 30 RVU 484.9 209.1 37.3

31 SJN 2.8 0.6 0.3 31 SJN 6.5 1.3 0.7

32 SPR 8.3 2.3 0.8 32 SPR 3.4 0.6 0.4

33 SWC 1.2 0.2 0.1 33 SWC 0.7 0.3 0.1

34 TEN 0.5 0.1 0.1 34 TEN 0.5 0.1 0.1

35 UKF 10.8 1.9 0.6 35 UKF 4.3 1.0 0.4

36 APN 38.8 7.5 4.9 36 APN 70.9 11.2 3.5

37 USS 3.2 0.6 0.3 37 USS 1.7 0.3 0.2

38 WGA​ 2109.5 283.9 249.2 38 WGA​ 1903.3 295.1 292.3

39 RHF 77.4 14.6 6.7 39 RHF 37.5 6.7 3.1

40 YTN 7047.3 3556.1 612.1 40 YTN 6616.5 3227.8 480.9
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number of iterations for Algorithm 2 (Binary Search Algorithm to Determine the Mini-
mum Number of Initial Adopters for a Given Threshold Fraction of Adopted Neighbors: 
q) to compute f min

IA  and f min
IA  is ln(V), where V is the number of vertices in the net-

work, the relatively larger computation time for f min
IA  could be attributed to the larger 

number of iterations of Algorithm 1 (Iterative Algorithm to Conduct Information Cas-
cade for a Given Set of Initial Adopters: IA and a Threshold Fraction of Adopted Neigh-
bors: q) for each iteration of Algorithm 2. Remember that in Algorithm 1, we conclude 
that complete information cascade is not accomplishable for a particular value of q 
and IA if there are no newly adopted vertices in the latest iteration. When operated 
at q (threshold fraction of adopted neighbors) values less than or equal to qstep and a 
smaller sized set of initial adopters, it is more likely that the number of newly adopted 
vertices in each iteration of Algorithm 1 would be greater than 0: leading to relatively 
more iterations before we could conclude whether complete information cascade is 
accomplishable or not for a particular value of q. On the other hand, when operated at 
q values above qstep and a larger sized set of initial adopters, we could decide whether 
complete information cascade is accomplishable or not for a particular value of q by 
going through relatively fewer iterations of Algorithm 1. When operated with a search 
space of 0.05 and termination threshold ε = 0.001, Algorithm 3 (Binary Search Algo-
rithm to Analyze the Jump Zone of a q versus Distribution) runs Algorithm 2 exactly 
six times (see Sect. 4.1 for more details). Of course, as discussed above, the computa-
tion time for Algorithm 2 depends on the q value considered. Hence, we expect the 
computation time of Algorithm 3 for any real-world network and centrality metric to 
be greater than the computation time reported for f min

IA  (corresponding to one run of 
Algorithm 2) for the particular real-world network but less than or equal to six times 
the computation time for f min

IA .
An interesting observation in Table 6 is that for more than half of the real-world net-

works, the computation times reported for any of the three measures (qstep, f min
IA  , f min

IA  ) 
are relatively lower when the BWC metric is used to choose the initial adopters com-
pared to the DEG metric. This is because the qstep values for at least 50% of the real-
world networks with respect to the BWC metric are observed to be larger than those 
observed with respect to the DEG metric. Based on the earlier discussion in this sub 
section, Algorithm 1 takes relatively less time to decide whether or not complete infor-
mation cascade is accomplishable when operated at a larger q value. It is thus logical to 
observe relatively lower computation times for the qstep, f min

IA  and f min
IA  values for the 

real-world networks when the initial adopters are chosen with respect to the BWC met-
ric. Note that, as mentioned earlier, we did not take into consideration the computation 
times for the centrality metrics (DEG or BWC) that are used to choose the set of initial 
adopters. It is well-known in the literature that BWC is a computationally-heavy metric 
(Meghanathan 2017b) and DEG is a computationally-light metric. If we were to incor-
porate the computation times of the centrality metrics in the computation times of the 
qstep, f min

IA  and f min
IA  measures, it would skew the values and we will not be able to make 

any inferential observation.
We seek to model the computation times for each of the qstep, f min

IA  and f min
IA  measures 

reported in Table 6 as a function of the number of nodes (V) in the network. After try-
ing different models, we observe the model for computation time t = a*Vb to be the most 
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closest fit with R2 values above 0.90, wherein the coefficients a and b vary depending 
on the measure (qstep, f min

IA  and f min
IA  ) and centrality metric (DEG or BWC) considered. 

Figure 13-(i) and (ii) present plots of the # vertices (V) versus the computation time (t) 
values for each of the above three measures with respect to DEG and BWC respectively; 
the models that we fit for each of these six plots are shown below the plots. The models 
for the computation times (polynomial functions of the number of vertices in the graph, 
with degree less than 2) clearly indicate the scalability of the binary search-based algo-
rithms 2 and 3 proposed in this research.

The theoretical time complexities of the well-known clustering algorithms in the lit-
erature range from O(E): Louvain algorithm (Blondel et al. 2008) to O(E2V): Girvan-
Newman algorithm (Newman 2004), where V and E are respectively the number of 
vertices and edges in a network. For dense graphs (Cormen et al. 2009): E = O(V2) and 
for sparse graphs (Cormen et al. 2009): E = O(V). The theoretical time complexity of 
the proposed binary search algorithms 2 and 3 (see Sects. 22–4 is O(E*VlogV), which 
falls in between the extremes of O(E) and O(E2V). Moreover, the actual time com-
plexities (empirical models) of algorithms 2 and 3 (polynomials with degree greater 
than one, but less than two, as indicated in Fig. 13) are all observed to be much lower 
than E*VlogV, the theoretical upper bound. Thus, the empirical models of the compu-
tation times for the qstep, f min

IA  and f min
IA  measures presented in this sub section clearly 

demonstrate the suitability of the proposed binary search algorithms to run for very 
larger networks (with the number of nodes much greater than the ones studied in this 
paper) and justify our claim that the CBI values be considered a (perhaps computa-
tionally-light) quantitative measure of the intra-cluster density of the blocking clus-
ters of a network. Even for a network of 100,000 nodes, the computation times (on a 

t(qstep) = 0.0030 * V1.7380             t( min
IAf ) = 0.0005 * V1.8057 t( min

IAf ) = 0.0003 * V1.7390

R2 = 0.9335 R2 = 0.9106 R2 = 0.9496

(i) Degree Centrality (DEG)-based Selection of Initial Adopters

t(qstep) = 0.0026 * V 1.7525 t( min
IAf ) = 0.0004 * V1.8330 t( min

IAf ) = 0.0004 * V 1.6602

R2 = 0.9165  R2 = 0.9161 R2 = 0.9263

(ii) Betweenness Centrality (BWC)-based Selection of Initial Adopters

Fig. 13  Empirical modeling of the computation times for the qstep, fmin

IA
 and fmin

IA
 values
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regular desktop computer with Intel i7-2620 M CPU @ 2.70 GHz with 8 GB RAM) for 
the qstep, f min

IA  and f min
IA  values would be close to 25 min, 9 min and 3 min respectively 

for DEG-based selection of initial adopters and would be close to 25 min, 10 min and 
2 min respectively for BWC-based selection of initial adopters.

Related work
In Jalili and Perc (2017), the authors quantified the spreading influence of a node as the 
fraction of nodes that adopt a decision based on the decision adopted by the node. They 
observed a positive correlation between the degree (DEG) and betweenness (BWC) cen-
trality metrics versus the spreading influence of a node. In Yang and Leskovec (2010), 
the authors observed that for effective dissemination of information, the connections 
of the initial adopter nodes are more important than the number of initial adopters. In 
Ghasemiesfeh et al. (2013), the authors observed that for the complex contagion model 
that is also used in this paper (a node adopts a decision only when the fraction of neigh-
bors that have adopted the decision is greater than or equal to a threshold), the diffusion 
speed depends on the distribution of the weak ties [nodes with larger BWC are consid-
ered to be weak ties in a network (Easley and Kleinberg 2010)]. In Bakshy et al. (2012), 
the effect of tie strength on information sharing and diffusion in Facebook was studied. 
It was observed that strong ties (friends who interacted more frequently) were effective 
in information cascade within clusters, whereas weak ties (friends who did not inter-
act more frequently) were effective in information cascade across clusters. It was also 
observed that the probability of sharing of a link by a user increases with the number of 
sharing friends. In Watts (2002), it was observed that increased heterogeneity in the ’q’ 
values (threshold fraction of adopted neighbors needed for a node to adopt a decision) 
reduces the chances of success in accomplishing complete information cascade (note 
that we use the same value of ’q’ for all the nodes in the network), whereas increased 
heterogeneity among nodes with respect to degree makes a network relatively less vul-
nerable to information cascade. In a prior work (Meghanathan 2019), we observed that 
real-world networks are more dissortative with respect to the remaining degree of the 
vertices (one less than the degree of a vertex) and the betweenness centrality metric, and 
more assortative with respect to the eigenvector (Bonacich 1987) and closeness (Free-
man 1979) centrality metrics. As a result, it is very less likely that the strategy of select-
ing nodes in the decreasing order of their DEG or BWC values to form the set of initial 
adopters would lead to all the nodes from the same cluster being selected. Using all of 
the above observations as guidelines, we decided to use the DEG and BWC metrics as 
the basis to choose the initial adopters.

Though the terminologies "information diffusion" and "information cascade" are 
sometimes interchangeably used in the literature, a recent work (Buskens 2019) clearly 
distinguished information diffusion from information cascade [referred to as informa-
tion appreciation in Buskens (2019)] as well as explained the issue of selection of initial 
adopters for these two phenomena. Information diffusion is a phenomenon in which the 
information has to just reach all the nodes in the network; whereas Information cascade 
is a phenomenon wherein the nodes are required to adopt/accept the information and 
propagate further. The complex contagion model used in this paper is one of the com-
monly used models for information cascade. For information cascade, there needs to be 
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some redundancy in the channels through which information propagates (to ensure a 
threshold fraction of the neighbors of a node have adopted/accepted the information 
before the node does so); whereas for information diffusion, redundancy in the number 
of channels through which information propagates could actually slow down the spread. 
For faster information diffusion with minimal redundancy, it would be more prudent to 
choose the initial adopters spread over in different clusters. On the other hand, for com-
plete information cascade (which is the focus of this paper), due to the need for redun-
dancy to accept the information and propagate further, it would be more effective to 
include one or more bridge nodes of the clusters to be part of the set of initial adopters.

In Chesney (2017), the author came up with the notion of the "cascade capacity of a 
node" which in the context of this paper is the maximum q value that we could employ 
for a network and accomplish complete information cascade by starting with the node as 
the only initial adopter. Like centrality metrics, each node would have a different cascade 
capacity depending on its position in the network vis-a-vis its neighbors. A simulation-
based iterative procedure was proposed in Chesney (2017) to determine the cascade 
capacities of the individual nodes in a network. The cascade capacity of a node was 
observed to be weakly correlated with centrality metrics such as DEG and BWC that are 
typically used to choose the initial adopters. Like the DEG and BWC metrics, the cas-
cade capacity of a node is a valuable information that could also be considered to choose 
the set of initial adopters and we intend to explore this in our future research. However, 
the time complexity to determine the cascade capacity of a node is not formally eval-
uated in Chesney (2017). As the time complexity will be overwhelming if one were to 
adopt a brute force approach to determine the cascade capacity of the nodes on a node-
by-node basis, as part of future work, we plan to investigate the relationship between the 
cascade capacity of the nodes and the CBI value for a network and accordingly develop 
binary search approaches exploiting any such relationship that might exist between the 
two measures and determine the cascade capacity of the nodes in an efficient manner.

In Watts and Dodds (2007), it was observed that high-degree nodes play a critical 
role to choose an appropriate value for the fraction of initial adopters needed to induce 
complete information cascade in random networks. Though the above work was done 
primarily for random networks, the theoretical observation made in Watts and Dodds 
(2007) is also observed to hold good for the real-world networks analyzed in our 
research. The high-degree bridge nodes of the clusters are the ones that appear to be the 
stumbling block for information cascade to penetrate through the clusters and we need 
to ramp up the fraction of initial adopters when the threshold fraction (q) of adopted 
neighbors exceeds qstep. As a result, inclusion of high-degree nodes in the set of initial 
adopters turns out to be a relatively more effective strategy (compared to the inclusion 
of nodes with high BWC) to quantify the intra-cluster density of the blocking clusters 
of the real-world networks. In another related work (Watts and Dodds 2007) on ran-
dom networks, the author observed that heterogeneous thresholds (different q values for 
the nodes) are more likely to result in complete information cascade. As part of future 
work, we plan to evaluate the impact of heterogeneous threshold values for the fraction 
of adopted neighbors on the CBI values of real-world networks.

Information cascade has been observed to play a significant role in sequential vot-
ing mechanisms such as presidential primaries and roll-call voting (Knight and Schiff 
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2010), wherein information about the previously cast votes are revealed to the voter and 
accordingly the voter finalizes his/her choice of the candidate that could be even differ-
ent from their personal preference/initial choice. In a recent work (Tump et al. 2020), the 
authors modeled the dynamics of social decision-making process leading to informa-
tion cascade and observed the drift rate from the personal choice to the majority choice 
exhibited a convex increase for smaller majority size and a concave increase for medium 
and larger majority sizes. The impact of the decision made by the initial adopters on the 
final outcome of a sequential unanimous decision-making information cascade phenom-
enon was also experimentally studied in Anderson and Holt (1997) involving several test 
subjects. Each test subject was asked to predict the predominant color of a collection 
of balls in an urn after looking at the color of a randomly drawn ball by the test subject 
as well as considering the colors of the balls drawn by the earlier test subjects. It was 
observed that if the initial few decisions coincide, the subsequent test subjects also took 
the same decision as the earlier test subjects, irrespective of the color of the ball drawn 
by the test subjects. Similar experiments were also designed in Alevy et al. (2007) and 
Mori et al. (2013). Such experiments motivated us to develop an algorithm to determine 
the minimum fraction of nodes to be chosen as initial adopters to accomplish complete 
information cascade (i.e., adopt a unanimous decision) for a given threshold fraction (q) 
of adopted neighbors.

In a recent work (Hisakado and Mori 2009), voter model dynamics was studied in the 
context of information cascade: the authors observed that in a population mix of inde-
pendent voters (who vote on their own) and copycat voters (who vote probabilistically 
based on the number of votes polled so far for each candidate), the distribution of the 
voting rate is observed to go through a complete phase transition (i.e., from a binomial 
distribution to a beta distribution) only when the number of votes seen by the copycat 
voters is significantly high (theoretically, infinity). On the other hand, if the fraction of 
copycat voters is 1/2 or more, the voting rate converges more slowly. The voting style 
of the copycat voters in the above work is similar to the adoption behavior of the nodes 
under the complex contagion model for information cascade. In Watts and Dodds 
(2007), the distribution of the cascade size (the number of nodes that adopt the decision 
of the initial adopters) versus the fraction of nodes to be chosen as initial adopters was 
observed to be bimodal for synthetic networks generated per the Watts model (Watts 
2002), indicating that there is a threshold value for the fraction of adopted neighbors 
that connects the two distributions. The sudden significant increase observed in our 
research in the fraction of initial adopters needed for complete information cascade with 
increase in q beyond qstep also resembles the phase transition and bimodal distribution 
reported in the above theoretical works.

Conclusions and future work
The high-level contributions of this paper are the following: We proposed a binary 
search algorithm to determine the minimum fraction of nodes to be used as initial 
adopters ( f min

IA  ) to accomplish complete information cascade for a given threshold frac-
tion (q) of adopted neighbors. We analyzed a suite of 40 real-world networks of diverse 
domains and observed the q versus f min

IA  distribution to exhibit a step function pat-
tern for 37 of these networks and identified a jump zone within which the f min

IA  value 
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spiked from f min
IA  to f min

IA  (with a median difference of 0.44 and 0.32 respectively when 
degree and betweenness centrality metrics are used to choose the initial adopters). We 
proposed a second binary search algorithm (that makes use of the first binary search 
algorithm) to determine the ’q’ value (referred to as qstep) beyond which we needed to 
increase the minimum fraction of nodes as initial adopters from f min

IA  to f min
IA  in order to 

accomplish complete information cascade. We propose that the "1 − qstep" value (referred 
to as the Cluster Blocking Index: CBI) for a network be considered as a measure of the 
intra-cluster density of the blocking cluster of the network as any further increase in q 
(beyond qstep) would make the intra-cluster density of at least one cluster (the blocking 
cluster) to become greater than 1 − q. We will not be able to penetrate such a cluster 
with f min

IA  fraction of initial adopters and will need to increase the minimum fraction 
of initial adopters to f min

IA  by including one or more nodes of the blocking cluster to be 
part of the set of initial adopters. The CBI value for a network could be used to decide 
the appropriate value for the threshold fraction of adopted neighbors needed to facili-
tate information cascade or stop infection spread. For networks with larger CBI values: 
complete information cascade can be accomplished only when operated with lower q 
values (i.e., nodes are forced to take a decision when only fewer of their neighbors have 
made the decision); an infection spread can be avoided by operating with larger q values 
(equivalent to vaccinating the bridge nodes). We observe a majority of the 40 real-world 
networks to incur larger CBI values (of 0.50 or more) with respect to both the degree 
(DEG) and betweenness (BWC) metrics, the centrality metrics used to choose the initial 
adopter nodes. We observe the fraction of IA clusters (fraction of Louvain clusters with 
one or more initial adopter nodes) is 1.00 for several real-world networks and has only at 
most a moderate correlation with the CBI values determined for the networks.

The CBI value for a network is not dependent on any particular clustering algorithm 
as well as there is no need to run any clustering algorithm to determine the clusters, 
evaluate their intra-cluster densities to identify the blocking cluster and thereby decide 
on the CBI value for a network. Note that the two-phase approach explained in Sects. 3 
and 4 to determine the CBI value for a network does not use any clustering algorithm. 
We expect the CBI value to serve as the upper bound for the intra-cluster densities of 
the clusters determined by any clustering algorithm. We verified our claim in this paper 
by determining the intra-cluster densities of the clusters in 40 real-world networks using 
the well-known Louvain community detection algorithm. While the CBI(DEG) values 
were observed to serve as upper bound for the intra-cluster densities of the Louvain 
clusters for 32 of the 40 real-world networks, the CBI(BWC) values were observed to 
serve as upper bound for 27 of the 40 real-world networks. The DEG metric has been 
observed to be effective in determining CBI values that could serve as upper bound for 
the intra-cluster densities of the clusters in the real-world networks as well as be used 
to predict the intra-cluster density of the blocking cluster of a network. We also vali-
dated the scalability of the proposed binary search algorithms for large network graphs 
by deriving empirical models for the actual time complexities (polynomial functions of 
degree greater than one, but less than two) encountered to determine the three meas-
ures: qstep, f min

IA  and f min
IA .

We hypothesize that smaller clusters in a network are more likely to become the 
blocking clusters for complete information cascade as the fraction of alien neighbors 
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(fraction of neighbors that are outside the cluster) for the bridge nodes in smaller clus-
ters are likely to be lower than the fraction of alien neighbors for the bridge nodes in 
larger clusters. As part of future work, we plan to investigate the role of cluster size in 
the intra-cluster densities and the CBI values of the network. Bridge nodes are the entry 
points to penetrate through a cluster. Though there exists centrality metrics to quantify 
the "bridgeness" of the nodes in networks (Jensen et al. 2015), these centrality metrics 
typically identify nodes that connect two or more clusters, but are not part of either of 
the clusters. As part of future work, we also plan to work on developing a centrality met-
ric that quantifies the extent to which a node can let information cascade to successfully 
penetrate through a cluster. In addition to the above, for future work, we also plan to 
explore the open research problems mentioned in the Related Work section.
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