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Introduction
Learning a variety of different skills for different problems is a long-standing goal in arti-
ficial intelligence. However, when neural networks learn a new skill, they typically lose 
previously acquired skills. This problem, called catastrophic forgetting, occurs because 
learning algorithms change connections used to encode previously acquired skills to 
learn a new skill (Ellefsen et al. 2015; Goodfellow et al. 2014; Kemker et al. 2018).

Catastrophic forgetting has been studied for a few decades (French 1999; Lee et  al. 
2017). Recently, a modular approach for neural networks has been deemed necessary 
as learning problems grow in scale and complexity (Amer and Maul 2019). This modu-
lar approach, which involves constructing a network with densely connected modules 
with only sparser connections between the modules (Newman 2006), intuitively should 
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reduce learning interference by separating functionality into physically distinct network 
modules (Ellefsen et  al. 2015). However, although several algorithmic approaches for 
constructing a modular topology are available, these approaches are difficult to imple-
ment in practice since they involve expert design and trial and error (Amer and Maul 
2019). Therefore, an automatic approach is needed.

Studies in computational biology have suggested several mechanisms of the sponta-
neous evolution of a modular network structure. Ellefsen et al. (2015) and Clune et al. 
(2013) note that evolving networks with pressure to minimize connection costs leads to 
modular solutions. However, in their approach, the input data need to be partitioned in 
advance so that different modules can be assigned. Since manual data modularization is 
usually based on some heuristic, expert knowledge or analytical solution, a good parti-
tioning requires a good prior understanding of the problem and its constraints, which is 
rarely the case for neural network learning tasks (Amer and Maul 2019).

Another study (Kashtan and Alon 2005; Parter et al. 2008; Kashtan et al. 2007, 2009) 
finds that evolution under an environment that changes in a modular fashion leads 
to the spontaneous evolution of the modular network structure. That is, the authors 
observe that repeatedly switching between several goals, each comprising a different 
combination of subgoals, which they call modularly varying goal (MVG), such as (X 
XOR Y) AND (Z XOR W) and (X XOR Y) OR (X XOR W), can lead to the spontane-
ous evolution of a modular network structure. In this case, two modules representing 
subgoals (X XOR Y) and (Z XOR W) can be obtained. They find that modular networks 
that evolve under these varying goals can not only find perfect solutions to those already 
learned goals in only a few steps but also exhibit high adaptability to novel goals (Parter 
et al. 2008).

However, in Kashtan and Alon (2005), the problems are hand-made and obviously 
vary with the same subgoals, lacking the complexity that most realistic data have. They 
not only show that switching goals comprising different combinations of subgoals can 
lead to spontaneous evolution of the modular network structure but also point out that 
randomly changing environments do not seem to be sufficient to produce a modular 
structure. However, realistic data are neither varying with the exact same subgoals nor 
varying at random. For example, image data with similar features, e.g., edges, intersect-
ing lines, and curves, are popular (Li et al. 2015).

In this paper, we aim to solve the reverse problem of MVG to obtain a highly modular 
structure that can mitigate catastrophic forgetting so that it can also be applied to real-
istic data.

Neural networks are known to have many configurations of sets of weights and biases 
that result in the same performance (Kirkpatrick et  al. 2017). First, we confirm that a 
configuration with a highly modular structure exists and that this neural network can 
mitigate catastrophic forgetting in learning a realistic dataset. To confirm that a highly 
modular structure is obtainable, we apply MVG against a realistic dataset. To confirm 
the mitigation of catastrophic forgetting, we show the learning accuracy against a previ-
ously unlearned goal, which is expected to be better than in the case of a neural network 
that has catastrophically forgotten a previously learned goal. From the results, we show 
that a configuration with a highly modular structure is obtainable and that this neural 
network is more adaptable to unlearned goals than that with a lower modular structure. 
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As a typical example of learning a realistic dataset, we use a classification problem based 
on CIFAR-10. A convolutional neural network (CNN) is used as the classifier for the 
classification problem as the first step since it is widely used for image datasets.

By applying MVG, we find that a highly modular structure exists and can mitigate cat-
astrophic forgetting. Next, we solve the reverse problem, that is, we propose a method 
that can obtain a highly modular structure able to mitigate catastrophic forgetting. 
Since an MVG-obtained neural network can relatively maintain the intra-module ele-
ments while leaving the inter-module elements relatively variable, we propose a method 
to restrict the inter-module weight elements so that they can be relatively variable 
against intra-module ones. From the result, we show that the obtained neural network 
has a highly modular structure and can learn an unlearned goal faster than without this 
method.

Note that catastrophic forgetting was originally measured by presenting old input pat-
terns to the network and evaluating how similar they are to its originally learned patterns 
(French 1999). Hetherington and Seidenberg introduced a savings measure of forgetting 
that measures the amount of time required to relearn the original data. They showed 
that some of the cases where the originally learned data was completely forgotten can 
be retrained to recall them very quickly (French 1999). In our paper, we show the learn-
ing accuracy against a previously unlearned goal but we expect it to share some features 
with old goals. This can be considered as an extended version of the latter. Because MVG 
learns by switching goals, it is less meaningful to compare the amount of time required 
to relearn the old goal.

Notably, Kirkpatrick et al. (2017) recently proposed a practical solution to overcome 
catastrophic forgetting to train a neural network by protecting the weights important for 
previous goals. However, since exact recognition (French 1999) is required, the solution 
would have difficulties in addressing the scalability and complexity. In fact, a parameter 
exists that sets how important the previous goal is compared with the new one.

This paper is organized as follows: “Applying MVG to obtain a modular structure” 
section shows a highly modular structure exists by applying an MVG against a realistic 
dataset. “Enhancing modularity” section presents the proposed method and its evalua-
tion. “Conclusions and future works” section offers our conclusions and future works.

Applying MVG to obtain a modular structure
Neural networks are known to have many configurations of sets of weights and biases 
that result in the same performance (Kirkpatrick et al. 2017). First, we confirm that 
a configuration with a highly modular structure exists and that this neural network 
can mitigate catastrophic forgetting in learning a realistic dataset. To confirm that a 
highly modular structure is obtainable, we apply an MVG against a realistic dataset 
since it is thought to spontaneously evolve a modular network structure. To confirm 
the mitigation of catastrophic forgetting, we show the learning accuracy against a 
previously unlearned goal, which is expected to better than that in the case where the 
neural network catastrophically forgets a previously learned goal. As a typical exam-
ple of learning a realistic dataset, we use a classification problem based on CIFAR-10. 
A CNN is used as the classifier for the classification problem since it is widely used 
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for image datasets. In “Applying MVG” section, we explain how we apply MVG to 
learn a realistic dataset. Then, “Evaluation” section shows the evaluation results.

Applying MVG

Original MVG MVG involve repeatedly switching between several goals, each com-
prising a different combination of subgoals (Kashtan and Alon 2005). Although no 
detailed information exists on how to generate these goals, a few examples are given 
in Kashtan and Alon (2005). The most basic example is an electronic combinatorial 
logic circuits problem, which is considered to explore the connection pattern of gates 
towards a given logic function as the output. Switching between a logic function goal 
Ga and another logic function goal Gb is shown to spontaneously lead to a modular 
structure:

where X, Y, Z, and W are inputs and Ga and Gb share common subproblems (X XOR Y) 
and (Z XOR W). Kashtan et al. showed that networks that evolve under varying goals 
seem to discover the basic subproblems common to the different goals and therefore can 
rapidly adapt to each of the different goals. Besides, it can exhibit high adaptability com-
paring to a neural network learned a fixed goal (FG) in learning novel goals comprising 
previously seen subgoals but in a new combination (Parter et al. 2008), such as:

for the example against (1) and (2).
Application to a realistic dataset In this research, we apply an MVG against a realistic 

dataset to confirm that a configuration with a highly modular structure exists in learn-
ing a realistic dataset. As a typical example of learning a realistic dataset, we use a clas-
sification problem based on CIFAR-10. Goals are set to learn whether images belong to 
a given class following the original image classification problem. Since multiple goals are 
needed to apply an MVG, the problem is rearranged to classify 2 classes instead of the 
original 10 classes to classify whether images belong to a given class or not. For the sim-
plest example, the goals can be denoted as follows:

G1 represents a goal to classify whether images are Airplane or not, and G2 represents a 
goal to classify whether images are Truck or not. Following the original MVG, the goals 
are designed to share a common set of outputs (2 output neurons). That is, the input 
data are the same for every goal, and different goals have different labels for every input. 
Therefore, changing goals here means changing the labels. Class weight is set to balance 
the relabelled learning data. Following MVG, we expect MVG learned neural network 
can learn novel goals faster than FG. Since image datasets are known to share edges, 

(1)Ga = (X XOR Y) AND (Z XOR W),

(2)Gb = (X XOR Y) OR (Z XOR W),

(3)Gc =(X XOR Y) NOR (Z XOR W).

(4)G1 : Airplane,

(5)G2 : Truck.
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intersecting lines, and curves (Li et al. 2015), we here consider the classification of an 
unlearned category of the images as a novel goal. Details are explained later. 

The MVG algorithm is show in Algorithm 1. After initializing the CNN, along with 
switching the goals, cost reduction is introduced to multiply reducePressure by every fil-
ter element of the CNN, as cost reduction seems necessary to mitigate catastrophic for-
getting. The filter elements are connection weights. Backpropagation is used for training, 
and categorical cross-entropy is used as the loss function. Note that the original MVG 
(Kashtan and Alon 2005) also contains a sort of cost reduction that results in a penalty 
when the number of network components exceeds a given threshold, which could sug-
gest the necessity of cost reduction. This operation can also be considered as a weight 
decay. Moreover, only cost reduction without switching goals enhances the modular 
structure, as suggested in Ellefsen et al. (2015), but not as much as an MVG does. The 
result of only cost reduction is shown later.

Modularity of a CNN

CNN used for evaluation A CNN is used for evaluation since it is a common option for 
learning image datasets. Since a CNN trained on CIFAR-101 already exists, the structure 
of our CNN originates from it. The layer structure of the neural network is

ReLU is used as the activation function for the convolutional layers and the dense layer, 
except the output layer. Padding is valid except in the first and third convolutional lay-
ers. Dropout with 0.25 is applied after each max-pooling layer, and that with 0.5 is 
applied after the first dense layer. Backpropagation is used for training, and SGD without 
momentum and decay is used as the optimization algorithm. Categorical cross-entropy 
is used as the loss function. The batch size is 32. Note that pre-processing and data aug-
mentation in the original document are left unchanged since those are carried out for 
practical use.

Modularity measurement Since a CNN is too large to compute network modularity, 
we extract a weighted undirected graph from a CNN for the calculation. Let us represent 
the weighted undirected graph as G = (V ,E) consisting of n = |V | vertices and m = |E| 

input − 32C3− 32C3−MP2− 64C3− 64C3−MP2− 512FC − 2softmax

1  https​://githu​b.com/fchol​let/keras​.

https://github.com/fchollet/keras
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edges. The adjacency matrix of G is denoted by A = Aij , where Aij is the weight of edge 
(i, j) and Aij = 0 if (i, j) /∈ E.

We regard V and E as channels and filters in the CNN, respectively (Fig. 1). For sim-
plicity, pooling layers, the fully connected layer and the softmax layer are ignored. As 
a result, the resulting graph consists of 3/32/32/64/64 nodes, with full connections 
between each layer with no direction. Aij is calculated based on the variance in the filter 
vij involved with channels i and j (Eq. 6):

where ni is the number of nodes in the layer that node i belongs to. (ni + nj) is multiplied 
by vij to restore the generalization of filter elements. The initialization of filter elements 
is performed by the Glorot uniform initializer, which generalizes the filter elements by 
the number of former nodes and latter nodes it is connected to (Eq. (7), Ref. Glorot and 
Bengio 2010), affecting the result of module detection and leading to rarely finding mod-
ules across layers. Therefore, generalization is restored through Eq. (6):

The modular structure is a division of the vertices in V into a collection of disjoint sub-
sets of vertices C = C1,C2, . . . ,Cl that the union gives back to V. The Louvain method 
(Blondel et al. 2008) is used for module detection to maximize the modularity Q(C):

where di and dj are the weighted degrees of nodes i and j, respectively; m is the total sum 
of all edge weights; and the element σij of the membership matrix is defined as

(6)Aij = vij ∗ (ni + nj),

(7)W ∼ U

[
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Fig. 1  Graph used to calculate the modularity
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The modularity values can be either positive or negative, and higher modularity values 
indicate a stronger module structure. For example, the average modularity of 10 initially 
randomized networks is 0.1424 ± 0.0018 . This positive value could be caused by the 
physical structure of the neural networks.

Evaluation

Evaluation settings

Comparison method For the comparison method, we use a fixed goal (FG), which rep-
resents the original learning algorithm (Appendix 1) and used to learn a single goal for 
maxEpoch.

Dataset The dataset used for evaluation includes 50,000 32× 32 colour training images 
from CIFAR-10, which were originally labelled over 10 categories (Airplane, Automo-
bile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck) and relabelled to only 2 categories 
representing whether the input image is the target goal or not. The input data are the 
same for every goal, i.e., 50,000 32× 32 colour training images, and the labels are differ-
ent for each goal.

Parameters reducePressure for MVG is set to 0.99 after several trials.

Results

Learning accuracy To show that a highly modular structure is obtainable, we first show 
the result of switching Airplane and Truck as an example. Other combinations of 
switching goals are argued later. First, to ensure that learning is progressing, we show 
the learning accuracy. Figure 2a presents the result. The X-axis displays the epoch, while 
the Y-axis presents the accuracy. The dataset is presented per each epoch. Accuracy 
refers to the categorical accuracy, and for clarity, we show the training accuracy. The 
blue line indicates the result of the MVG learned by switching the goals Airplane and 
Truck every epoch. The accuracy shown here is the accuracy against the goal in learning, 
which means that the accuracy against Airplane is shown after learning Airplane and 
likewise for Truck. The learning rate is set to 0.1. To clarify the accuracy of each goal, 
the accuracy of Airplane of the MVG is shown by the black line connecting the epochs 
involved in the learning of Airplane. For comparison, the result of the FG, i.e., learn-
ing a single goal, that is, Airplane, without any ingenuity is shown by the orange line. 
Since gradient explosion occurs when setting the learning rate to 0.1, which will lead to a 
decrease in the accuracy, the result of setting the learning rate to 0.07 is shown. From the 
results, we can see that the accuracy of the MVG is lower than that of the FG. However, 
since the MVG can stably reach a certain degree of accuracy for the two goals at the end 
of the examination, the decrements are inevitable. In the original paper, using an MVG 
was found to facilitate adaptation to perfect solutions for each of the two goals. The dif-
ference between their results and ours could originate from the difficulty of the goals. As 
explained in “Introduction” section, their goals were hand-made and lacked complexity, 
while our goals comprise realistic data. This difference could be the reason for the varia-
tion in the accuracy achieved.

(9)σij =
{

1, if i and j are in the same module
0, otherwise.
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Modularity Second, we show the modularity of the obtained networks to confirm 
that a highly modular structure is obtainable by an MVG. The modularity of the neu-
ral network obtained in the last epoch of Fig. 2a is 0.2041 for the MVG and 0.1865 for 
the FG. The modularity of the FG is not low, but the modularity of the MVG is still 
higher. Since a trained neural network is known to have a modular structure (Filan 
et al. 2020; Watanabe et al. 2018), an FG obtaining such a modularity is not surpris-
ing. The result of the MVG being higher than that of the FG is expected, and the ten-
dency is the same as that in the original paper.

Accuracy relative to unlearned goals Third, we show the learning accuracy against 
a previously unlearned goal to confirm the mitigation of catastrophic forgetting. 
Although unlearned goals in the original paper were defined as goals comprising 
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Fig. 2  Learning towards fixed and switching goals. a Categorical accuracy against the goal of learning. Blue 
indicates the MVG of Airplane and Truck. Blue line is a single line with high frequency. Y-axis is the accuracy 
of the learning goal. Black connects the epochs needed to learn Airplane in the MVG. Red indicates the 
FG of Airplane. Purple indicates Rcost. b, c Categorical accuracy against unlearned goals Cat and Ship. The 
weights of the initial neural network are from the last epoch of (a). e, d Pearson’s correlation coefficient (cc) 
against before and after learning unlearned goals Cat and Ship. The cc of the filter elements of the initial 
neural network and the last neural network in (b, c) are shown. Blue indicates the cc of all the filter elements. 
Red indicates the cc of elements in the filter corresponding to intra-module links. Purple indicates the cc of 
elements in the filter corresponding to inter-module links
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previously seen subgoals but in a new combination (Parter et al. 2008), as we pointed 
out in “Introduction” section, realistic data do not vary with the exact same subgoals. 
Since image datasets are known to share edges, intersecting lines, and curves (Li et al. 
2015), we here consider the classification of an unlearned category of the images as 
a new goal. In detail, an unlearned category classification is used for evaluation. The 
CIFAR-10 categories contain animals and artificial objects. Since animals and artifi-
cial objects are known to have different characteristics, e.g., non-rigid objects such 
as animals are known to have relatively various poses (Ramesh et al. 2019), Ship and 
Cat are evaluated as new goals as representatives of both kinds of objects. Figure 2b, 
c present the results. The X-axis corresponds to the epoch, and the Y-axis presents 
the categorical accuracy. The neural networks obtained in the last epoch in Fig. 2a are 
used for comparison. The weight sets are kept the same, and only the goal is changed. 
The goal is kept the same for 50 epochs. For a fair comparison with the FG of learn-
ing Airplane, we use the neural network obtained in the epoch in which Airplane is 
initially learned in the MVG for comparison. Specifically, since Airplane is learned in 
the 1st epoch of Fig. 2a, the neural network obtained in the 601th epoch is used for 
evaluation. From the result, we first see that the MVG-obtained neural network learns 
faster than the FG-obtained ones for both new goals. The result that the MVG outper-
forms the FG is the same as that in the original paper and is expected. Second, we can 
see that the difference between the MVG and FG for Cat is relatively larger than that 
for Ship, which could be because of the similarity of the goals. Since Ship is closer to 
Airplane, which is already learned, even for the FG, Ship can be learned faster. On the 
other hand, since Cat is relatively different from Airplane, Cat is difficult to learn for 
the FG. Therefore, as a result, the advantage of the MVG becomes conspicuous when 
learning Cat. Note that although the learning rate of the FG is 0.07, which is less than 
that of the MVG, i.e., 0.1, since the lower the learning rate is, the less the neural net-
work specializes to a single goal, the obtained neural networks can be regarded as 
too fair. For the evaluation against the unlearned goals, we also show the results after 
setting the learning rate to 0.1, which results in no large difference from the 0.07 set-
ting (see Appendix 2). Although we assumed learning a single goal as a process that 
involves catastrophic forgetting of the previous goal, we also present an example of 
a neural network learning two goals sequentially in the FG manner (Appendix  3). 
Although the figure shows one trial, we also show results comparing several different 
conditions later. Also, evaluation for other goals are shown in Appendix 4.

Topological analysis From the results above, we find that a configuration with a highly 
modular structure exists that can mitigate catastrophic forgetting. To analyse the result 
from the structure aspect, the change in structure before and after learning the new 
goal is analysed. Since the advantage of the modular structure is its ability to reduce the 
learning interference between modules (Ellefsen et al. 2015), elements within modules 
(inter-module elements) and those without modules (intra-module elements) are evalu-
ated separately. For simplicity, we evaluate the filter elements of a CNN. The degree of 
changes before and after learning the new goal is shown by Pearson’s correlation coef-
ficient (cc) (Damicelli et al. 2019). The cc is taken between the first and last topology of 
Fig. 2c, d, which represent before and after learning the new goal. The modular detec-
tion is performed against the first topology. The cc values of all the filter elements, the 
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cc values of filter elements corresponding to the intra-module links, and the cc values 
of filter elements corresponding to the inter-module links are shown. Fig. 2e, f show the 
results. From the results, we can see that the FG has a high cc for all elements compared 
to the MVG. Hence, the elements of the FG remain nearly the same even though the 
learning goal has changed, which means that the obtained topology is less variable. On 
the other hand, the MVG is successfully used to obtain a topology that is variable when 
meeting a new goal. Moreover, the MVG has a high cc when comparing intra-module 
elements to inter-module elements, which could be the reason of learning unlearned 
goals faster. Note that the reason why FG has high cc while learning an unlearned goal 
(Cat) more slowly could be because the output of FG relies on specific links in the neural 
networks, and the new goal is learned by changes to those links. This is consistent with 
FG having lower modularity. Additionally, it is consistent with the reported results of 
EWC (Kirkpatrick et al. 2017), which successfully overcame catastrophic forgetting by 
protecting the weights important to previous goals. This result suggests that importance 
is concentrated on specific links.

Comparing with link restriction only “Applying MVG” section mentions that the MVG 
contains the restriction of links. Thus, to show that the result is caused not only by the 
restriction of links, we compare with a method that restricts links only without switch-
ing goals. The results are shown as Rcost in Fig.  2. The modularity of the neural net-
work obtained in the last epoch of Fig. 2a is 0.1995. From the results, although Rcost is 
more variable than the MVG in learning unlearned goals, the modularity and the speed 
of learning an unlearned goal are less than for the MVG. Therefore, we can conclude 
that the result of the MVG cannot be obtained by the restriction of links only. In addi-
tion, from the topological aspect, we can conclude that making the topology too variable 
does not lead to a better solution. Having relatively maintained intra-module elements 
while leaving the inter-module elements variable seems to be the key feature of learning 
unlearned goals faster.

Increment of goals

The previous section shows switching between 2 goals. Since we expect that switching 
between more goals can sharpen the modular structure, in this section, we show the 
results when the number of switching goals increases. In detail, the results of switching 
2, 4, 6, and 8 goals are shown. The goals are selected randomly, as shown in Table 1. For a 
fair comparison with an unlearned goal, one fixed goal (Airplane) is considered. Cat and 
Ship, which are used to evaluate unlearned goals, are removed from the learning goals.

Learning accuracy First, Fig. 3a–d shows the learning accuracy for 2, 4, 6, and 8 goals. 
The goal with the asterisk in Table 1 is shown. From the results, as the number of learn-
ing goals increases, the learning accuracy decreases. However, a certain degree of accu-
racy can still stably be reached even in learning 8 goals. Taking account of the number of 
learning goals, the decrease in the accuracy reached is inevitable.

Accuracy relative to unlearned goals Second, the accuracy against unlearned goals 
is shown. For a fair comparison, a neural network trained only on Airplane after 600 
epochs is used for evaluation. Figure  3e, f display the results. For Cat, every result of 
the MVG outperforms those of the FG. However, for Ship, some examinations reveal 
the contrary. Specifically, switching between Airplane and Deer, Dog and Horse is 
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slower than that for the FG among the 2 goals, which may occur because, as explained 
in “Results” section, since Ship is closer to Airplane, which is already learned, even if 
the FG is used, Ship can still be learned faster. With the increase in goals, we can see 
that learning occurs faster as the switching goal increases in both evaluations. The dif-
ference between 2 goals and 8 goals becomes much clearer when learning Cat, because, 
as explained before, Cat is relatively different from Airplane, making the advantage of 
switching goals more conspicuous.

Modularity Third, we show the modularity. Figure 3g presents the result. The modu-
larity is lower when learning a single goal, i.e., an FG. Modularity tends to increase as the 
number of goals increases. The results support our expectation that switching between 
more goals can sharpen the modular structure.

Topological analysis Fourth, we show the result of the cc. Figure  3h, i displays the 
results. After comparing the cc values of all elements between 2 goals and 8 goals, we 
see that the topology is less variable for the case of 8 goals. Additionally, especially in 
the case of Cat, the intra-module cc increases as the number of goals increases from 2 
to 8, which could be explained by the sharpened modules. The sharpened modules lead 
to fewer changes in intra-module elements when meeting new goals. From the results, 

Table 1  Goals for evaluation

Evaluation Goals

1 Goal Airplane

2 Goals Airplane, dog

2 Goals Airplane, horse

2 Goals Airplane, deer

2 Goals* Airplane, truck

4 Goals* Airplane, bird, truck, horse

4 Goals Airplane, truck, horse, dog

4 Goals Airplane, dog, frog, horse

4 Goals Airplane, deer, dog, horse

6 Goals* Airplane, dog, automobile, deer, truck, horse

6 Goals Airplane, frog, dog, deer, horse, bird

6 Goals Airplane, horse, dog, deer, bird, automobile

6 Goals Airplane, truck, horse, dog, frog, bird

8 Goals* Airplane, bird, automobile, deer, truck, dog, frog, horse

8 Goals Airplane, automobile, truck, bird, deer, dog, frog, horse

8 Goals Airplane, deer, automobile, truck, frog, horse, bird, dog

8 Goals Airplane, dog, horse, deer, truck, automobile, frog, bird

(See figure on next page.)
Fig. 3  Learning towards multiple goals. a–d Categorical accuracy against the goal when learning different 
numbers of goals. Blue indicates the MVG. Black connects the epochs involved in learning Airplane in the 
MVG. Red indicates the FG of Airplane. The set of goals used for learning is shown in the text. e, f Categorical 
accuracy against unlearned goals Cat and Ship. The weights of the initial neural network are from the first 
time it learns Airplane after 600 epochs. g Modularity of the obtained neural network. The neural network is 
the initial neural network of e, f. h, i Pearson’s correlation coefficient (cc) against before and after learning the 
unlearned goals Cat and Ship. The cc of the filter elements of the initial neural network and the last neural 
network in (e, f) is shown. Blue indicates the cc values of all the filter elements. Red indicates the cc values of 
elements in the filter corresponding to intra-module links. Purple indicates the cc values of elements in the 
filter corresponding to inter-module links
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we can conclude that a configuration with an even more highly modular structure exists 
when switching between larger numbers of goals and that this configuration can miti-
gate catastrophic forgetting. Additionally, the best solution does not have the highest 
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cc. Again, having relatively maintaining intra-module elements while leaving the inter-
module elements variable seems to be the key feature for learning unlearned goals faster.

Other examples

In the previous sections, we showed the evaluation against unlearned goals only using a 
neural network trained on Airplane. Here, we show a new example evaluating an animal, 
Bird, against unlearned goals. The modularity of the neural network obtained in the last 
epoch of Fig. 4a is 0.2203 for the MVG and 0.1856 for the FG. From the result, we can con-
clude that the same tendency as in “Results” section is also observable when evaluating with 
a goal other than Airplane. The difference in learning accuracy between the MVG and FG 
is larger than in the Airplane-Truck case because complicated objects such as an animal 
are learned. Therefore, this decrease is inevitable. Evaluation against Ship shows obvious 
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Fig. 4  Learning towards different combinations of goals. a Categorical accuracy against the goal in 
learning. Blue indicates the MVG of Bird and Dog. Black connects the epochs involved in learning Bird in 
the MVG. Red indicates the FG of Bird. Purple indicates Rcost. b, c Categorical accuracy against unlearned 
goals Cat and Ship. The weights of the initial neural network are from the last epoch of (a). e, d Pearson’s 
correlation coefficient (cc) against before and after learning the unlearned goals Cat and Ship. The cc of 
the filter elements of the initial neural network and the last neural network in (b, c) is shown. Blue indicates 
the cc values of all the filter elements. Red indicates the cc values of elements in the filter corresponding to 
intra-module links. Purple indicates the cc values of elements in the filter corresponding to inter-module links
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difference for this evaluation, which could be because already learned goal, Bird, is different 
from it.

Evaluation with another dataset (CIFAR-100) is shown in Appendix 6.

Enhancing modularity
After applying the MVG, we find that a highly modular structure exists and that it can 
mitigate catastrophic forgetting. Next, we solve the reverse problem, that is, we propose a 
method that can obtain a highly modular structure able to mitigate catastrophic forgetting. 
Since the MVG-obtained neural network can relatively maintain the intra-module elements 
while leaving the inter-module elements relatively variable, we propose a method to restrict 
the inter-module weight elements so that they can be relatively variable against the intra-
module ones. In “Proposed approach” section, we explain our proposed approach. Then, 
“Evaluation” section presents the evaluation results.

Proposed approach

The proposed method is to restrict the inter-module weight elements to make the inter-
module elements relatively variable against the intra-module ones. Specifically, reducePres-
sure is multiplied by the inter-module elements in every epoch after learning. Modular 
detection is performed every subsequent renewEpoch. If modular detection is carried out in 
every epoch, elements will be influenced by the fluctuation of modular detection. 

To adjust the number of restricted links, a parameter is introduced. Since, as learned from 
the MVG-obtained neural network, maintaining intra-module links while leaving inter-
module elements relatively variable is important, to ensure enhancement of the modular 
structure, we introduce a parameter considering the modularity: the resolution of the mod-
ularity γ (Hagberg et al. 2008). The modular detection maximizes Eq. (10) instead of Eq. (8).

The resolution parameter will change the size of the modules. The original modularity is 
the same as that calculated by setting γ to 1.0, and the module decreases as γ decreases. 
When γ is 0, each of the nodes is in its own module. Therefore, the number of restricted 
links tends to be small when γ is 1.0 and increases as γ decreases, since the number of 

(10)Qγ (C) =
1

2m

∑

ij∈V

[

γ ∗ Aij −
didj

2m

]

σij
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obtained modules increases, i.e., the inter-module links, which are the restricted links. 
NetworkX2 is used for calculation.

The details regarding the learning algorithm are shown in Algorithm 2.

Evaluation

The dataset used for evaluation is the same as that in “Evaluation” section.
The results of setting γ to 1.0, 0.5, and 0 are shown in Fig.  5. We use interMOD1.0 , 

interMOD0.5 , and interMOD0 to represent each method. reducePressure and renewEp-
och are set to 0.99 and 10 respectively after several trials. The number of modules in 
the neural network obtained in the last epoch are 2, 15, and 195, and the percentage of 
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Fig. 5  Learning with the proposed approach. a Categorical accuracy against the goal. Blue indicates the 
FG of Airplane. The orange line indicates interMOD1.0 . The purple line indicates interMOD0.5 . The green line 
indicates interMOD0 . b, c Categorical accuracy against the unlearned goals Cat and Ship. The weights of the 
initial neural network are from the last epoch of (a). e, d Pearson’s correlation coefficient (cc) against before 
and after learning the unlearned goals Cat and Ship. The cc values of the filter elements of the initial neural 
network and the last neural network in (b, c) are shown. Blue indicates the cc values of all the filter elements. 
Red indicates the cc values of elements in the filter corresponding to intra-module links. Purple indicates the 
cc values of elements in the filter corresponding to inter-module links

2  https​://netwo​rkx.githu​b.io/.

https://networkx.github.io/
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inter-module links that are restricted to the total is 32.16%, 89.82%, and 100%, respec-
tively. Since the learning rate used in the previous section seems too aggressive for learn-
ing a single goal, the learning rate is changed to 0.01 in this section, which is originally 
used in Other programs3

Learning accuracy

To show whether it is well learned, we show the learning accuracy of those networks 
compared with the FG. Figure  5a shows the result, which reveals that the FG has the 
highest learning accuracy in the last epoch, followed by interMOD1.0 . Then, it decreases 
as γ decreases. The result is related to the number of restricted links, that is, the order 
of the learning accuracy is in descending order of the number of restricted links. The 
greater the number of restricted links, the worse the learning accuracy becomes, as 
expected.

Modularity

Next, we show the modularity of the neural network obtained in the last epoch of 
Fig. 5a. The modularity is 0.4432 for interMOD1.0 , 0.5506 for interMOD0.5 , 0.2694 for 
interMOD0 , and 0.2339 for the FG. The result of any γ we tested is larger than that of 
the FG. Since γ is introduced to enhance modularity, the result is what we expected. 
Moreover, we can see from the result that interMOD0.5 has the highest modularity com-
pared to that of interMOD0 or interMOD1.0 . Since every link is restricted in interMOD0 , 
although the modularity is higher than that of the FG, which can be expected since 
connection cost reduction is known to enhance modularity (Ellefsen et  al. 2015), the 
restricted links do not contribute to the enhancement of a particular module, and the 
result is within expectation. For interMOD1.0 , since the number of modules obtained 
in the last epoch is 2, the reason why the modularity of interMOD1.0 is lower than that 
of interMOD0.5 , which ultimately obtained 15 modules, could be that modularity is not 
sufficiently promoted by interMOD1.0 . Therefore, for interMOD0.5 , the number of inter-
module links is moderately restricted, and as a result, the modularity of interMOD0.5 
becomes the highest.

Accuracy relative to unlearned goals

Next, we show the accuracy relative to unlearned goals. Figure 5b, c show the accuracy 
of learning Cat and Ship, respectively. The result shows that any γ we tested is larger than 
that of the FG. Specifically, the one with the highest modularity, interMOD0.5 , yields the 
highest results for both goals, which is also what we expected. Note that, the result is 
less than MVG-obtained neural network. However, since this result is obtained only by 
learning a single goal, the difference are inevitable. By focusing on the learning accuracy 
again, we can see that the learning accuracy of interMOD0.5 is higher than interMOD0 
although the accuracy for unlearned goals increases faster in interMOD0.5 than that in 
interMOD0 , which also supports the conclusion that γ equal to 0.5 is the best. Evaluation 
for other goals are shown in Appendix 5.

3  https​://githu​b.com/fchol​let/keras​.

https://github.com/fchollet/keras
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Topological analysis

From the result above, we can conclude that the proposed method with γ equal to 
0.5 can lead to a neural network with a higher modularity that can learn unlearned 
goals faster. To show more details, we show the cc against the change in elements 
before and after learning an unlearned goal. Figure 5d, e show the results of Cat and 
Ship, respectively. The cc values of all elements become smaller as γ decreases. For 
interMOD1.0 , since the cc is close to that of the FG, interMOD1.0 could be said to have 
a less variable topology as the FG. On the other hand, since the cc of interMOD0 is 
relatively smaller, interMOD0 could be said to have a variable topology. However, 
since the order of cc of intra-module and inter-moduel links reversed, we can say the 
topology is not maintaining intra-module links but seems varying them evenly across 
all links. For, interMOD0.5 , it has an intermediate cc, and from the cc values of the 
intra-module and inter-module links, we can say that it relatively maintains the intra-
module links and leaves the inter-module links variable, which is the property we 
observed in “Applying MVG to obtain a modular structure” section. Therefore, we can 
conclude that the proposed method with γ equal to 0.5 can result the same topologi-
cal property and function as those of the MVG-obtained neural networks.

Comparison with a random method

To show the need to restrict inter-module links, we compare our method with one 
that restricts almost the same number of links as for interMOD0.5 , i.e., 90% of the 
links, but are randomly selected every epoch. The resulting accuracy is shown in 
Fig. 5a–c as Random. From the results, we can see that the result of Random is almost 
the same as that of the FG. From this comparison, we can conclude that only restrict-
ing the same number of links cannot result in faster learning under interMOD0.5 in 
learning unlearned goals.

Other examples

As another example, we show the result of Dog as a representative animal. The number 
of modules obtained in the last epoch is 2, 9, and 195 for interMOD1.0 , interMOD0.5 , 
and interMOD0 , respectively. The percentage of inter-module links is 31.72%, 92.22%, 
and 100%, respectively. The modularity of the neural network obtained in the 
last epoch of Fig.  6a is 0.4394 for interMOD1.0 , 0.5346 for interMOD0.5 , 0.2343 for 
interMOD0 , and 0.2336 for the FG. We can see that the same tendency is obtained in 
the learning accuracy, evaluation of unlearned goals, modularity and cc.

Evaluation with another dataset (CIFAR-100) is shown in Appendix 6.

Conclusions and future works
In this paper, we aimed to solve the reverse problem of MVG to obtain a highly mod-
ular structure that can mitigate catastrophic forgetting so that it can also apply to 
realistic data. First, we showed that a configuration with a highly modular structure 
exists that can mitigate catastrophic forgetting by applying an MVG against a realis-
tic dataset, i.e., CIFAR-10. To confirm the mitigation of catastrophic forgetting, we 
showed the learning accuracy against a previously unlearned goal, which is expected 
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to better than that in the case where the neural network catastrophically forgets a 
previously learned goal. Apparently, switching between a larger number of goals 
can enhance the modularity and learning unlearned goals faster. From a topologi-
cal analysis of the obtained neural network, we found that relatively maintaining the 
intra-module elements while leaving the inter-module elements variable seems to be 
the key feature for learning unlearned goals faster. Next, we solved the reverse prob-
lem, that is, we proposed a method that can obtain a highly modular structure able 
to mitigate catastrophic forgetting. Since the MVG-obtained neural network can 
relatively maintain the intra-module elements while leaving the inter-module ele-
ments relatively variable, we proposed a method to restrict the inter-module weight 
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Fig. 6  Learning with the proposed approach (Dog) a Categorical accuracy against the goal. Blue indicates 
the FG of Dog. The orange line indicates interMOD1.0 . The purple line indicates interMOD0.5 . The green line 
indicates interMOD0 . b, c Categorical accuracy against the unlearned goals Cat and Ship. The weights of the 
initial neural network are from the last epoch of (a). e, d Pearson’s correlation coefficient (cc) against before 
and after learning the unlearned goals Cat and Ship. The cc values of the filter elements of the initial neural 
network and the last neural network in (b, c) are shown. Blue indicates the cc values of all the filter elements. 
Red indicates the cc values of elements in the filter corresponding to intra-module links. Purple indicates the 
cc values of elements in the filter corresponding to inter-module links
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elements so that they can be relatively variable against intra-module ones. From the 
result, we showed that the obtained neural network can have the same topological 
features as those of the MVG-obtained neural network, can have a highly modular 
structure, and can learn an unlearned goal faster than without this method.

In future work, the proposed approach should be examined on other tasks and 
with other layer structures, and a theoretical analysis should be carried out. Also, it 
would be interesting to investigate other types of neural network.
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MVG: Modularly varying goal; FG: Fixed goal.
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Appendix 1: Algorithm of FG

The FG algorithm is shown in Algorithm 3.

Appendix 2: Learning rate
Evaluation with a learning rate of 0.1 for Fig.  2b FG is shown in Fig.  7. There is no 
large difference compared to the case with the learning rate set to 0.07

https://www.cs.toronto.edu/%7ekriz/cifar.html
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Appendix 3: FG learned two goals
Here, we provide an example of a neural network learning two goals sequentially 
in the FG manner. To create a catastrophically forgetting situation, the network 
is trained on Truck for 100 epochs and then on Airplane for 600 epochs (Fig.  8a). 
Although we assumed that learning a single goal was equivalent to catastrophically 
forgotting the previous goal in our original paper, this example clearly shows a neural 
network that meets two goals. From the result, we can see that the accuracy against 
Cat is almost the same as that of the original FG (Fig. 8b). Note that the modularity of 
the obtained neural network is 0.1933, which is close to the original FG.
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Fig. 9  Evaluation with other goals for Fig. 2b MVG

Appendix 4: Evaluation with other goals for Fig. 2b MVG
Evaluation with other goals for Fig. 2b MVG is shown in Fig. 9.

Appendix 5: Evaluation with other goals for Fig. 5b interMOD0.5

Evaluation with other goals for Fig. 5b interMOD0.5 is shown in Fig. 10.

0 50

0.9

0.95

1

ac
c.

a Airplane

FG (Airplane)
: 0.5

0 50

0.9

0.95

1
b Automobile

0 50

0.9

0.95

1
c Bird

0 50

0.9

0.95

1
d Cat

0 50

0.9

0.95

1
e Deer

0 50
epoch

0.9

0.95

1

ac
c.

f Dog

0 50
epoch

0.9

0.95

1
g Frog

0 50
epoch

0.9

0.95

1
h Horse

0 50
epoch

0.9

0.95

1
i Ship

0 50
epoch

0.9

0.95

1
j Truck

Fig. 10  Evaluation with other goals for Fig. 5b interMOD0.5
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Appendix 6: Evaluation with CIFAR‑100
As an evaluation to another dataset, evaluation with CIFAR-1004 is shown in this sec-
tion. The super-class labels of CIFAR-100 are used, in which 60000 images are grouped 
into 20 classes.

Evaluation with CIFAR-100 for Fig. 2 is shown in Fig. 11. Vehicles I and Household 
furniture are chosen as evaluation goals. The evaluation settings are the same with that 
of Fig.  2. Note that the modularity of the FG obtained neural network (last epoch at 
Fig. 11a) is 0.1982, and the MVG obtained neural network is 0.2193. Same tendency with 
Fig. 2 can be observed.

4  https​://www.cs.toron​to.edu/~kriz/cifar​.html.
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Fig. 11  Evaluation with CIFAR-100 for Fig. 2
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Evaluation with CIFAR-100 for Fig. 5 is shown in Fig. 12. Vehicles I is chosen as an 
evaluation goal. The evaluation settings are the same with that of Fig. 5. Note that the 
modularity of interMOD0.5 is 0.5735, and that of FG is 0.2563. Same tendency with Fig. 5 
can be observed.
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Fig. 12  Evaluation with CIFAR-100 for Fig. 5
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