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Introduction
A real world complex system often counts multiple interactions between multiple differ-
ent entities. When these interactions are regrouped under multiple families of entities, 
multilayer network modelling becomes a tool of choice to capture the key components 
of the system. The use of this model emerges in all fields of science from social sciences 
to finances, logistics, biology, and many more (Kivelä et al. 2014).

With multilayer networks, the study of multiple viewpoints [or aspects  (Kivelä et  al. 
2019)] on the same network data becomes possible. This is critical for example in social 
network analysis, to study the role of users in different networks, and compare them (for 
example the same individual may behave differently on LinkedIn, Twitter, or Facebook). 
These different networks form different types of links that may be overlaid.
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Motivated by their practical interest, multilayer networks also show interesting 
structures  (Battiston et al. 2014) that could be exploited to mine community struc-
tures or study the roles of nodes and edges through centrality, for example. These 
are also possible in a traditional network analysis standpoint but often requires some 
kind of simplification (such as one-mode projection) but recent advances show that 
interesting structures can be obtained directly from the multilayer networks (Gomez 
et al. 2013; Chen et al. 2018; Škrlj et al. 2019).

The key concept in multilayer networks are the layers themselves. Since the struc-
ture of such networks is driven by the layers and their aspect  (Kivelä et  al. 2014), 
understanding how the layers organise can reveal properties unique to a given mul-
tilayer network model (Renoust et al. 2015; Škrlj and Renoust 2019). Particularly, the 
intertwining of edges, or layer entanglement (Renoust et al. 2014, 2013), shows how 
layers overlap to form coherent structures and substructures.

Although recent works have focused on multilayer network analysis and descrip-
tion (Wang et al. 2018; Omodei et al. 2015), not many have focused on a large scale 
analysis of multilayer networks of different nature—and produced in different dis-
ciplines, while comparing them to synthetic models. One comparative study of flow 
analysis  (De Domenico et  al. 2015a) has particularly influenced this paper where 
emerging structures are described, albeit not compared to synthetic models.

In their seminal work, McPherson et al. (2001) discuss how ties emerge in social 
systems. They investigate how people similarity, i.e. homophily, is a strong driver 
to the formation of ties, with the addition to make them more durable in a dynamic 
system. They investigate social ties in a multilayer manner, and argue for further 
research: “in the impact of multiplex ties on the patterns of homophily; [and] the 
dynamic of network change over time [...]”. Our original work  (Škrlj and Renoust 
2019)—that we extend in this paper—particularly resonates with the first point 
of McPherson et  al., in that we displayed a link between homophily  (McPherson 
et al. 2001; Borgatti et al. 2009) in social networks and high entanglement intensity 
networks.

This paper extends (Škrlj and Renoust 2019), which originally contributed with an 
open source implementation of entanglement homogeneity and intensity for mul-
tiplex networks, while evaluating them over 30 real world networks. We proposed 
also a synthetic multiplex network generator. A generation of over 10k synthetic 
networks, and their comparison with the real world networks, displayed common 
patterns of entanglement homogeneity and intensity that could be specific to the 
families of applications that generated the networks. In this extended work, we con-
tribute with:

•	 The theoretical extension of the entanglement computation to a fully multiplex 
model that takes into account coupling edges;

•	 The extension of our synthetic generator accordingly;
•	 The computations on a wider range of real and synthetic networks (1,329,696 

synthetic networks were considered);
•	 The study of entanglement in large, temporal multiplex networks;
•	 An open-source implementation of all conducted experiments.
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Coupled multilayer and multiplex networks
A multilayer network can be defined as a sequence M = {Gl}l∈L = {(Vl ,El)}l∈L where 
El ⊆ Vl × Vl is a set of edges in one network l ∈ L of the sequence (Kivelä et al. 2014). 
Multilayer networks are commonly understood as layers comprised of interactions, 
where each layer corresponds to a specific aspect of the system. Coupling accounts for 
transitions between layers. Kivelä et al. (2014) consider a multiplex network as “diago-
nally coupled multilayer networks in which each layer shares at least one node with some 
other layer in the network”. They consider also node-aligned multiplex networks, which 
do not specifically address coupling of nodes, but assume that nodes are shared (and 
coupled) across all layers. In our context, we refer to coupled multilayer networks when 
we specifically consider networks with coupling between nodes across layers, and sim-
ply to multiplex networks when considering node-aligned multiplex networks. The dif-
ference between these two types of multiplex networks is only whether we consider or 
not the coupling between layers. In multiplex networks, nodes represent the same entity 
across all layers.

We represent a multiplex network as a structure M′ = (VM ,EM) , where VM is the 
set of nodes and EM the set of all edges (in all layers). V denotes the super set of all 
nodes, and E = V× V the super set of all edges, regardless of the layers. There may 
exist coupling edges connecting nodes through layers, forming transition coupling. 
This may concern, for example, coupled multilayer networks which are modelling 
transportation systems  (Cozzo et  al. 2015). In that case, we can differentiate the ele-
mentary layers (holding inner-layer edges) from the transition coupling (holding cou-
pling edges). Each transition coupling t = (l, l′) between layer l and l′ can be modelled 
similarly to a layer, with a set of nodes and edges. If S ⊂ L represents the subset of all 
elementary layers, and T ⊂ L the subset of all transition coupling, we may define our 
coupled multilayer network M as the union. It combines a multilayer network with 
elementary layers only, and another multilayer network with transition coupling only 
M = {Gl}l∈L = MS ∪MT = {Gs}s∈S ∪ {Gt}t∈T . The coupling can heavily influence the 
structural behaviour of multilayer networks (Cozzo and Moreno 2016). It can also influ-
ence the resilience of the network against failures (De Domenico et al. 2014) and natu-
rally the diffusion phenomena (Tejedor et al. 2018) too.

Among other examples of coupled multilayer networks, a biological system can be 
studied at the protein, RNA, or gene level  (Valdeolivas et  al. 2018). Similarly, social 
networks can be studied by taking into account a person’s presence on multiple plat-
forms  (Mittal and Bhatia 2019). For computational purposes, such networks are com-
monly represented in the form of supra-adjacency matrices, where block-diagonal 
structures connect the same node across individual layers emerges (Cozzo et al. 2015). 
Algorithms can operate on such matrices directly, and thus exploit additional informa-
tion representing multiple aspects.

Algorithms for analysis of multilayer networks can also operate on sparse adjacency 
data structure of the multilayer network directly. Yet, they need to take into account 
that a given node is present in multiple layers. Such representation is suitable for this 
work, as we are focused primarily on how edges co-occur across layers. Hence, this work 
focuses primarily on the relations between the layers of a given multilayer network. We 
next discuss the two measures we consider throughout this work.
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Entanglement in multiplex networks
We briefly recall the definitions of entanglement measures from previous 
work (Renoust et al. 2014).

Layer interaction network

Recall the notion of a multiplex network M = (VM ,EM) = {Gl}l∈L . As mentioned ear-
lier, such a network really distinguishes itself from classical graphs through the use of 
different layers to connect nodes. These layers may have different patterns and may 
overlap together. There may even exist latent dependencies among these layers. To 
investigate this matter, each layer could be abstracted to one single node and form a 
new graph, the Layer Interaction Network (hereafter LIN) (Renoust et al. 2014). Vis-
ualizing the LIN is a key component for multiplex network visualization such as in 
Renoust et al. (2015). In the LIN, LIN = (L, F) , each node ul ,ul′ ,ul′′ . . . corresponds to 
a layer l, l′, l′′, . . . ∈ L of the multiplex network M, and each edge f ∈ F  captures when 
two layers overlap through edges. More formally, there exists an edge f = (ul ,ul′) 
whenever there exists at least two nodes v, v′ ∈ VM with the condition that there 
exists at least one edge connecting these two nodes on each layer eM = (v, v′) ∈ l and 
e′M = (v, v′) ∈ l′ . The LIN can be interpreted as an edge-layer co-occurrence graph, 
and the weight of an edge f = (ul ,ul′) , denoted as nl,l′ equals the number of times lay-
ers l and l′ co-occur. By extension, nl,l is the number of edges on layer l. This process is 
illustrated in Fig. 1b.

Layer entanglement

The analysis of layer entanglement is inspired by the analysis of relation content in 
social networks (Burt and Schøtt 1985). The idea is to study the redundancy between 

Fig. 1  A toy example of layer entanglement computation: a separated layers considered in a multiplex 
network; b constructing the layer interaction network from the example; c measuring entanglement from 
the example
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relation content, each forming in our formalism a different layer. The layer entangle-
ment measures the “influence” of a layer in its neighbourhood.

This measure is recursively defined: the entanglement γl of a layer l is defined upon the 
entanglement of the layers it is entangled with. Similarly to the eigen centrality (Wasser-
man and Faust 1994), this translates into the recursive equation:

The entanglement of a layer γl can be retrieved from a vector γ which corresponds to 
the right eigenvector (associated to the maximum eigenvalue � ) of the layer overlap fre-
quency matrix with corresponding overlap, defined as:

this metric was initially introduced in  Burt and Schøtt (1985), then later constructed 
using the weights in the LIN (Renoust et al. 2014) (see Figs. 1 and 2).

Entanglement intensity and homogeneity

The layer entanglement γl measures the share of layer l overlapping with other layers. 
The more a group of layers interacts together, the more the nodes they connect will be 
cohesive in view of these layers, hence the more γl ∀l ∈ L values will be similar (their 
share of entanglement will be similar). This is captured by the entanglement homogene-
ity (Renoust et al. 2014) which is then defined as the following cosine similarity:

With eL = [1, 1, . . . , 1]L the vector of size L all filled with 1’s. Optimal homogenity is not 
necessarily reached only when all nodes are connected through all layers, but also when 

γl .� =
∑

l′∈T

nl,l′

nl,l
γl′ .

C = (cl,l′), where cl,l′ =
nl,l′

nl,l
and cl,l =

nl,l

|E|

H =
< eL, γ >

�eL��γ �
∈ [0, 1].

Fig. 2  Two very different cases of maximum homogeneity H = 1 , the multiplex network and the LIN are 
shown, with matrices and entanglement measures. a all layers are saturating all edges, so we have maximum 
intensity I = 1 ; b layers are well balanced, but we may have a lot more interactions possible
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all nodes are connected in a very balanced manner between all layers (see Fig. 2). Homo-
geneity thus permits various symmetries in a given LIN.

When a maximum overlap is reached through all layers in the network, the fre-
quencies in the matrix C (of size |L| × |L|) are saturated with Ci,j = 1 . This gives us a 
theoretical limit to measure the amount of layer overlap through the entanglement 
intensity (Renoust et al. 2014), defined as:

In practice, both entanglement intensity and homogeneity have been used to measure 
the coherence of clusters of documents (Renoust et al. 2013).

Transition coupling entanglement

We have defined the layer entanglement which measures overlap between layers of 
a multiplex network, but many multiplex networks include another critical param-
eter which is coupling edges (Battiston et al. 2014). The coupling often measures the 
transition of nodes between layers, hence the transitions of nodes are captured by 
edges connecting nodes across layers.

Recall our multiplex graph M = (VM ,EM) . Suppose S is the set of elementary lay-
ers, we can then have transitions between any pair of elementary layers l ∈ S and 
l′ ∈ S . Let ul = (u, l),u ∈ VM , l ∈ S , the connection of a node u within a layer l. A 
transition coupling edge e can be defined as follows: e = (ul , vl′) ∈ EM such that e 
connects nodes {u, v} ⊆ VM across layers l  = l′, {l, l′} ⊆ S . Coupling edges often con-
nect a same node across two layers and may be used to model a physical transition, 
such as a change from subway to train in a station of a transportation network. As a 
consequence, a pair of layers (l, l′) = t forms a transition coupling t ∈ T  when there 
exists at least one such edge e = (ul , vl′) ∈ EM . Note that taken together, these ele-
mentary and transition coupling subsets form the set of all layers S ∪ T = L , and 
that the size of T is bounded by the size of S such that |T | ≤ 1

2
|S|(|S| − 1).

Now, given this definition, nothing limits the computation of entanglement 
(introduced in “Layer interaction network”, “Layer entanglement” and  “Entangle-
ment intensity and homogeneity” section) only to the elementary layers part of MS , 
as illustrated in Fig. 3. Entanglement can also be used to characterise the coupling 
between these elementary layers if applied only to the edges of the transition cou-
pling MT .

The nature of coupling often captures a very distinct characteristic of the network 
in comparison to its elementary layers. A transition coupling edge mostly connects 
the same node across layers, while elementary layers do not always display loops. 
These cases may happen on rare occasions, one example being an underground path 
connecting subway stations being modelled as a transition coupling, but the literature 
is very poor regarding such examples. It is however technically possible to consider 
both elementary layers and transition coupling in one multiplex network M to com-
pute entanglement (as shown in Fig. 4), but we keep this discussion for the “Appen-
dix”. In practice, the intensity and homogeneity greatly differ between them, and often 
result in clearly separated components of the LIN.

I = �/|L|.
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A coupled multilayer network generator
In this section, we describe an algorithm which generates synthetic coupled multi-
layer networks, i.e. multilayer networks which share some nodes across some layers, 
but do not guarantee that all nodes are being shared between all layers. These kinds 
of networks make the link between general multilayer networks and node-aligned 

Fig. 3  Computing entanglement on the transition coupling edges. a Coupling edges are illustrated in 
orange ( L1−L2 edges) and in purple ( L2−L3 edges). b Computing the corresponding LIN and entanglement 
measures. Coupling edges of a same node resemble loops except they are defined across two layers. We may 
notice that: the transition coupling L2−L3 shows a slightly higher index since there are more transitions for 
this coupling; the homogeneity H is (almost) maximal since both layers are (almost) equally intertwined (only 
2 layers, actual H ≈ 0.99986)

Fig. 4  Computing entanglement on both inner-layer and coupling edges. a Note that in contrast to the 
example in Fig. 3, we have added a loop to node p5 in layer L3 (in red) and a coupling edge connecting nodes 
p3 of layer L2 to p5 in L3 . b Computing the corresponding LIN and entanglement measures. We can notice that 
the most intertwined transition coupling displays the highest entanglement index. Because there is limited 
overlap between elementary layer edges and transition coupling edges, entanglement intensity I is rather 
low
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multiplex networks [for which the assumption is that all nodes are shared through all 
layers (Kivelä et al. 2014)].

The algorithm is based on the following observations. Let M = (VM ,EM) represent 
a coupled multilayer network with layer set L. Each node is associated to a random 
number of layers {l1, l2, . . . , li} ⊆ L . Now for each layer li ∈ L there is a set of nodes 
Vli ⊆ VM which forms a potential set of edges of size |Eli | =

1
2
|Vli |(|Vli | − 1) . We intro-

duce o, a parameter determining the probability of a node occurring at a given layer. 
We then introduce the probability p of an edge to be created between any pair of 
nodes belonging to a layer so we may avoid cliques to form on each layer. We referred 
in our previous work to the edge dropout (Škrlj and Renoust 2019), which is d = 1− p 
as the share of links we drop from the clique model. Intuitively, the more similar a 
given random multiplex is to a clique over each layer, the higher its elementary layer 
intensity should be. Hence, high intensity implies larger probability that two given 
nodes will have an edge between them on more than one layer. The generator also 
accounts for coupling by adding transition coupling edges. These coupling edges are 
connecting nodes across two layers. We introduce q, the probability for a same node 
to be connected across two layers. The higher q, the more nodes will be connected 
through layers. Note that in our initial work (Škrlj and Renoust 2019), neither o nor q 
were considered (o was in fact picked uniformly).

The purpose of this generator is to offer a simple testbed for further exploration, as 
well as additional evidence of the relation between homogeneity and intensity on many 
random, synthetic networks. The Algorithm 1 represents the proposed procedure.

The generator first randomly assigns the same node index to the many layers (lines 
2–5). Once assigned, the layers are processed by applying sampling on 

(|Vli
|

2

)

 possible 
edges in layer li . Note that in line 7, this whole clique is virtually generated. The global 
multiplex is updated during this process (lines 6–10). These steps are then repeated 
for each transition coupling i.e. pairs of elementary layers (lines 11–14). The imple-
mentation thus uses a generator, for which lazy evaluation avoids potential combina-
torial explosion when considering a large number of nodes and low edge probability.
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Some theoretical properties of the generator

In this section we show two properties of the proposed generator. We denote n = |VM | 
the parameter setting the number of nodes of the network, m = |L| the parameter set-
ting the number of edge layers in the network, and p the inner-layer edge probability. Let 

φ ∈ N
+ represent the number of possible edges. Then φ ≤ m ·

(

n
2

)

. Let o = 1 . Each 

layer can have at most n nodes. Assuming they form a clique, each layer is thus com-

prised of 
(n
2

)

 edges. As there are m layers, there can be at most m ·

(

n
2

)

 edges — a clique 

of n nodes in each layer (assuming p = 1 ). We refer to this bound as φ ≤ m ·

(

n
2

)

.

In the limit, as p → 1 , a full clique needs to be constructed, assuming each node is 
projected across all layers. The complexity w.r.t. the number of layers and edges is: 

O(m ·

(

n
2

)

) = O(|EM |). Note that, even though theoretically, the proposed generator 

creates a clique and then samples from it, current, lazy implementation only generates 
the edges needed to satisfy a given p percentage. In practice, only when p ≈ 1 , the gen-
erator needs larger portions of space (and time). As such, fully connected networks do 
not represent real systems, we were able to generate a multitude of very diverse net-
works. This generator-based implementation does not imply that large spatial overheads 
are not possible: such situations occur when very dense networks are considered.

We next discuss the impacts of q parameter. The number of coupling edges has a worst 

case complexity of O(

(

m
2

)

· n) since q directly depends on the number of layers availa-

ble. Let la and lb represent a given pair of layers, where each layer consists of all n possi-
ble nodes. As each node couples only to itself, there are at most n edges between la and 

lb . As there are 
(

m
2

)

 possible layer pairs, if nodes are in each pair fully coupled, the net-

work can have at most 
(

m
2

)

· n coupling edges.

However, is that also the case when considering only transition coupling? Consider 
the following example of a multiplex network without the coupling edges. No matter 
what p is employed, if q ≈ 0 , coupling intensity will be low—very few coupling edges 
are introduced, the observed LIN will be very sparse. Hence, we posit that the distribu-
tion of intensity shall be constant with respect to a given p. The proof of this claim is by 
contradiction. We assume that p would indeed influence coupling entanglement inten-
sity. Since transition coupling intensity is defined solely based on the coupling edges, this 
claim would imply a dependency between p and q, which is by the definition (and design) 
not the case. Even if the nodes are isolated in each layer, transition coupling intensity 
can be high. Note also that the node positioning, governed by o, directly impacts both 
elementary and transition coupling entanglement, since there is higher possibilities for 
edges to overlap when nodes belong to many layers. These points are illustrated in our 
“Empirical evaluation” section and further in the “Appendix”.

Layer entanglement in temporal multiplex networks
Analysis of temporal multiplex networks has shown promising results in multiple fields 
of science, such as for example healthcare and transportation (Sannino et al. 2017).
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Since patterns of layer interaction networks result in typical entanglement values, con-
sidering temporal entanglement is related to sizing particular topologies of a temporal 
multiplex network. For example, a high intensity among members in a multiplex social 
network communicating through different social media corresponds to a synchroniza-
tion of communications between them. When such a synchronization corresponds to 
the preparation of a particular event, understanding such synchronization could help 
forecast the event.

In this section, we first discuss how we define temporal multiplex networks and entan-
glement time series. We limit the following discussion to the consideration of entangle-
ment between elementary layers only, i.e. only inner-layer edges.

Temporal multiplex networks and entanglement

Real-life networks often evolve over time, making them behave differently at different 
points. In our current setting, we define the temporal aspect of our network such as each 
edge et is defined at a specific time point t. A multiplex network Md can then be defined 
for a given time window d. A time window d = [t0, tf ] covers a time frame (beginning 
at t0 and ending tf  ), and the multiplex network Md is defined such as each edge exists 
within the time window:

The second scenario we considered is that of moving time windows. Here, edges from the 
f past windows are considered when constructing a given network M, i.e.,

Our intuition is to compare the shape of a network at different moving time windows. 
For example, we could compare political social networks under different rulers of a 
country (Renoust et al. 2016a, b). To do so, we can simply compute entanglement homo-
geneity and intensity for each time window and compare them. Since our computation 
only focuses on edge, we consider the network as multiplex, the nodes are shared across 
all time frames.

Slicing the time windows is a very different topic and many options are open (Gomez 
et al. 2013; Beck et al. 2014). For example, it could be achieved manually, with equal time 
slices, moving window, or with volume of changes. In our context, we consider the identi-
fication of time window through slices of equal duration in time, but the principle can be 
extended. We refer to the duration r in time of the slices as time resolution.

We may now investigate entanglement homogeneity and intensity properties with 
respect to time resolution (r), and verify if patterns of intensity/homogeneity variation 
can be predicted. Note that one challenge of slice-based modelling of temporal multiplex 
networks is the problem of selecting the correct resolution r, i.e. how coarse (or fine)-
grained the intervals must be in order to capture desired dynamics.

In a system covering a global period of D, once a slicing resolution is chosen, we can 
observe values of homogeneity and intensity at the time series level, i.e. for each slice 
d ∈ D , and define the intensity time series SI = {IMd

}, ∀d ∈ D and the homogeneity time 
series as SH = {HMd

}, ∀d ∈ D . These intensity and homogeneity time series can now 
feed further processing. Note that SIf  and SHf

 are defined analogously (entanglement for 

Md = (VM , {et ∈ EM}t∈d).

Mf = (VM , {et ∈ EM}t∈{d−f ,...,d−1}).
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the past f slices, moving in the increments of one slice). The whole processing from tem-
poral edges to time series is illustrated in Fig. 5.

In our following evaluation (“Entanglement in temporal multiplex networks” section), 
we explore SI and SH when also considering a moving window of previous f time slices. 
The rationale for considering past f slices up to the considered time point is that such 
information only includes past data, and could indicate whether entanglement can be 
also used for forecasting purposes. The second option considered, where only the current 
time slice was plotted, can shed insight on whether online monitoring based on I or H is 
a sensible option.

Empirical evaluation
We now study entanglement intensity and homogeneity across different series of net-
works. We first investigate entanglement measures across different parameters of syn-
thetic settings. We follow with investigations on a large panel of real world networks. We 
finish our study with the study of entanglement in temporal multiplex networks.

Entanglement in synthetic networks

In this first study, we compare entanglement measures over a series of synthetic multi-
plex networks, using our proposed generator.

We consider for all our generations, the following key parameters:

•	 Number of nodes (n) from 10 to 200 in increments of 10.
•	 Number of layers (m) in 1, 2, 3, 4, 6, 7, 9, 10.
•	 Layer assignment probability (o), from 0 to 1 in increments of 0.05

Fig. 5  Converting temporal edges of multiple types into temporal entanglement series. a Edges of 
different types are defined over time between t0 and tf  . b Time frames d1 , d2 , and d3 are defined so we may 
construct the three corresponding multiplex network slices. c For each slice, we can compute a LIN and the 
corresponding entanglement intensity I and homogeneity H, which compose the series once taken together 
among all slices
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•	 Edge probability (p) from 0 to 1 in increments of 0.05.
•	 Transition coupling edge probability (q) from 0 to 1 in increments of 0.05.

Multiplex networks without transition coupling

A first generation concerns multiplex networks settings in which transition coupling is 
not specified (for example, friendship over different social platforms), so we do not con-
sider parameter q here.

We have generated in total 1,329,696 synthetic networks (a couple are illustrated in 
Fig. 6).

We measure entanglement intensity I and homogeneity H on each generated network 
(averaged over all connected components of the layer overlap frequency matrix). We 
investigate the role of the different parameters over the entanglement measures, as illus-
trated in Figs. 7, 8 and 9.

There is an obvious dependency between entanglement intensity and homogeneity 
since we cannot obtain low homogeneity with high intensity values (Fig. 7). This is due 
to the nature of both measures. With a high intensity, most of the layers are overlapping 
over most of the network. As a consequence, there is little space for permutations in the 
way layers overlap, this means the entanglement of all individual layers γl tends to align, 
hence resulting in high values of homogeneity. This leads to a denser production of high 
homogeneity networks as illustrated by the density lines in Fig. 7.

The number of nodes n and edges m do not show a strong dependency with homo-
geneity, but a slight one on intensity. Higher values of n and m make it easier to obtain 
sparser networks, with the consequence of resulting lower values of intensity. We fur-
ther illustrate these in Fig. 8. This effect mitigates quickly with higher numbers of nodes 
and layers.

We further explore the layer assignment probability of a node o, and the inner-layer 
edge probability p in Fig. 9. There is a first dependency appearing on the layer assign-
ment probability o, for which higher values tend to produce higher homogeneity 
(Fig.  9b). Higher homogeneity is reached when all layers contribute equally, meaning 
that a higher o shows more chances for each layer to contain most of the nodes. We 
may also observe apparent linear trend between the edge probability p (sparseness) and 

Ia Lower elementary b Higher elementary I.
Fig. 6  Visualization of inner-layer edges in synthetic coupled multilayer networks
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entanglement intensity (Fig. 9d). This trend confirms that sparser networks (i.e. lower p) 
are less “intensely” overlapping over edges. As intensity directly measures this property, 
this result outlines one of the desired properties of the proposed network generator.

Multiplex networks with transition coupling

A second experiment is focusing on multiplex graphs with transition coupling, i.e. con-
sidering only the coupling edges in our 1,329,696 generated networks (illustrated in 
Fig.  10). This experiment reproduces the previous one, but focusing on the transition 
coupling entanglement. Results are shown in Figs. 11 and 12, dependency on the num-
ber of nodes and layers is illustrated in “Appendix”. From Fig. 11, the shape is globally 
the same, with the difference in a skewed density of high-homogeneity without a dense 
production of very low intensity generated networks (from the density lines).

The profile is sensibly the same than that of the previous experiment, except that the 
layer assignment probability o appears to have a more diffuse impact, and the direct 
dependency is this time observed on the coupling edge probability q. Comparison with 
parameter p obviously does not influence entanglement, but can be found in “Appendix” 
for additional inspection.

Overall, the networks with transition coupling are more saturated when compared to 
the ones without transition. The reason may be that we only consider here transition 
coupling edges that only connect the same node across layers.

For the interested reader, we also illustrate in the “Appendix” the independence of 
parameters q over the elementary layer entanglement and p over the transition cou-
pling entanglement. We also report there the computation of entanglement over the 
combined elementary layers and transition coupling, which displays a dependency on 
both p and q parameters. Finally, we have computed the layer correlation coefficient, as 

Fig. 7  Homogeneity and intensity H × I on 1,329,696 synthetic multiplex networks without transition 
coupling with density lines (Gaussian kernel density estimation)
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suggested in Nicosia and Latora (2015), confirming the role of the different parameters 
of our generator.

Multiplex network comparison across disciplines

We now consider real world static networks. All considered networks are summarised 
with their main characteristics in Table 11. Unfortunately, we have not found a real case 
with a large number of transition coupling edges, so we limit this evaluation to elemen-
tary layer entanglement. For each network, we computed elementary layer homogeneity 
and intensity for all connected components.

We first investigate individual results through the distributions of each metric across 
network types, Fig.  13. We then compare individual networks across entanglement 
intensity and homogeneity Fig. 14.

H×n I×n

H×m

a Elementary b Elementary

c d Elementary I×m

Fig. 8  Results on synthetic multiplex networks without considering transition coupling. Dependency on the 
number of nodes n (a, b) and layers m (c, d) on the elementary layer entanglement. The intensity (b, d) shows 
some influence on each parameter

1  The networks are hosted at https​://comun​elab.fbk.eu/data.php

https://comunelab.fbk.eu/data.php
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H×o I×o

H× p

a Elementary b Elementary

c Elementary d Elementary I× p

Fig. 9  Results on synthetic multiplex networks without considering transition coupling. There is small 
dependency on the layer assignment probability o to nodes, since the higher it is, the more overlap may 
occur. The homogeneity (c) shows less dependency to the inner-layer edge probability p than intensity (d), 
which also increases the likelihood of layer overlap

I.a Lower transition b Higher transition I.
Fig. 10  Visualization of coupling edges in synthetic coupled multilayer networks
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Two main observations are apparent when studying the results on real networks. 
First, the difference between social and genetic (biological) multiplex networks 
becomes obvious when both entanglement intensity and homogeneity are consid-
ered (Fig. 14). To confirm these differences, we further compare their distributions, 
i.e., the intensity and homogeneity of social versus genetic networks, in Fig. 15.

In addition, from Fig. 14, we may observe that many genetic networks sit in rela-
tively low intensity/homogeneity places, whereas social networks sit in the top right 
corner: the high entanglement homogeneity of social networks is quite noticeable. 
This suggests a few interpretations:

•	 genetic networks show in general very little layer overlap;
•	 some genetic networks could be matched to synthetic networks of low inner-

layer edge probability, especially when homogeneity is low, being very sparse, 
potentially pointing at low layer assignment probability too;

•	 layers in social networks tend to overlap a lot;
•	 social networks tend to be quite dense and may be simulated by synthetic net-

works with a high inner-layer edge probability;

The results on social networks indicate a high level of layer overlap and it may be 
due to the overall behaviour of people, which is rather similar across different net-
works, whatever their means of interaction. Simmelian ties, triadic closure, and 
homophily (which are well studied in social sciences) are probably strong drivers of 
this layer overlap.

Fig. 11  Homogeneity and intensity H × I results on 1,329,696 synthetic multiplex networks considering their 
transition coupling with density lines (Gaussian kernel density estimation)
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H×o). I×o).

H×q).

a Transition ( b Transition (

c Transition ( d Transition (I×q).

Fig. 12  Homogeneity and intensity distributions in transition coupling entanglement w.r.t. o and q 

a Real networks: H b Real networks: I
Fig. 13  Entanglement homogeneity and intensity compare for each category of networks, showing quite 
diverse set of properties proper to the different families of networks
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Table 1  Real multiplex networks and their properties

Dataset ID Type Nodes Edges Number 
of layers

Mean degree CC Intensity Homogeneity

arXiv-Netsci-
ence (De 
Domenico et al. 
2015a)

34 Coauthorship 26,796 59,026 13 4.41 3660 0.114786 0.641670

PierreAuger (De 
Domenico et al. 
2015a)

26 Coauthorship 965 7153 16 14.82 131 0.086551 0.716156

Arabidopsis (Stark 
et al. 2006)

0 Genetic 8765 18,655 7 4.26 387 0.111636 0.408940

Bos (Stark et al. 
2006)

1 Genetic 369 322 4 1.75 82 0.160341 0.582015

Candida (Stark 
et al. 2006)

5 Genetic 418 398 7 1.90 50 0.284783 0.888476

Celegans (Stark 
et al. 2006)

7 Genetic 4557 8182 6 3.59 193 0.115718 0.420231

DanioRerio (Stark 
et al. 2006)

8 Genetic 180 188 5 2.09 45 0.068219 0.870304

Drosophila (Stark 
et al. 2006)

9 Genetic 11,970 43,367 7 7.25 346 0.082283 0.405509

Gallus (Stark et al. 
2006)

12 Genetic 367 389 6 2.12 54 0.151845 0.433374

HepatitusCVi-
rus (Stark et al. 
2006)

13 Genetic 129 137 3 2.12 4 0.304679 0.777382

Homo Sapi-
ens (Stark et al. 
2006)

14 Genetic 36,194 170,899 7 9.44 785 0.101047 0.519648

HumanHer-
pes4 (Stark et al. 
2006)

16 Genetic 261 259 4 1.98 21 0.245979 0.595037

HumanHIV1 (Stark 
et al. 2006)

15 Genetic 1195 1355 5 2.27 13 0.158347 0.583648

Oryctolagus (Stark 
et al. 2006)

24 Genetic 151 144 3 1.91 21 0.241322 0.635943

Plasmodium (Stark 
et al. 2006)

27 Genetic 1206 2522 3 4.18 27 0.249623 0.853694

Rattus (Stark et al. 
2006)

28 Genetic 3263 4268 6 2.62 296 0.126889 0.457888

SacchCere (Stark 
et al. 2006)

29 Genetic 27,994 282,755 7 20.20 432 0.070428 0.695150

SacchPomb (Stark 
et al. 2006)

30 Genetic 10,178 63,677 7 12.51 286 0.079756 0.407135

Xenopus (Stark 
et al. 2006)

32 Genetic 582 620 5 2.13 109 0.082539 0.829466

YeastLand-
scape (Costanzo 
et al. 2010)

33 Genetic 17,770 8,473,997 4 953.74 4 0.132035 0.534030

CElegans (Chen 
et al. 2006)

7 Neuronal 791 5863 3 14.82 6 0.339461 0.856373

Cannes2013 Omo-
dei et al. 2015

6 Social 659,951 991,854 3 3.01 48,375 0.269159 0.900587

CKM-Physicians-
Innovation (Cole-
man et al. 1957)

3 Social 674 1551 3 4.60 12 0.394666 0.988309

CS-Aarhus (Mag-
nani et al. 2013)

4 Social 224 620 5 5.54 13 0.341388 0.894766

Kapferer-Tailor-
Shop (Kapferer 
1972)

17 Social 150 1018 4 13.57 5 0.438509 0.910168
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Table 1  (continued)

Dataset ID Type Nodes Edges Number 
of layers

Mean degree CC Intensity Homogeneity

Krackhardt-High-
Tech (Krackhardt 
1987)

18 Social 63 312 3 9.90 3 0.412875 0.838791

Lazega-Law-
Firm (Lazega 
et al. 2001)

19 Social 211 2571 3 24.37 3 0.516232 0.970364

MLKing2013 (Omo-
dei et al. 2015)

21 Social 392,542 396,671 3 2.02 36,041 0.260099 0.624426

MoscowAthlet-
ics2013 (Omodei 
et al. 2015)

22 Social 133,619 210,250 3 3.15 6323 0.246321 0.880520

ObamaInIs-
rael2013 (Omo-
dei et al. 2015)

23 Social 3,457,453 4,061,960 3 2.35 651,141 0.316202 0.835469

Padgett-Florence-
Families (Padgett 
and Ansell 1993)

25 Social 26 35 2 2.69 2 0.547715 0.986433

Vickers-Chan-
7thGraders (Vick-
ers and Chan 
1981)

31 Social 87 740 3 17.01 3 0.705372 0.968908

FAO (De Domenico 
et al. 2015b)

11 Trade 41,713 318,346 364 15.26 571 0.290018 0.843847

EUAir (Cardillo et al. 
2013)

10 Transport 2034 3588 37 3.53 41 0.015499 0.743443

London (De 
Domenico et al. 
2014)

20 Transport 399 441 3 2.21 3 0.236502 0.875838

The ID in the second column corresponds to Fig. 14

Fig. 14  Real networks: H × I . Labels of networks map to Table 1 (ID). Grey dots represent synthetic samples 
of Fig. 7, with Gaussian kernel density estimation over lines over the real world samples. Social networks 
shows a tendency to fall within the high homogeneity/intensity range, coinciding with the high inner-layer 
edge probability parameter p of synthetic networks
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Entanglement in temporal multiplex networks

In our last experiment, we investigate entanglement across time slices of three real-life 
temporal multiplex networks: MLKing2013, MoscowAthletics2013, and Cannes2013 [as 
found in Omodei et al. (2015)]. Each network consists in a collection of Twitter activity 
related to some event. The networks are comprised of three layers of connection, namely 
retweets, replies and comments. They can be summarised as follows. The MLKing2013 
data set consists of 421,083 events covering a week of celebration of M.L. King’s speech 
“I have a dream” in 2013, forming 396,671 edges between 327,708 nodes. The Mos-
cowAthletics2013 data set consists of 303,330 events covering two weeks of the World 
Championships of Athletics held in Moscow in 2013, forming 210,250 edges between 
88,805 nodes. The Cannes2013 network consists of 1,297,545 events (temporal edges) 
covering a month of the 2013 Cannes Film Festival, together forming a network of 
930,419 edges and 438,538 nodes. Note that the networks are not trivially small, offering 
additional evidence of the stability of the entanglement computation.

The networks were analysed following the methodology introduced in “Layer entan-
glement in temporal multiplex networks” section. We propose two experiments with 
regard to time segmentation.

The first experiment considers fixed time windows of sizes 1h, 3h, 6h, and 12h. We 
compare with the activity volume in form of a total number of tweets—as found in Omo-
dei et al. (2015), Figure 1 for a 1h window size, here reported in Figs. 16a, 17a, and 18a. 
We normalise here this volume so values are in [0, 1].

We selected the coarse windows at their best readability for each dataset (3h for MLK-
ing2013 in Fig.  16b, 6h for MoscowAthletics2013 in Fig.  17b, and 12h for Cannes2013 
in Fig. 18b)—each coarsening is further illustrated in “Appendix”. A second experiment 
considers a moving window of the size corresponding to these best windows, sliding by 
the hours (Figs. 16c, 17c, and 18c).

In the MLKing2013 data set (Fig. 16), we can observe that spikes of intensity surround 
the main spike of volume activity. A smaller spike of intensity consistently coincides with 
a smaller spike of volume at the end of the main spike.

a Genetic vs. Social networks - H b Genetic vs. Social networks - I
Fig. 15  Distributions of homogeneity and intensity when genetic networks are compared to social ones
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a MLKing2013, static window of 1h

b MLKing2013, static window of 3h c MLKing2013, sliding window of 3h, with
1h steps

Fig. 16  Visualization of temporal entanglement across MLKing2013. In grey, volume over the period of time 
(dotted line for the aggregated volume over sliding window (c)). Intensity in blue and homogeneity in yellow

a MoscowAthletics2013, static window of
1h

b MoscowAthletics2013, static window of
6h

c MoscowAthletics2013, sliding window of
6h, with 1h steps

Fig. 17  Visualization of temporal entanglement across MoscowAthletics2013. In grey, volume over the period 
of time (dotted line for the aggregated volume over sliding window (c)). Intensity in blue and homogeneity 
in yellow
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In the MoscowAthletics2013 data set (Fig. 17), the 1h-time window does not show a 
consistent behaviour. However, we can see that spikes in coarser time windows coin-
cide with the spikes in volume. A larger spike in intensity appears before the final 
spike in volume.

In the Cannes2013 data set (Fig.  18), the 1h-time window shows some spikes in 
intensity, especially a major by the end of the period of activity in terms of volume. 
In coarser time windows, we can notice four main spikes: one before the beginning of 
volume of activity; the next two ones appear just before a slight increase in the daily 
volume; the last one appears the day before the last day of the volume activity. This 
last peak appears even more prominent from the sliding window example.

The volume captures Twitter activity, governed by the human activity following 
the day/night rhythm. Although entanglement intensity is also submitted to it, we 
see emerging patterns that seem proper to each type of event. The activity of entan-
glement shows definitely some relationship with volume while telling a different 
story. The sports event that is MoscowAthletics2013 may be much more subject to 
the day-by-day routine in which different disciplines are at play. On the other hand, 
the speech celebration in MLKing2013 has some very specific activity before (could 
it be anticipation?) and after (could it be ripples?) the event. The movie festival in 
Cannes2013 may be governed by sub-events of different importance in terms of net-
working activity.

In accordance with the position of social networks in our evaluation of real-world net-
works in “Multiplex network comparison across disciplines” section, we see a decrease 

a Cannes2013, static window of 1h

b Cannes2013, static window of 12h c Cannes2013, sliding window of 12h, with
1h steps

Fig. 18  Visualization of temporal entanglement across Cannes2013. In grey, volume over the period of time 
(dotted line for the aggregated volume over sliding window (c)). Intensity in blue and homogeneity in yellow
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in homogeneity whenever we see spiking of intensity. This may indicate that a lot of the 
network activity suddenly focuses on one specific modality of exchange (such as replies). 
Entanglement study may help in targeting when this is driven by a particular modality.

Further studies on the nature of the events, and the specific topologies of the LIN net-
works that gave rise to these entanglement values is necessary for a more in-depth analy-
sis of each case. Since we see some spiking activity of entanglement before actual events 
took place, we may suspect that, beyond monitoring, there is a predictive power of mod-
elling time series from entanglement in past data (sliding windows).

Discussion and conclusions
In this work, we have revisited the notion of layer entanglement and extended it to cou-
pled multilayer networks and temporal networks. To investigate entanglement, we have 
proposed a random generator for coupled multilayer networks, and generated a large 
set of synthetic ones. We have evaluated entanglement intensity and homogeneity in all 
cases, and compared to static and temporal real world networks.

Our analysis of the synthetic networks outlined that entanglement intensity is directly 
correlated with edge probability parameter—the sparser the network, the lower the 
intensity. This result indicates the proposed generator indeed emits networks which 
adhere to this property. We have also observed that large parts of the generated net-
works are subject to high homogeneity with various degrees of entanglement intensity.

Entanglement in the synthetic networks appears very sensitive to the different prob-
abilities characterising the model (o, p, and eventually q for the coupled multilayer net-
works). The influence of each parameter should also be investigated theoretically in 
future work.

The high homogeneity observed may be a byproduct of our computations. First, our 
random generation induces a lot of small connected components of the coupled mul-
tilayer networks, and small components tend to show higher homogeneity since there 
are not so many degrees of freedom for edges to overlap. Because we are averaging the 
entanglement intensity and homogeneity over all components, this may go in favour 
of high homogeneity. Understanding this effect deserves more investigation. Second, 
entanglement homogeneity is a cosine measure, and the observed values may suffer 
from the skewness of cosine values when distributed in a linear space, amplifying the 
effect of having large values. Furthermore, it might also suffer from the curse of dimen-
sionality in the case of a high number of layers. It would be worth considering normal-
izing this homogeneity with respect to the number of layers involved and the number of 
edges they cover. Instead of cosine, a Shannon’s entropy measure may overcome some of 
these limitations.

One of the aspects that was not extensively evaluated as a part of this work is the pro-
cessing of the repeated links in a given time slice. The current implementation considers, 
for each time slice, the collection of unique links, which are not weighted by their pos-
sible multiple occurrences. This way, the diversity of connections is emphasized, instead 
of  the link frequency. A more detailed study of how the links can be re-weighted will be 
considered in future work.
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We further demonstrated that the two measures offer interesting insights when 
computed across a wide array of real-world networks. The observed relationship 
between the intensity and homogeneity of layer entanglement with the family of data-
set was previously reported for clusters of documents [in  Renoust et  al. (2013, Fig-
ure  5)]. In this previous experiments, clusters of documents were mostly located at 
the left frontier of high intensity for a varying homogeneity. Our current experiments 
showed that real networks cluster based on their type (e.g. biological vs. social), also 
close to this frontier. We have observed (from Fig. 14) that the set of genetic networks 
tend to sit in areas with low entanglement intensity, which could correspond to lower 
edge probability p, but they also tend to show a wider span of entanglement homoge-
neity including our lowest values measured (from Fig.  13), which could correspond 
to lower layer assignment probability o. Further work should be invested on finding 
the reason why genetic networks tend to show lower homogeneity. This is opposed 
to social networks which tend to find their way in the higher probability area. This 
should be further investigated, but this may be related to homophily (McPherson et al. 
2001; Borgatti et  al. 2009). Homophily is the implied similarity of two entities in a 
social network, and the property of entities to agglomerate when being similar. If the 
reason of ‘being similar’ could be modelled as a layer of interaction, the result of a 
group of entities in ‘being similar’ would lead to the formation of a clique in this layer, 
hence locating social networks in high probability areas.

The proposed work offers at least two prospects of multiplex network study which 
are in our belief worth exploring further. The difference between the genetic and 
social networks is possibly subject to very distinct topologies which emerge in indi-
vidual layers. This claim may further be investigated via other measurements, such as 
graphlets, communities or other structures. Next, genetic networks are less homo-
geneous. Future work includes exploration of this fact, as it can be merely a property 
of the networks considered, empirical methodology used to obtain the networks or 
some other effect.

We believe that theoretical properties of the proposed network generator can also 
be further studied, offering potential insights into how multiplex networks behave 
and whether the human-made aspects are indeed representative of a given system’s 
state. The model that we are currently exploring only takes into account a probabil-
ity of linkage through (or within) layers without guarantee of connectivity. We made 
this choice to be able to compare between different fields, without prior assumption 
which could, for example, rule in favour of similarity to social network. Our future 
work will investigate other generation models including Erdős-Rónyi-based  (Caimo 
and Gollini 2020) or other with preferential attachment (Nicosia et al. 2014).

The analysis of real-life temporal networks offers cues on evolution in layer entan-
glement which can happen prior to some other events. We have tested multiple 
time scales. Too small time windows mostly result in noisy time series carrying low 
amounts of useful information, while higher coarsening shows activity related to 
volume, but with a different light on the events that are captured. Future work will 
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dive deeper into these events, and consider testing entanglement as a predictor using 
approaches such as of Prophet (Taylor and Letham 2018).

When considering entanglement as a either a monitoring or a predictive variable, 
its utility largely depends on the time scale at which a given edge stream needs to be 
considered. We leave extensive, possibly automatic determination of a setting where 
entanglement would be of practical relevance for future work. To study the param-
eters driving the dynamics of entanglement in temporal networks, we will consider 
comparing entanglement measures with synthetic temporal networks in our future 
investigations.
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Appendix
Dependency in synthetic networks over nodes and layers

One can predict of course a level of dependency over the number of nodes n and lay-
ers m for the transition coupling case too. The dependency tends towards lower entan-
glement values since when increasing the number of nodes and layers, we increase the 
degree of freedom for layers to overlap. This trend, first illustrated in Fig. 8, is confirmed 
in Fig. 19.

Independence of parameters

The distribution of parameters of transition coupling intensity and homogeneity over 
parameter p, and elementary layer intensity and homogeneity over parameter q, show no 
dependency as illustrated in Fig. 20.

https://gitlab.com/skblaz/entanglement-multiplex
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Combining both elementary and transition coupling

As we mentioned in “Transition coupling entanglement” section, one can compute 
entanglement over all the network, combining elementary layers and transition coupling 
(as illustrated in Fig.  21). Although we have not identified practical use cases for this 
entanglement (often both categories of layers tell a different story), we report here the 
results over our synthetic networks in Figs. 22, 23, and 24. As expected we may observe 
a strong dependency over both p and q parameters combined (Fig.  24). Note that the 
current generator does not forbid the creation of loops enabling overlap between ele-
mentary layer and transition coupling. A generation of transition coupling edges that 
would connect different nodes between layers would create even more overlap between 
elementary layers and transition coupling. Such a parameter is actually available in the 
proposed code, but beyond the scope of this paper.

H×n I×n

H×m

a Transition b Transition

c Transition d Transition I×m

Fig. 19  Dependency on the number of nodes and layers on the transition coupling entanglement
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H×q I×q

H× p.

a Elementary b Elementary

c Transition d Transition I× p.

Fig. 20  From the computation of entanglement over elementary layers (a, c, d) and transition coupling (b, e, 
f), we see no dependency on parameters p and q 

Ia Lower combined b Higher combined I
Fig. 21  Visualization of both inner-layer and coupling edges in synthetic coupled multilayer networks
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Choosing the right size of time window

Choosing the right size of time-window fundamentally depends on the dataset we 
observe. We report all variations of fixed time window coarsening we have explored, 
among 1h, 3h, 6h, and 12h-long windows for each of the MLKing2013 (Fig. 25), Moscow-
Athletics2013 (Fig. 26), and Cannes2013 (Fig. 27) events. Too fine selection displays a lot 
of noise, too coarse eludes most of the content.

Correlation analysis

For completeness, we also computed the correlation between the occurrence of a given 
pair of nodes, as discussed in Nicosia and Latora (2015). As a measure of correlations of 
layer activity, we have computed the pairwise multiplexity. Following the original nota-
tion, we computed, for each synthetic network:

where α ∈ L and β ∈ L are two distinct layers. Here, bi ∈ [0, 1] represents the presence of 
a given node i, hence, the product equals zero if a given node is not co-present on both 
considered layers. Given the large space of synthetic multiplex networks, it is not sen-
sible to analyse individual ones, as performed in Nicosia et al. (2014), hence we further 
computed:

i.e., the distribution of all possible pairwise correlations. In Fig. 28, we present the statis-
tical properties of this distribution further segmented according to the number of layers.

Qα,β =
1

|N |

∑

i

b
[α]
i b

[β]
i ,

Qd = {Qα,β}α,β∈L2∧(α �=β),

Fig. 22  Homogeneity and intensity H × I results on 1,329,696 synthetic multiplex networks considering their 
combined elementary layers and transition coupling with density lines (Gaussian kernel density estimation)
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We further compare this distribution with each parameter of our generator in Fig. 29. 
We first could expect some level of relationship with the number of layers and the node 
layer probability. This is confirmed, and we can observe a direct dependency with the 
number of layers m, and the node-layer assignment probability o. The relationship with 
the number of layers slowly decreases with a minimum of 5 layers, since with more lay-
ers, there are more degrees of freedom for nodes to be assigned on layers. The relation-
ship with o is almost linear. There is almost no dependency with the number of nodes 
(once enough nodes are assigned). The inner-layer edge probability p does not influ-
ence this measure, although we may observe a sudden increase first, it is an artefact of 
our algorithm because nodes with degree zero in a layer are discarded from the layer to 
speed up computations. The transition coupling edge probability q shows no correlation 
because this algorithmic artefact does not apply to it.

H×n I×n

H×m

a Combined b Combined

c Combined d Combined I×m

Fig. 23  Dependency on the number of nodes and layers on the combined layers entanglement
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a Combined H×o b Combined I×o

c Combined H× p d Combined I× p

e Combined H×q f Combined I×q

Fig. 24  Dependency on the different probabilities o, p and q on the combined layers entanglement
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a 1h b 3h

c 6h d 12h
Fig. 25  Different sizes of time windows for the MLKing2013 data set

a 1h b 3h

c 6h d 12h
Fig. 26  Different sizes of time windows for the MoscowAthletics2013 data set
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a 1h b 3h

c 6h d 12h
Fig. 27  Different sizes of time windows for the Cannes2013 data set

a Std b Max

c Min d Mean
Fig. 28  Results of correlation analysis. It can be observed that the larger layers are subject to the most 
dispersed correlation distributions (Std peak in (a)). Further, when considering only pairs of layers, very little 
correlation was observed in a large body of generated networks, indicating that by increasing the number of 
layers, correlation also increases
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