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Introduction
When investigating real-world network datasets we often do not have access to the 
entire network information. This is the case of large datasets, having limited storage 
capacity or limited resources during the data collection phase. Nevertheless, this should 
not prevent practitioners from analyzing an available network sample. In fact, evaluat-
ing network properties while accessing only a smaller sample is a relevant problem in 
various fields, ranging from modelling dynamical processes (De Choudhury et al. 2010; 
Sadikov et al. 2011), network statistics estimation (Leskovec and Faloutsos 2006), data 
compression (Adler and Mitzenmacher 2001) and survey design (Frank 2005). Imagining 

Abstract 

We perform an extensive analysis of how sampling impacts the estimate of several rel-
evant network measures. In particular, we focus on how a sampling strategy optimized 
to recover a particular spectral centrality measure impacts other topological quantities. 
Our goal is on one hand to extend the analysis of the behavior of TCEC (Ruggeri and 
De Bacco, in: Cherifi, Gaito, Mendes, Moro, Rocha (eds) Complex networks and their 
applications VIII, Springer, Cham, pp 90–101, 2020), a theoretically-grounded sampling 
method for eigenvector centrality estimation. On the other hand, to demonstrate more 
broadly how sampling can impact the estimation of relevant network properties like 
centrality measures different than the one aimed at optimizing, community structure 
and node attribute distribution. In addition, we analyze sampling behaviors in various 
instances of network generative models. Finally, we adapt the theoretical framework 
behind TCEC for the case of PageRank centrality and propose a sampling algorithm 
aimed at optimizing its estimation. We show that, while the theoretical derivation can 
be suitably adapted to cover this case, the resulting algorithm suffers of a high compu-
tational complexity that requires further approximations compared to the eigenvector 
centrality case. Main contributions (a) Extensive empirical analysis of the impact of the 
TCEC sampling method (optimized for eigenvector centrality recovery) on different 
centrality measures, community structure, node attributes and statistics related to spe-
cific network generative models; (b) extending TCEC to optimize PageRank estimation.

Keywords:  Sampling on network, Eigenvector centrality, PageRank, Centrality 
measures

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/.

RESEARCH

Ruggeri and De Bacco ﻿Appl Netw Sci            (2020) 5:81  
https://doi.org/10.1007/s41109-020-00324-9 Applied Network Science

*Correspondence:   
nicolo.ruggeri@tuebingen.
mpg.de 
Max Planck Institute 
for Intelligent Systems, 
Max‑Planck Ring 4, 
72076 Tübingen, Germany

http://orcid.org/0000-0001-6847-9001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-020-00324-9&domain=pdf


Page 2 of 29Ruggeri and De Bacco ﻿Appl Netw Sci            (2020) 5:81 

that one could design the sampling scheme for data collection, then this should be done 
wisely, as this biases the estimates of the network properties aimed at investigating (Han 
et  al. 2005; Lee et  al. 2006; Kossinets 2006). The goal should be to design a sampling 
protocol that not only preserves the relevant network properties of the entire topol-
ogy inside the sample, but that can be implemented efficiently. Most sampling strate-
gies found in the literature (Leskovec and Faloutsos 2006) are empirically-driven and 
lack theoretical groundings. Recently, TCEC (Ruggeri and De Bacco 2020), a sampling 
algorithm to approximate in-sample eigenvector centrality (Bonacich 1972), whose main 
features are being theoretically grounded and computationally scalable, has been pro-
posed. TCEC  aims at preserving the relative eigenvector centrality ranking of nodes 
inside the sample. This is a centrality measure used in many disciplines to characterize 
the importance of nodes. However, this might not be the only property of interest when 
studying a network. The question is then how a sampling method, optimized to retrieve 
one particular property, performs in estimating other network-related measures. In this 
work we address this question by performing an extensive analysis of the behavior of 
TCEC in recovering several relevant network properties by means of empirical results 
on real and synthetic networks. In particular, we focus on estimating various central-
ity measures which have a very different characterization from eigenvector centrality 
and do not come from spectral methods. Then we investigate how community struc-
ture and covariate information are affected by the sampling. In addition, we analyze how 
sampling strategies behave in recovering relevant network statistics specific to various 
network generative models. We compare performance with other sampling strategies. 
Finally, we discuss what are the challenges preventing a trivial extension of TCEC on 
PageRank (Brin and Page 1998) score.

Related work

A large part of the scientific literature aiming at investigating sampling strategies on net-
works is based on empirical approaches (Blagus et  al. 2017; Costenbader and Valente 
2003) and focus on recovering standard topological properties like degree distribution, 
diameter or clustering coefficient (Leskovec and Faloutsos 2006; Morstatter et al. 2013; 
Stutzbach et al. 2009; Hübler et al. 2008; Stumpf and Wiuf 2005; Ganguly and Kolaczyk 
2018; Antunes et al. 2018). To the best of our knowledge, TCEC sampling (Ruggeri and 
De Bacco 2020) is one of the first theoretical attempts in estimating eigenvalue central-
ity, which goes beyond heuristics or empirical reasoning. A closely related problem is 
that of estimating eigenvector centrality without observing any edge but only signals 
on nodes (Roddenberry and Segarra 2019; He and Wai 2020). A different but related 
research direction is to question the stability of centrality measures under perturbations 
(Segarra and Ribeiro 2015; Han and Lee 2016; Murai and Yoshida 2019). In the case of 
PageRank score, and more recently for Katz centrality as well (Lin et al. 2019), the focus 
of similar lines of research is based on the different objective of estimating single nodes’ 
scores or approximating the external information missing for reliable within-sample 
estimation (Sakakura et al. 2014; Chen et al. 2004; Davis and Dhillon 2006), rather than 
estimating the relative ranking of nodes within a sample as we do here. Finally, focusing 
on temporal networks, Shao et al. (2017) propose a centrality measure suitable for this 
case and a method for its estimation using the network dynamics.
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TCEC: sampling for eigenvector centrality estimation
In this section we introduce the formalism and explain the main ideas behind the Theo-
retical Criterion for Eigenvector Centrality (TCEC) sampling algorithm (Ruggeri and De 
Bacco 2020). This method uses mathematical formalism from spectral approximation 
theory to approximate the eigenvector centralities of nodes in a subsample with their 
values in the whole graph. Consider a graph G = (V , E) where V is the set of nodes and 
E the set of edges; denote A its adjacency matrix with entries Aij ∈ R≥0 the weight of an 
edge from i to j. Sampling a network can be defined as the problem of selecting a princi-
pal submatrix Am

′ of size m ≤ |V| induced by a subset of nodes I ⊆ V . The subsampled 
network is denoted as Gm = (I , Em) , and Em ⊆ E is the set of edges in the subsample. In 
general, there can be several choices for selecting Gm . They should depend on the quan-
tities aimed at preserving when sampling. TCEC selects Gm in order to minimize the 
sin distance sin(µm, µ̃) between the eigenvector centrality µ̃ ∈ Rm in the subsample and 
the one on the same nodes, but calculated from the whole graph µm ∈ Rm ; µm is a vec-
tor built from the whole-graph eigenvector centrality µ ∈ RV  , when selecting only the 
m entries corresponding to nodes in the subsample. Accessing sin(µm, µ̃) without the 
knowledge of the whole graph is not possible. However, given that eigenvector centrality 
is a spectral method, i.e. is based on evaluating eigenvectors and eigenvalues, TCEC uses 
projection methods for spectral approximation to propose a bound on that distance and 
relate it to network-related quantities. This results in an algorithmic implementation of 
a sampling procedure that aims at minimizing that bound. Referring to Ruggeri and De 
Bacco (2020) for details, the algorithm briefly works as follows. Starting from an initial 
small random sample, it selects nodes in an online fashion: it adds to the current sample 
I  of size k − 1 one node at a time by selecting the best node from the set of non-sampled 
nodes j ∈ V\I  . The best candidate node j is the one that maximizes the following quan-
tity made of network-related quantities:

where b1 ∈ R
k−1 are the edges pointing from j to the nodes already in the subsample, 

b2 ∈ R is the entry corresponding to j, b3 ∈ R
n−k are edges from nodes outside the sam-

ple towards j, U ∈ R
k−1,n−k are the edges from nodes outside the sample towards nodes 

in it, j excluded; dGk
in (j) is the (weighted) in-degree of node j calculated considering only 

the incoming edges from nodes that are in the sample; α ∈ [0, 1] is an hyperparameter 
that can be tuned empirically. We present a diagram of the quantities involved in Fig. 1.

Empirical studies
We study the impact of sampling a network with TCEC  on several relevant network 
properties different form eigenvector centrality. Namely, we investigate: (1) the distri-
bution of the sampled nodes in terms of non-spectral centrality measures as in-degree, 
betweenness centrality and SpringRank (De Bacco et  al. 2018); (2) the relationship 
between community structure and sampled nodes; (3) the preservation of the distri-
bution of node attributes in the sampled network; (4) the impact of sampling on other 
model-specific statistics. For all these tasks, we compare with uniform random walk 
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sampling (RW), as this is the mainstream choice for many sampling scenarios, due to 
its favorable statistical and computational properties (Gjoka et  al. 2010); it has also 
shown better performance in recovering eigenvector centrality than all other state-of-
the-art algorithms analyzed against TCEC (Ruggeri and De Bacco 2020). In addition, in 
the absence of a best sampling protocol that works for all applications, we further show 
comparisons with various other algorithms; for sake of visualization, we move some of 
the results to the corresponding Appendices. In the following experiments we use the 
Kendall-τ correlation (Kendall 1990) to assess similarity between score vectors, as done 
in Ruggeri and De Bacco (2020).

Implementation details

While we refer to Ruggeri and De Bacco (2020) for the detailed definitions of the param-
eters needed in the algorithmic implementation, we provide a summary of their values 
used in our experiments in the “Appendix 1”; we use the open-source implementation 
of TCEC  available online.1 In all the following experiments we sample to include 10% 
of the total nodes. We comment on the stability and effects of different samples sizes in 
“Appendix 2” by means of an empirical comparison.

In addition to RW, for performance comparison we compare with several commonly 
employed sampling algorithms. Namely, uniform sampling on nodes (RN) (Leskovec and 
Faloutsos 2006; Ahmed et al. 2012; Wagner et al. 2017), uniform sampling on edges (RE), 
node2vec(Grover and Leskovec 2016) (with exploration parameters p = 2 , q = 0.5 , i.e. 
depth-first oriented search) and snowball expansion sampling (EXP) (Maiya and Berger-
Wolf 2010).

Non‑spectral centrality measures behavior

We analyzed the performance of TCEC  in estimating non-spectral centrality meas-
ures in various real world datasets (see “Appendix 1” for more details): C. Elegans, the 
neural network of the nematode worm C. elegans (Watts and Strogatz a); US Power 
grid, an electrical power grid of the western US (Watts and Strogatz a); Epinions, a 

Fig. 1  TCEC sampling visual representation. Consider a candidate node j to be added to the current sample 
Gm . The algorithm considers: the outgoing connections b1 towards the sample, the incoming connections b3 
from the non-sampled nodes and U, the remaining edges incoming towards the sample

1  https​://githu​b.com/cdeba​cco/tcec_sampl​ing.

https://github.com/cdebacco/tcec_sampling
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who-trusts-whom network based on the review site Epinions.com (Takac and Zabovsky 
2012); Slashdot, a social network based on the reviews website Slashdot.org community 
(Leskovec et  al. 2009); Stanford, a network of hyperlinks of the stanford.edu domain 
(Leskovec et al. 2009); Adolescent Health, a network of friendship between schoolmates 
(Moody 2001). Together these networks cover different domains (transportation, social, 
biological, communication), directed and undirected topologies, sizes (from order of 102 
to 105 nodes) and sparsity levels (from average degree of 2.67 to 20.29). We use all algo-
rithms listed above with the exception of EXP sampling, since it has already proven to 
perform poorly in eigenvector centrality approximation (Ruggeri and De Bacco 2020) 
and is computational too slow to be deployed on networks of the sizes considered here; 
in “Appendix 3” we show the computational efficiency of the various algorithms.

We consider three different centrality measures: (1) in-degree centrality, which cor-
responds to the in-degree of a node; (2) betweenness centrality, a measure that captures 
the importance of a node in terms of the number of shortest paths that need to pass 
through it in order to traverse the network; (3) SpringRank (De Bacco et  al. 2018), a 
physics-inspired probabilistic method to rank nodes from directed interactions which 
yields rank distributions relatively different than that of spectral measures, like eigenvec-
tor centrality. Together, these three provide a diverse set of methods to characterize a 
node’s importance. Notably, none of these are based on spectral methods, as opposed to 
the theoretical grounding behind TCEC.

As we show in Fig. 2, all the considered non-spectral measures are well approximated 
by RW-like algorithms and TCEC on all datasets, with TCEC performing slightly better 
on average. A big gap can be observed instead with respect to uniform random sampling 
(RN and RE). We argue that this might be caused by the loss of discriminative edges 
when not taking into account the topology at sampling time, thus resulting in poor per-
formance in recovering any edge-based centrality measure. For the sake of completeness, 
we include similar plots for the estimation of two spectral centrality measures, PageRank 
(Brin and Page 1998) and Katz centrality (Katz 1953) in “Appendix 4”. Finally, while it is 
difficult to model analytically how these results depend on the sample size, empirically 

Fig. 2  Approximation of non-spectral centrality measures with various sampling algorithms for the real 
datasets Epinions(upper left), Slashdot(upper right), Stanford(center left), Adolescent Health(center right), C. 
Elegans(bottom left) and US Power grid(bottom right). Scatterplots represent average results over 10 runs of 
sampling, with standard deviation indicated by vertical bars. SpringRank is missing for undirected networks
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we see that performance increases as the sample grows, similarly to what observed 
for recovering eigenvector centrality in Ruggeri and De Bacco (2020). The magnitude 
of this increment depends on what measure is being tracked and the specific dataset, 
however the relative performance of the various sampling strategies seems to be coher-
ent with the results reported here in Fig. 2, see “Appendix 2”. As a final consideration, 
one may wonder how much of the approximation capabilities of TCEC with respect to 
non-spectral centralities, such as in-degree, could be explained by correlations with the 
eigenvector centrality itself. In fact, one would expect RN sampling to perform best at 
least in the approximation of nodes’ degrees. We remark the following facts. First, in the 
datasets considered above, the correlation between eigenvector centrality and in-degree 
varies from high values, 0.84 and 0.80 for the Epinionsand Slashdotdatasets respectively, 
to values as low as 0.03 for the Stanforddataset, see “Appendix 5”, while Kendall’s cor-
relation is quite high in both these extreme cases. It is therefore not possible to directly 
attribute the good approximation of degree centrality to the correlation between the lat-
ter and eigenvector centrality. We conjecture that this is rather due to the character of 
sampling methods based on moving between adjacent nodes, like RW, TCEC and node-
2vec, which tend to preserve connections between nodes and therefore degrees. In fact, 
uniform sampling strategies (which do not move between adjacent nodes) as RN and RE, 
perform significantly worse and consistently across datasets and measures. In addition, 
in the presence of tight-knit communities, the former algorithms are more likely to sam-
ple the majority of a node’s neighborhood, without getting lost in other regions of the 
graph, as we show in the Section 3.3.

Community structure preservation

We investigate how the sampling algorithms impact a network’s underlying commu-
nity structure. To this end, we study the distribution of the community memberships 
of sampled nodes in synthetic networks generated with Stochastic Block Model (SBM) 
(Holland et al. 1983) of size N = 104 nodes divided in 3 communities. Sampling proto-
cols can be sensitive to the topological structure of the network (assortative or homo-
philic, disassortative or heterophilic) and to the balance of group sizes (Wagner et al. 
2017). These can all impact how the different groups are represented in the sample 
and other factors such as individuals’ perception biases (Lee et al. 2019). We thus run 
tests on both types of structures and using various levels of balance for the commu-
nities. Specifically, we consider (1) balanced assortative networks: two groups of 3000 
nodes and one of 4000, within-block probability of connection pin = 0.05 and between-
blocks pout = 0.005 ; (2) unbalanced assortative networks: groups of sizes 1000, 3000 
and 6000 respectively, same pin and pout as in (1); (3) balanced disassortative networks: 
same group division as in (3) but within-block probability of connection pin = 0.005 
and between-blocks pout = 0.05 . We compare TCEC with RW, which was shown to be 
robust in representing groups in the sample (Wagner et  al. 2017) and EXP sampling, 
since it has been explicitly built to sample community structure. All algorithms start 
sampling from a node belonging to the group of smallest size. We observe two qualita-
tively different trends in the way nodes are chosen. RW yields samples of nodes more 
homogeneously distributed across communities, in all network structures. TCEC, 
instead, tends to select nodes within the block where it has been initialized. A possible 



Page 7 of 29Ruggeri and De Bacco ﻿Appl Netw Sci            (2020) 5:81 	

explanation for this behavior is given by the peculiar form of the TCEC score of Eq. (1). 
In general, the algorithm tends to select nodes with a large ||b1||2 and small ||b3||2 , i.e. 
many connections towards the sample and few connections from outside the sample. A 
likely choice is to then select nodes within the same community, where this combina-
tion holds. However, for the standard SBM case one can show (see “Appendix 9”) that 
the contribution of these two terms cancels out, thus the term that matters is bT1 U  . This 
represents the number of common neighbors that are in the sample between j and any 
other ℓ ∈ G′\

{

j
}

 . Assuming, for simplicity, homogenous communities, in the assorta-
tive case it is reasonable to assume that the initial random walk biases the sample to 
have more nodes of color as the initial seed, say r. With this initial bias, one can show 
that, on average, nodes j of color r have higher score, because they have higher val-
ues of ||bT1 U ||2 than other ℓ ∈ G′ not of color r. Instead, for the disassortative case, we 
have the opposite result of nodes of color different than r having higher score. In this 
case, the sampling dynamics keep jumping to nodes of different colors, hence the sam-
ple is more balanced. One can generalize similar arguments to more complex topolo-
gies, for instance degree-corrected SBM, where nodes’ degree also contribute to their 
scores (not only in the case α > 0 ). However, the theoretical generalization becomes 
more cumbersome as we add more details to the model. With the same reasoning we 
recover the Erdös-Rényi case by assuming a connection probability equal for all edges, 
i.e. independent of the nodes’ colors. In this case, one can show that the only term that 
matters is the (weighted) in-degree dGk

in (j) , if we assume α > 0 . This matches with the 
intuition that, given the uniform edge probability, in an Erdös–Rényi network all nodes 
are statistically identical, hence there should be no best candidate to distinguish, unless 
we look at a specific realization where random fluctuations dominate. These graphs may 
not be appropriate to evaluate the performance of a centrality measure, as all nodes are 
concentrated around the same score of centrality. Finally, expansion sampling remains 
confined in a single block, as it is a deterministic algorithm. Results are presented in 

Fig. 3  Community structure and sampling. We show an example of sampling two synthetic SBM networks 
one (left) assortative and one (right) disassortative. Sampled nodes and edges are colored in blue for 
TCEC (left), red for uniform random walk (center) and green for snowball expansion sampling (right). The 
KL-divergence averages and standard deviations are computed over 10 different rounds of sampling 10% of 
all the nodes
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Fig.  3, where we also report the KL-divergence (Kullback and Leibler 1951) between 
the communities distribution in the sample and the whole network for all sampling 
algorithms (the communities are the known ground-truth used for the SBM synthetic 
generation). The KL-divergence is a measure of discrepancy between probability distri-
butions, which is 0 if they perfectly overlap, and gets larger as the difference between 
them grows. Thus, higher values signal higher discrepancy between the in-sample block 
distribution and the one calculated on the entire network. To account for different num-
ber of nodes in the whole network and the sample, here we consider the frequency of 
each group as community distribution. This can be observed graphically in Fig. 3 (left) 
for the assortative homogeneous structure i). Here the higher KL divergence is due to a 
more pronounced clustering of sampled nodes in one single block. The nodes selected 
by RW are more scattered around different blocks, while TCEC tends to select nodes 
within a single block and expansion sampling is completely confined to the initial one. 
Similar results hold for case ii), as defined above, and are presented in “Appendix 6”. For 
the disassortative structure iii), however, results differ. In this case, TCEC and RW tend 
to explore the network in a similar manner. A lower KL-divergence from the ground 
truth signals the fact that blocks are sampled more uniformly. While for RW this phe-
nomenon is explained by the stochasticity of the neighborhood exploration, for TCEC 
it is caused by the way the algorithm works in selecting candidate nodes with high out-
degrees towards the sample but small in-degrees from outside of it, as shown in Fig. 1. 
In disassortative networks these likely candidates belong to different communities, thus 
the more homogeneous exploration. Expansion sampling is still confined inside the 
starting block as in the previous case.

Node attribute preservation

Another relevant question is whether node attributes are affected by the way the net-
work is sampled. This is particularly important in cases where extra information is 
known, along with the network’s topological structure. For instance, in relational clas-
sification, network information is exploited to label individuals (e.g. recovering nodes’ 
attributes); classification performance can significantly change based on the sampling 
protocol adopted (Ahmed et  al. 2012; Espín-Noboa et  al. 2018). Here we assume that 
attribute information is used a posteriori to analyze the results, but not taken as input 
to bias sampling. In general, when performing statistical tests on sampled networks’ 
covariates, we work under the assumption that their distribution is similar to that of the 
original network. However, this assumption is not necessarily fulfilled when performing 
arbitrary sampling. Notice that this is a related but different problem than the one above 
of community structure preservation. In that case, we were explicitly imposing that com-
munities were correlated with network structure. If attributes well correlate with com-
munities, then we should see a similar pattern with the results of the previous section. 
We test this on synthetic networks with both communities and node attributes, where 
a parameter tunes their correlations. Namely, we use a 2-block SBM generative model 
with varying levels of correlation between the community and a binary covariate (Con-
tisciani et al. 2020). We then measure the correlation between community and covariate 
after sampling. Results are presented in Fig. 4. As can be observed, the original correla-
tion is preserved in the samples by most algorithms, as the relative deviation from the 
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real value (y-axis) is low with respect to the true correlation (x-axis), suggesting a regular 
behavior of covariates in the samples, despite not being taken into account as input for 
the sampling algorithm. For TCEC, the performance seems to increase with correlation 
values, while for the other algorithms we cannot distinguish a clear monotonic pattern.

But if the community-attribute correlation is not there or if this is not trivial, then we 
might see something different if we only look at attributes (e.g. if a practitioner is not 
interested in community detection). In this case, we can only assume correlation with 
network structure, but this may not be valid depending on the real dataset at hand. 
We test this behavior by studying the Pokecdataset (Takac and Zabovsky 2012). This 
is a social network representing connections between people in form of online friend-
ships. In addition, the dataset contains extra covariate information on nodes, i.e. attrib-
utes about the individuals. In our case we focus on one of them, the geo-localization 
of users in one of the ten regions (the eight Slovakian regions, Czech Republic and one 
label for all other foreign countries) where the social network is based. We compare the 
distribution of this covariate in the full network with that on the nodes sampled by RW, 
TCEC  and node2vec, with exploration parameters p = 2 , q = 0.5 , i.e. depth-first ori-
ented search. We omit results from other sampling algorithms, to focus on the inter-
pretation of these relevant cases. The choice of node2vecis motivated by its frequent 
implementation for node embedding tasks.2 As node embeddings are often used for 

Fig. 4  Results from sampling SBM with varying levels of correlation between a binary covariate and the 
community membership. On the x-axis there is the ground truth correlation (the one used to generated the 
synthetic network). On the y-axis, we show the difference between this correlation and the one calculated 
after sampling. Standard deviations are computed over 10 different rounds of sampling 10% of all the nodes. 
Notice how the y-axis is restricted around the 0 values, denoting small deviations from the full network’s 
value. Notice that snowball sampling, being a deterministic method when starting from the same seed node 
(as in this experiment), presents no variance

2  Note that node2vecis not explicitly using any covariate in input. Rather, it infers embeddings on nodes based on the 
observed network; these are then often used as inferred “feature” vectors to be subsequently given in input for machine 
learning tasks, e.g. classification.
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regression or classification tasks, along with network covariates, it is thus relevant for 
our task here. We run the algorithms starting from seed nodes within different regions, 
as the choice of the initial sample of labeled seed nodes can impact the final in-sam-
ple attribute distribution (Wagner et  al. 2017). As before, we measure KL-divergence 
between the empirical attribute distribution on the entire network against that found 
within the sample. A graphical representation of one example of the results is given in 
Fig. 5. We notice different behaviors for the various sampling methods. While all algo-
rithms recover a covariate distribution close the ground truth, slightly better perfor-
mances are achieved, in order, from RW, TCEC and node2vec, with average KL values 
ranging from 0.01 to 0.04 respectively. However, a peculiar trend can be observed in 
relation to the starting region. In fact, the final sample is biased towards over represent-
ing the seed region for node2vec, as opposed to a comparable homogeneity obtained by 
TCEC and RW. This is a subtle result, as this over representation is not shown by the 
KL values. Instead, it can be measured by the entropy ratio HGm(s)/HG(s) between the 
entropy HGm(s) = −pGm(s) log pGm(s)− (1− pGm(s)) log(1− pGm(s)) of a binary ran-
dom variable representing whether a node in the sample belongs to the seed region s or 
not, over HG(s) , the same quantity but calculated over all nodes in the graph. In words, 
this measures the discrepancy of the frequency of the particular attribute corresponding 
to the seed region between in-sample nodes and the whole network. Assuming that all 
the frequencies, in-sample and whole network, are less than 0.5 (which is the case in our 

Fig. 5  Covariates distribution and sampling. We consider the Pokec social network dataset ( ≈ 1.3 · 106 nodes 
and ≈ 2.9 · 107 edges) with a sample fraction of 10%. The columns with bolded colors represent the region 
where we started the sampling from. Numbers inside the legend are average and standard deviations over 
10 runs of KL(pG||pGm ) , where pG is the empirical frequency of the ten regions in the original graph, similarly 
for pGm in the sample. H represents the mean and standard deviation over the same runs for the HGm (s)/HG(s) 
entropy ratio. We plot here an example of the relative frequency of nodes for the ten regions in which nodes 
are divided. The distribution on the whole network is the black vertical line. Vertical lines on top of bars 
represent standard deviations across 10 runs of sampling. Notice three different behaviors: RW obtains an 
in-sample attribute distribution similar to the one on the whole graph. TCEC has a higher difference in KL, 
followed by node2vec. On average, the former two are not biased by the starting region, as it is instead the 
case for node2vec. This can also be observed quantitatively by a higher HGm (s)/HG(s) ratio
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experiments), than values close to 1 denote high similarity, greater than 1 means over 
representation and less than one under representation of a particular attribute. In all 
but two starting regions, node2vechas a significantly high entropy ratio: for various seed 
regions this is higher than 1.19 whereas the maximum values obtained by TCEC  and 
RW are both less than 1.12. Quantitatively, this shows the magnitude of the over repre-
sentation in the sample induced by node2vec; instead, TCEC and RW do not yield any 
significant bias towards the starting region. An example of this behavior is plotted in 
Fig. 5, all the other starting regions are given in “Appendix 7”.

Further statistics

Another interesting question is whether other relevant network statistics are preserved 
in a controlled setting where we generate synthetic data with a particular underlying 
structure. We explore this on two different types of synthetic networks were we have 
control over the generative process. First we generate an Exponential Random Graph 
Model (ERGM), a probabilistic model popular in social sciences where a set of suffi-
cient statistics has a predefined expected value. We use one of the few ERGMs with an 
analytical formulation,3 the reciprocity model of Holland and Leinhardt (Holland and 
Leinhardt 1981); here the network has a fixed number n of nodes and two parameters, 
p, regulating the probability of directed connections, and α , regulating the expected 
reciprocity (fraction of nodes with edges connecting them in both directions) (Park and 
Newman 2004). We set n = 104 , p = 1.51 · 10−4 , α = 10.1 . The values of p and α have 
been chosen as estimates based on the social network Slashdot, since for this type of 
social network reciprocity and density are particularly relevant and descriptive meas-
ures. After generating the synthetic network, we sample 10% of its nodes and recompute 
on it the parameters for the two sufficient statistics: p being the expected number of 
directed edges, is estimated as E/N (N − 1) , where E and N are the number of edges 
and nodes in the sample; α is estimated reversing the formula (53) in (Park and Newman 
2004), using the observed value of network reciprocity on the sample and the estimate 
of p. Results are presented in Fig. 6. We can observe that the only sampling strategy suc-
cessfully recovering the same parameters as the original ones is RN, while all the others 
achieve similarly biased results. A possible interpretation is given by the way neighbors 
are chosen at sampling time by all but random node sampling. All algorithms but the 
latter incorporate a bias towards incoming (e.g. TCEC and node2vec) or outgoing con-
nections (e.g. RW). This does not allow a balanced selection of edges in both directions, 
thus biasing the estimate of α . For similar reasons, by choosing neighboring nodes, this 
algorithms retrieve denser samples, which naturally yield a higher estimate of p.

The second synthetic model that we consider is the SpringRank generative model. 
In short, this model defines a network with a built-in hierarchical structure. In words, 
nodes have a real-valued score parameter si denoting their strength, or prestige, and this 
determines the likelihood of observing a directed and weighted tie between two nodes 

3  The reciprocity model, being analytical, is much more efficient to sample from. Other non-analytical models, e.g. 
ERGM with fixed number of triads, which require Monte Carlo sampling, are computationally too expensive to run on 
large system sizes like the ones explored here.
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(it is only valid for directed networks). Formally, the adjacency matrix A of a graph with 
n nodes is drawn with the following probabilistic model:

for i, j = 1, . . . , n and α,β , c parameters tuning the scores’ variance, the hierarchy 
strength and the network sparsity respectively. In particular, β can be seen as an inverse 
temperature: the larger its value the stronger the hierarchical relationship of nodes 
described by the scores is, thus its impact in determining the observed adjacency 
matrix. We investigate how various sampling algorithms successfully retrieve samples 
of the graph for which the inferred scores respect the ground truth ones. We generate a 
graph and its scores according to (2), and sample it with the methods listed above. We 
then infer the scores as described in De Bacco et al. (2018). The parameters are fixed as 
n = 105,α = 0.1, c = 0.01 . We vary β in {0.1, 1, 10} to check if a stronger signal in the 
edges, obtained by increasing β , reflects in a better recovery of nodes’ scores, regardless 
the sampling algorithm. Results are presented in Fig. 7. As in the ERGM case, we can 
compare against two reference values. In this synthetic case we know the real underly-
ing scores that the network has been generated with, but these determine the adjacency 
matrix of observations in (2) only stochastically. For this reason we compare the scores 
computed in the samples against the ones computed on the whole graph, rather than 
with the ground truth ones. As it can be observed, TCEC, RW and node2vechave similar 
recovery capacity in terms of scores computed on the yielded samples, with TCEC show-
ing the best performance for stronger hierarchical structures ( β = 1 ); instead, RN and 

(2)
si ∼ N

(

1,
1

αβ

)

Aij|si, sj ∼ Poisson

{

c exp

[

−
β

2
(si − sj − 1)2

]}

,

Fig. 6  Estimated parameters p,α for the ERGM network with reciprocity (Holland and Leinhardt 1981; Park 
and Newman 2004) after sampling with different algorithms. The red horizontal line represents the real 
network parameter, while the blue one its estimate re-fitted on the full generated network, to account for 
variability in generating the network from this probabilistic model. Box plots represent results across 10 
rounds of sampling
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EXP sampling achieve comparable results only for high signal strength, i.e. high β . RE 
never achieves good performances compared to the other methods. For completeness, 
Kendall-τ measures with respect to ground truth scores are represented in shaded gray 
in the plots.

Sampling for PageRank estimation
In this section we discuss the challenges preventing an effective extension of the the-
oretical framework behind TCEC  to PageRank score (PR) (Brin and Page 1998), i.e. a 
method for sampling networks theoretically grounded on the same ideas, but aiming 
at better approximating PageRank, rather than eigenvector centrality. In fact, arguably 
counterintuitively, there is no trivial generalization of TCEC  for PageRank. Instead, it 
is necessary to make further assumptions that result in an algorithmic scheme that is 
equivalent to TCEC in practice, from our empirical observations. Here we explain the 
main challenges and refer to the “Appendix 8” for detailed derivations of how to address 
them. PageRank considers a different adjacency matrix APR , which is strongly connected 
(as the network is complete) and stochastic (the rows are normalized to 1). This is built 
from the original A. Both these features, not present for the eigenvector centrality case, 
are the cause of the additional complexity of sampling for PageRank. The PR score is 
defined as the eigenvector centrality computed on APR . At a first glance, this may lead 
to a straightforward generalization of TCEC sampling by simply applying the algorithm 
to APR . However, this simple scheme hinders in fact one main challenge, which makes 
this generalization theoretically non trivial. TCEC yields the matrix AGm (the adjacency 
of the sampled network Gm ), which is a submatrix of the original A; having a submatrix 
is a requirement for the validity of the sine distance bound at the core of TCEC. Instead, 
in the case of PageRank, the matrix of the sampled network APR,Gm is not a submatrix 
of APR ; this is because APR is a stochastic matrix, which requires knowing the degree of 
each node in advance to normalize each row. This information is in general not known 

Fig. 7  Kendall-τ correlation between SpringRank scores inferred on samples and full graph, generated with 
the SpringRank generative model for varying level of inverse temperature β . Scores with respect to ground 
truth SpringRank scores are represented in shaded gray. Standard deviations are computed across 10 rounds 
of sampling. Notice that here EXP has variance, as in these experiments we varied the initial seed node
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a priori. We fixed this problem introducing an approximation (see “Appendix 8”) which 
allows to use the theoretical criterion of Eq. (1) in this case as well. However, we still 
face a computational challenge. Due to the nature of PageRank, which allows jumps to 
non-neighboring nodes, albeit with low probability, the networks behind APR and APR,Gm 
are both complete. This results in a much higher computational cost of the sampling 
algorithm. Even though we proposed ways to fix this issue as well (see “Appendix  8”) 
and thus combined these two considerations into an efficient algorithmic implementa-
tion (which we refer to as TCPR) analogous to TCEC, empirical results for this are poor. 
In practice, TCEC performs better in recovering the PR scores of nodes in the sample. 
As noted above for non spectral centrality measures, also in this case this approxima-
tion cannot simply be attributed to the correlation between PR and EC; in fact, this is 
high for Epinions, Internet Topology and Slashdot (respectively 0.580, 0.524, 0.715) but 
−0.001 for Stanford, see “Appendix  5”. Rather, it has to be attributed to the structural 
properties of the networks recovered from the various sampling procedures.

TCEC versus TCPR for PageRank approximation

We compare the approximation of the PageRank score as obtained on samples from RW, 
TCEC and TCPR, via Kendall-τ correlation with the true score, which were assumed to 
be available in these experiments. A higher correlation signals a better recovery of the 
relative ranks between nodes. We do so on the Epinions, Internet Topology, Slashdotand 
Stanfordnetwork. The Internet Topology(Zhang et al. 2005) represents the (undirected) 
Internet Autonomous Systems level topology.

For these experiments we set the TCEC randomization probability to 0.5, to achieve 
better approximation scores. Figure  8 shows a noticeable improvement of TCEC  in 
most of the networks, both as a function of the sampling ratio and compared to RW for 
in-sample PR ranking recovery. However, we do not observe such a pattern for TCPR, 

Fig. 8  Results on the four datasets for PR score approximation, respectively Epinions(upper left), Internet 
Topology(upper right), Slashdot(lower left) and Stanford(lower right). While, as a general trend, TCEC and 
TCPR seem to perform in average better than random walk for PR score estimation, there is no clear 
separation between the former two. Standard deviations are computed on 10 runs of sampling
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which performs better than TCEC only for few datasets and sample ratio combinations. 
As the theoretical groundings behind the two are similar, we argue that using the L1-
norm in TCPR (see “Appendix 8”), which is inherently less discriminative of the L2-norm 
behind TCEC, seems to affect this difference in performance. Another possible cause is 
the extra assumption of in-sample nodes’ degrees linearly scaling with sample size. Large 
deviations from this assumption could sensibly impact the quality of the goodness crite-
rion at hand.

Conclusions
Designing a sampling protocol when the whole-network information is not accessible 
is a task that has to be performed wisely. In fact, the choice of the sampling algorithm 
biases the analysis of relevant network quantities performed on the sample. We investi-
gated here the impact on various centrality measures, community structure, node attrib-
ute distribution and further statistics relevant to specific instances of network generative 
models that sampling techniques have. We studied in particular the performance of 
TCEC, a theoretically grounded sampling method aimed at recovering eigenvector cen-
trality on such network properties within the sample and compared with other sampling 
approaches. The goal was to understand whether a sampling algorithm optimized to pre-
serve a specific global and spectral network measure, is indirectly preserving also other 
network quantities. We empirically found that on various networks, the performance of 
TCEC, as well as that of other algorithms, varies with the task, further suggesting to 
an end-user that the choice of the sampling strategy should be made thoroughly and 
according to the goal. In particular, in some tasks there is high performance similarity 
with other routines that sample by moving between adjacent nodes, like RW and node-
2vec, their performances all differ significantly from strategies based on random uniform 
sampling. Instead, for tasks like recovering PageRank, a spectral measure, or SpringRank 
values for strong hierarchical structures it performs better than uniform random walk. 
In addition, while RW yields community structure homogeneously distributed across 
blocks, TCEC  tends to select nodes inside the starting community, however partially 
reaching out to other blocks. Finally, studying a large online social network, it recov-
ers in-sample attribute distributions close to the ones of the whole graph. It does not 
show any significant bias towards the seed region, as it is instead the case for node2vec, 
which is over representing the starting regions. We discussed possibilities of extending 
TCEC to the case of PageRank and showed the challenges associated to this task and the 
remedies to them. However, the resulting algorithm performs comparably well to TCEC 
on recovering PageRank values. We focused here in showcasing the impact of sampling 
on three different relevant tasks that have broad relevance in network datasets and pre-
sented example of further statistics covering more specific scenarios (i.e. networks with 
reciprocity or hierarchical structure). We have not considered the case where networks 
change in time, it would be interesting to measure the robustness of sampling strategies 
against the dynamics of network structure.
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Abbreviations
TCEC: Theoretical Criterion Eigenvector Centrality sampling; TCPR: Theoretical Criterion PageRank centrality sampling; 
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pling; SBM: Stochastic Block Model; ERGM: Exponential Random Graph Model.
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Appendix 1: Details of the empirical implementation
We set the leaderboard size to 100 for both TCEC and TCPR, and the α parameter for 
TCEC to 0 for undirected networks, 0.5 for directed ones. The explorations are ini-
tialized with a random walk sampling of 1/5 of the desired final sample size. The ran-
domization level for neighborhood exploration in set to p = 0.1 , meaning that 1/10 of 
the possible nodes are explored, unless specified otherwise. Real datasets where taken 
from the repositories KONECT (Kunegis 2013) and SNAP (Leskovec and Krevl 2014), 
as reported in Table 1.

Appendix 2: Sample size stability
To test for the stability of the results presented with respect to the sample size, we 
present here plots similar to the ones in Figs. 2 and 11 and “Appendix 4”. In Fig. 9 we 
plot the Kendall-τ correlation for the approximation of the same centrality measures 
on the Epinions dataset. To test different sample sizes, we sample 5% and 20% of the 
total nodes, as opposed to the 10% for the results presented in the main text (Fig. 2).

Table 1  Datasets sources

Name Source

C. Elegans http://konec​t.uni-koble​nz.de/netwo​rks/arena​s-meta

Epinions http://konec​t.uni-koble​nz.de/netwo​rks/soc-Epini​ons1

Slashdot https​://snap.stanf​ord.edu/data/soc-Slash​dot08​11.html

Internet Topology http://konec​t.uni-koble​nz.de/netwo​rks/topol​ogy,

US Power grid http://konec​t.uni-koble​nz.de/netwo​rks/opsah​l-power​grid

Adolescent Health http://konec​t.uni-koble​nz.de/netwo​rks/moren​o_healt​h

Stanford https​://snap.stanf​ord.edu/data/web-Stanf​ord.html

Pokec https​://snap.stanf​ord.edu/data/so-Pokec​.html

http://konect.uni-koblenz.de/networks/arenas-meta
http://konect.uni-koblenz.de/networks/soc-Epinions1
https://snap.stanford.edu/data/soc-Slashdot0811.html
http://konect.uni-koblenz.de/networks/topology
http://konect.uni-koblenz.de/networks/opsahl-powergrid
http://konect.uni-koblenz.de/networks/moreno_health
https://snap.stanford.edu/data/web-Stanford.html
https://snap.stanford.edu/data/so-Pokec.html
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Appendix 3: Clock time for different sampling algorithms
We include in Fig. 10 a plot of the sampling time for the various algorithms considered 
on the Epinions, Slashdot and Stanford datasets. Notice that EXP sampling has only 
been performed on the first, smaller sized, two.

Appendix 4: Additional results for spectral centrality measures
We include results similar to the ones presented above for the approximation of non-
spectral centrality measures for spectral measures PageRank and Katz centrality.

Appendix 5: Correlation between EC, PR and in‑degree
We include in Table  2 the correlations between EC, PR and in-degree for all the real 
world datasets presented in the experimental section.

Fig. 9  Additional results for the approximation of different centrality measures on the Epinions dataset. Here 
the sample size varies from 5% (left) to 20% (right). Scatterplots represent average results over 10 runs on the 
three datasets, with standard deviation indicated by vertical lines

Fig. 10  Computational times for sampling 10% of the Epinions (left), Slashdot (center) and Stanford (right) 
datasets. System sizes are increasing from left to right (Epinions and Slashdot have ∼ 104 nodes, but the 
latter has almost twice the number of edges, Stanford has ∼ 105 nodes and ∼ 106 edges). In the first two 
EXP sampling is not represented, as it took an average, respectively, of ≈ 90s and ≈ 400s , and has not been 
performed for the last, due to excessive computational time. Boxplots represent 10 rounds of sampling
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Appendix 6: Additional results on SBM for community sampling
We include in Fig. 12 the results for sampling on an assortative SBM structure with three 
unbalanced groups of sizes 1000, 3000 and 6000 nodes, within-block connection prob-
ability pin = 0.05 and between-blocks connection probability pout = 0.005.

Appendix 7: Extra plots for results on Pokec dataset
We include in Fig. 13 the plots of the results on the Pokec dataset, similar to Fig. 5, but 
where the seed point is chosen in each of the remaining regions. The bars relative to the 
initial region are bolded.

Table 2  Correlations between  EC, PR and  in-degree for  the  various datasets used 
in the experimental section

InDeg versus EC InDeg versus PR EC versus PR

C. Elegans 0.925 0.997 0.900

Epinions 0.836 0.863 0.580

Slashdot 0.807 0.971 0.715

Internet Topology 0.707 0.949 0.524

US Power grid 0.261 0.946 0.086

Adolescent Health 0.239 0.715 0.317

Stanford 0.034 0.742 -0.001

Fig. 11  Results on approximation of spectral centrality measures, PageRanks and Katz, for different dataset. 
In order from top to bottom and from left to right Epinions, Slashdot, Stanford.edu, Adolescent Health, 
Caenorhabditis elegans and US Power Grid. Scatterplots represent average results over 10 runs on the three 
datasets, with standard deviation indicated by vertical lines
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Fig. 12  Results of sampling on assortative SBM with different block sizes. Sampled nodes and edges are 
colored in blue for TCEC (left), red for uniform random walk (center) and green for expansion sampling (right). 
The KL-divergence averages and standard deviations are computed over 10 different rounds of sampling 10% 
of all the nodes

Fig. 13  Results of sampling on the Pokec dataset starting from nodes with different regions as attributes. The 
distribution on the whole network is the black vertical line. Vertical lines on top of bars represent standard 
deviations across 10 runs of sampling. Numbers inside the legend are KL-divergence and entropy ratios 
between attribute distribution on the entire network and that inside the sample, as defined in the main text
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Appendix 8: TCPR: extending the model to PageRank score
Before introducing the theory behind TCPR, we begin with a review of the basic PageR-
ank algorithm, introduce some notation and outline the main challenges and assump-
tions needed in the following derivations.

*Notation Consider a nonnegative adjacency matrix A ∈ R
V ,V  . Then we build a new 

adjacency matrix APR , called PageRank adjacency matrix, defined as follows

where e is the vector of ones of length V, γ ∈ [0, 1) and P is defined as

with dj =
∑

i Aij out-degree of node j and with the convention that for node with zero 
out-degree, named dangling nodes, we take 1/dj = 0.

For all the matrices P,Q,APR we can define two different quantities. Given a sub-
set of nodes {1, . . . ,m} of V we have the principal submatrices Pm,Qm,APR,m relative 
to these nodes. But we can also compute the PageRank scores on the subgraph Gm . 
The matrices relative to Gm are instead noted as PGm ,QGm ,APR,Gm . Notice that for the 
original case of eigenvector centrality we had the correspondence Am = AGm , we will 
simply refer to this as Am.

*Challenges In general, as we sample, we only know dGm
in (i) but may not have access 

to dGin(i) ( in general dGm
in (i) ≤ dGin(i) ); this implies that the entries of APR,Gm are different 

than the submatrix APR,m of APR induced by the nodes in Gm . We tackle this challenge 
by making an additional assumption: we assume that the degree dGm

in (i) ≈ m
V din(i) , i.e. 

degrees of nodes in the sample scale linearly with the sample size m; this is a neces-
sary approximation for linking the two otherwise different matrices APR,m and APR,Gm 
(which where instead equal for eigenvector centrality), its validity has been justified 
(Ganguly and Kolaczyk 2018) and thus we can use the theoretical criterion of Eq. (1) 
in this case as well. This fixes a theoretical challenge, however, we now face a compu-
tational one. Due to the nature of PageRank, which allows jumps to non-neighboring 
nodes, albeit with low probability, the networks behind APR and APR,Gm are both com-
plete. This results in a much higher computational cost of the sampling algorithm. We 
reduce this by selecting candidate nodes to be added to the sample, in analogy with 
TCEC, among the incoming neighbors only, thus neglecting nodes that correspond 
to a non-zero entry of APR but do not correspond to an actual edge. This has also 
the advantage of excluding dangling nodes (i.e. nodes with out-degree zero) from the 
sample. Combining these two considerations, we obtain a sampling criterion similar 
to the one employed in TCEC; we name this TCPR (Theoretical Criterion PageRank).

(3)APR := γP +
(1− γ )

V
eeT ,

(4)P = Q +
edT

V

(5)d = eT − eTQ

(6)Q = A · diag

(

1

d1
, . . . ,

1

dV

)

,
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*Adapting the theory to PageRank While for “vanilla” eigenvector centrality the 
matrix A was by hypothesis sparse, and therefore border exploration feasible, now the 
network represented by APR is complete. Border exploration, even if randomized by a 
level p, would be of cost O(V). For TCEC the choice was to choose all incoming neigh-
bours in the sample. Here we can do the same, but only choosing incoming neighbours 
from the original network A. This because an incoming connection in A has weight 
σ(1/dout) in APR , while one due to the artificial edges in (4) and (3) have total weight 
σ( k+1

V ) , which is negligible for sample size k ≪ V .
This is also in line with the observation that in many sampling scenarios we are not 

really able to pick nodes in the graph at random, but just explore neighbourhoods 
(Gjoka et al. 2010). Additionally, by only considering incoming neighbours, which have 
out-degree necessarily greater than 0, we exclude all the dangling nodes form the final 
sample.

Notice that the theorem in Ruggeri and De Bacco (2020) was comparing the principal 
eigenvectors of a matrix A and a principal submatrix Am . In the case of PageRank, this 
is not applicable. In fact the matrix Q from eq (6) is normalized differently. In A, the res-
caling is done on the full graph, while in Am on the subgraph degrees. This means that 
Qm  = QGm , and consequently Pm  = PGm , APR  = APR,m . This problem can be overcome 
by making a further assumption. In a pseudo-random choice of any subsample of size m, 
it reasonable to assume that nodes’ degrees scale linearly, i.e. Nj,Gm ≈ m

V Nj . By holding 
this approximation as valid, and recalling that there are no dangling nodes in the sub-
graph, it is straightforward to check that APR,Gm = V

mAPR,m . In particular, the eigenvec-
tor centrality for sampled nodes is the same in the complete graph G and the sampled 
one Gm , since APR,Gm ,APRm have the same eigenvectors. This overcomes the first issue of 
linking the PR score on Gm and G, and we can simply sample nodes with the goodness 
criterion from Ruggeri and De Bacco (2020) on the page rank matrix APR.

We are left with the necessity of computing the goodness criterion efficiently.
*Efficient criterion computation Suppose, without loss of generality, that the sampled 

nodes are {1, . . . , k} and the new node under evaluation k + 1 . Considering the PR adja-
cency matrix APR the quantities involved in the theoretical criterion (1) are:

where e,� are respectively a vector and matrix of all ones, of correct dimensions. More-
over, we need bT1 U  . By explicit calculations:

(7)b1 = αP1:k ,k+1 +
1− α

V
e

(8)b3 = αPk+1,k+2:n +
1− α

V
e

(9)U = αP1:k ,k+2:n +
1− α

V
� ,
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Implementing the computation of bT1 U  in sparse arithmetic is not convenient, as it 
would anyway cost O(k). Performing this increasingly costly operation for all (or some) 
of the nodes in the border at every new node sampled is not feasible. Here we optimise 
this computation explicitly. First, notice from equation (10) that many terms are inde-
pendent on the sample. Therefore we compute the L1-norm (Kamvar et al. 2003) for all 
the vectors (7), (8), (10). In all the following computations we use the symbol =̃ to indi-
cate equality up to an additive constant independent on the sampled node k. aij stands 
for the element i, j of A.

•	 term b1 : 

•	 term b3 : 

where the last equality is justified by the fact that, since k + 1 cannot be dangling, 
{i /∈ Gk ∪ {k + 1} : i dangling} = {i /∈ Gk : i dangling} , which is independent on 
k + 1.

•	 term bT1 U  . For this we need to split the computation in three, since from equation 
(10): 

 For every node j ∈ Gm define δj :=
∑

i/∈Gk∪{k+1} Pij (which also depends on the sub-
sample Gk and the new proposal node k + 1 , we omit the dependence in the nota-
tion). Then: 

(10)
bT1 U = α2PT

1:k ,k+1P1:k ,k+2:n +
α(1− α)

V
P1:k ,k+1�

+
α(1− α)

V
eTP1:k ,k+2:n +

(

1− α

V

)2

eT� .

||b1||1=̃α||P1:k ,k+1||1 =
α

Nk

∑

j∈Gk

ajk

||b3||1=̃α||Pk+1,k+2:n|| = α















�

i /∈ Gk ∪ {k + 1}
i not dangling

aki

Ni

+
�

i /∈ Gk ∪ {k + 1}
i dangling
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 Now, why is expression (11) more efficient? Because we keep an updated calculation 
of the terms δj in memory. After the first random walk initialization we compute δj 
for every j in the sample. Then, whenever a node is added to the sample, they are 
updated. Namely, say that a node s is added to Gm . Then for all the outgoing neigh-
bours j of s already in Gm , we perform the update δj ← δj − Pjs = δj −

ajs
Nj

 . Summing 

up we get 

Notice that all the quantities here are expressed as a sum over all the nodes in Gm . 
However, the summands depend on the edges of the new nodes to be added, and can 
therefore be performed in O(din) or O(dout) . As opposed to O(k), this is constant with 
respect to the sample size. As a final remark, we would like to highlight the fact that it is 
much harder to find such a computational trick for the L2 norm of the criterion vectors. 
This was instead possible for TCEC, where they had a simpler expression that allowed 
derivations.

(11)
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Appendix 9: SBM and TCEC score
Here we show a theoretical analysis of how TCEC sampling works on a Stochastic Block 
Model as the one studied in Sec. 3.3. Specifically, we give approximations for the main 
quantities inside Eq. (1), ||b1||22, ||b3||

2
2, ||b

T
1 U ||22.

SBM generative model

We start by reminding the main assumptions of the SBM. Nodes have colors 
qi ∈ {1, . . . ,K } . The K × K  affinity matrix π contains the probability πkq that there 
is an edge between nodes of color k and nodes of color q. We assume the simple case 
πkq = pin , when k = q and πkq = pout , when k  = q , and undirected networks, πkq = πqk . 
We then assume assortative structure so that pout = ǫ pin with 0 ≤ ǫ < 1 . Typically, 
ǫ ∼ 10−1, 10−2 . The fraction of nodes of color k is nk = 1/K  , i.e. equal-size groups. The 
probability of an edge between i and j is P(Aij; qi, qj ,π) = π

Aij
qiqj (1− πqiqj )

1−Aij.

SBM and sampling

We now assume that Gm has size M = αN  , where 0 < α ≤ 1 , this is the sam-
ple size ratio; values considered in our experiments are α ∈ [0.01, 0.4] . We initial-
ize the sample using a uniform-edge RW. We assume that if we initialize the walker 
on a node of color r, given we are far from equilibrium and the network is assorta-
tive, it is reasonable to expect that the initial sample contains more nodes of color r 
than what expected with equal-size colors, as in the original graph. Formally, we have 
nmr = nr + δ = 1/K + δ , where δ > 0 is the bias of color r inside the sample. This means 
that the sample Gm has Nm

r = Mnmr  nodes of color r. Instead, the graph G′ = G\Gm , has 
N ′

r = Nnr −Mnmr = (N −M) nr −M δ , which implies n′r = nr −M/(N −M) δ ≤ nr , 
i.e. there is a lower fraction of nodes of color r inside G′ compared to the homog-
enous one of the original network. It is convenient to denote the nodes that do not 
have color r with an index nr. Hence the nodes of colors other than r in the sample 
are Nm

nr = M − Nm
r = M(1− nr − δ) , instead inside the remaining network there are 

N ′
nr = N −M − N ′

r = (N −M)(1− nr +M/(N −M)δ) . We then assume that these 
nodes nr are homogeneously divided into the remaining K − 1 groups.

We now proceed selecting a j ∈ G′ and determining its TCEC score based on all the 
parameters defined above. As we will see, its score depends on the color qj.

||b1||
2
2

The quantity b1 is a M-dimensional vector containing the edges from j towards nodes in 
Gm . The expected value of an edge E

[

Aji

]

= πqi ,qj , where i ∈ Gm , depends on their colors, 
hence also b1 does. We then denote with b1(k) the value of b1 when j has color k. Given 
there is a bias towards color r, we only need to distinguish the case of k = r and k  = r , 
again denoted as nr. The entries of b1(r) have only two different values, depending on 
what nodes of Gm are of color r or not. Similarly for b1(nr) . If qi = r , then b1,i(r) = pin , 
otherwise if qi  = r , b1,i(r) = pout . Considering that there are Nm

r  and Nm
nr/(K − 1) nodes 

of color r and of any other color in Gm , respectively, on average we have

(12)||b1(r)||
2
2 ≈E

[

||b1(r)||
2
2

]

= Nm
r pin + Nm

nrpout



Page 25 of 29Ruggeri and De Bacco ﻿Appl Netw Sci            (2020) 5:81 	

The difference is:

||b3||
2
2

The quantity b3 is a (N −M)-dimensional vector containing the edges from G′ towards 
j. Similar calculations as before can be done, accounting for size of G′ and the fraction of 
nodes of color r is n′r ≤ nr ≤ nmr  . Thus

The difference is:

We thus obtain

hence, the only terms that matter for the selecting a node using the TCEC score of Eq. 
(1) in the SBM is the ||bT1 U ||22 . Specifically, the node with highest score has color r if 
||bT1 U(r)||22 − ||bT1 U(nr)||22 > 0 , in the case α = 0 inside Eq. (1). In case α > 0 , then one 
can simply assume that there are at least two nodes, one with color r and one with differ-
ent color, with comparable and high degree, so that most of the TCEC score difference is 
due to the term bT1 U .

||bT
1
U||2

2

The quantity bT1 U  is a (N −M)-dimensional vector. It contains the number of common 
neighbors inside the sample that nodes in G′\

{

j
}

 have with j, i.e. 
(

bT1 U
)

j
=

∑

i∈Gm
Aji Aℓi , 

for ℓ  = j ∈ G′ . Therefore we need to calculate quantities like 
E

[

∑

ℓ =j∈G′

(
∑

i∈Gm
Aji Aℓi

)2
]

.

(13)||b1(nr)||
2
2 ≈E

[

||b1(nr)||
2
2

]

= Nm
nr/(K − 1)pin + (M − Nm

nr/(K − 1))pout .

(14)

E

[

||b1(r)||
2

2 − ||b1(nr)||
2

2

]

= (pin − pout)

(

Nm
r −

Nm
nr

K − 1

)

= pin(1− ǫ)

(

M

K
+Mδ −

M

K
+

Mδ

K − 1

)

= Mpin(1− ǫ)
K

K − 1
δ.

(15)||b3(r)||
2
2 ≈E

[

||b3(r)||
2
2

]

= N ′
rpin + N ′

nrpout

(16)
||b3(nr)||

2
2 ≈E

[

||b3(nr)||
2
2

]

= N ′
nr/(K − 1) pin + (N −M − N ′

nr/(K − 1))pout .

(17)

E

[

||b3(r)||
2
2 − ||b3(nr)||

2
2

]

= (pin − pout)

(

Nr
′ −

N ′
nr

K − 1

)

= pin(1− ǫ)

(

N −M

K
−Mδ −

N −M

K
−

Mδ

K − 1

)

= −Mpin(1− ǫ)
K

K − 1
δ.

(18)E

[

||b1(r)||
2
2 − ||b1(nr)||

2
2

]

= E

[

||b3(r)||
2
2 − ||b3(nr)||

2
2

]

,
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Formally

Fixing one ℓ ∈ G′ , the inner squared sum becomes

where we used the fact that we are assuming binary adjacency matrices, i.e. A2
ij = Aij . 

Taking the expected value

In a SBM, a common assumption is that of conditional independence: edges are condi-
tionally independent, given the parameters. Thus 
∑

ℓ =j∈G′

∑

i∈Gm
E
[

Aji Aℓi

]

=
∑

i∈Gm

(

E
[

Aji

]
∑

ℓ =j∈G′ E[Aℓi]
)

.

The expression above depends on the colors of i, h, l, j being r or not. For instance, if 
qi = qh = r , then

All of the other color combinations of terms scale with similar behavior. Completing the 
calculations accounting for the whole 

∑

i,h∈Gm ,h�=i E
[

Aji

]

E
[

Ajh

]
∑

ℓ�=j∈G′ E[Aℓi]E[Aℓh] 
gives extra factors of the order of 

(

Nm
r

)2
p2in . Because pin ∼ 1

N  in the sparse regime, the 
total weight of this term is 

(

Nm
r

)2
p2in × Nr

′ p2in ∼ 1
N 2 . This is negligible compared to the 

term 
∑

i∈Gm

(

E
[

Aji

]
∑

ℓ∈G′ E[Aℓi]
)

 . The quantity E
[

Aji

]

 can be estimated using same 
reasoning as done for b1 above. The most important terms are thus:

(19)||bT1 U ||22 =
�

ℓ∈G′





�

i∈Gm

AjiAℓi





2

.

(20)





�

i∈Gm

AjiAℓi





2

=
�

i∈Gm

�

AjiAℓi

�2
+ 2

�

i,h∈Gm,i �=h

AjiAℓiAjhAℓh

(21)=
∑

i∈Gm

AjiAℓi + 2
∑

i,h∈Gm,i �=h

AjiAℓiAjhAℓh,

(22)||bT1 U ||22 ≈E





�

ℓ�=j∈G′





�

i∈Gm

AjiAℓi + 2
�

i,h∈Gm,i �=h

AjiAℓiAjhAℓh









(23)=
∑

ℓ�=j∈G′

∑

i∈Gm

E
[

AjiAℓi

]

+ 2
∑

ℓ�=j∈G′

∑

i,h∈Gm,i �=h

E
[

AjiAℓiAjhAℓh

]

.

(24)

||bT1 U ||22 ≈
∑

i∈Gm

(

E
[

Aji

]

∑

ℓ∈G′

E[Aℓi]

)

+ 2
∑

i,h∈Gm,h �=i

E
[

Aji

]

E
[

Ajh

]

∑

ℓ�=j∈Gi

E[Aℓi]E[Aℓh] .

(25)
∑

ℓ =j∈G′

E[Aℓi]E[Aℓh] =
∑

ℓ =j∈G′

E
2[Aℓi] = N ′

rp
2
in + N ′

nrp
2
out .

(26)||bT1 U ||22(r) ≈Nm
r pin

(

N ′
rpin + (N −M − N ′

r)pout
)
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The difference between these two terms is

The first term inside the bracket is:

The last term inside the brackets is:

From this we can notice that, in the case of M ≪ N  , i.e. when the initial sample size is 
very small compared to the system size, we obtain that:

This means that the best scoring j ∈ G′ , based on the TCEC criterion, has color r. The 
score difference with candidates of color different than r is also increasing with the bias 
δ , thus reinforcing this bias as more nodes of color r are added to the sample Gm . Instead, 

(27)+ Nm
nrpout

(

N ′
nr

K − 1
pin +

(

N −M −
N ′

nr

K − 1

)

pout

)

(28)||bT1 U ||22(nr) ≈
Nm
nr

K − 1
pin

(

N ′
nr

K − 1
pin +

(

N −M −
N ′

nr

K − 1

)

pout

)

(29)+ Nm
nr

(

K − 2

K − 1

)

pout

(

N ′
nr

K − 1
pin +

(

N −M −
N ′

nr

K − 1

)

pout

)

(30)+ Nm
r pout

(

N ′
r pin +

(

N −M − N ′
r

)

pout
)

.

(31)

||bT1 U ||22(r)− ||bT1 U ||22(nr)

≈ Nm
r N ′

r(pin − pout)
2 −

Nm
nr

K − 1

N ′
nr

K − 1
(pin − pout)

2

+ (N −M)
Nm
r

K − 1
p2in (1− ǫ) ǫ − (N −M)

Nm
nr

K − 1
p2in (1− ǫ) ǫ

= p2in (1− ǫ)

[(

Nm
r N ′

r −
Nm
nr

K − 1

N ′
nr

K − 1

)

(1− ǫ)+ (N −M) ǫ

(

Nm
r −

Nm
nr

K − 1

)]

.

(32)
Nm
r N ′

r −
Nm
nr

K − 1

N ′
nr

K − 1
=

(

M

K
+Mδ

)(

N −M

K
−Mδ

)

−

(

M

K
−

Mδ

K − 1

)(

N −M

K
+

Mδ

K − 1

)

(33)= (N −M)
M δ

K − 1
−

M2 δ

K − 1
− (M δ)2

K − 2

(K − 1)2
K

(34)=
M δ

K − 1

[

N − 2M −M δ
K − 2

K − 1
K

]

.

(35)(N −M) ǫ

(

Nm
r −

Nm
nr

K − 1

)

= (N −M) ǫMδ
K

K − 1
> 0 .

(36)||bT1 U ||22(r)− ||bT1 U ||22(nr) ≈ p2in (1− ǫ)
M δ

K − 1
[1+ ǫ(K − 1)]N > 0 .
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if M = αN  but with α finite and 0 < α < 1 , and we also assume that ǫ ≪ 1 so that ǫ is 
small enough that the dominant term is that of Eq. (32):

The term inside the brackets can become negative as M increases. The sampling thus 
proceeds as following: at the beginning, when M is very small compared to N, δ is ini-
tially increasing. In turns, also M is increasing, as more nodes are added to the sample. 
However, at a certain point, as both M and δ increase, the best candidate will switch to 
be of color different than r, this happens when the term 

[

N − 2M −Mδ K−2
K−1 K

]

 becomes 

negative. This happens earlier when K is bigger. Finally, an Erdos–Renyj case is obtained 
when ǫ = 1 , i.e. pin = pout = p . In this case all the terms are zero, i.e. the TCEC score 
difference is zero and there is no preferred candidates based on the color. In the general-
ized TCEC score, i.e. α > 0 , then the node with higher degree dGm

in (j) will be chosen as 
best candidate. Finally notice that in the disassortative case, i.e. ǫ > 1 , there is a change 
of sign that makes nodes of color different than r have higher score. In this case then the 
sampling dynamics keep jumping to nodes of different colors, hence the sample is more 
balanced.
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