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Abstract
Software structure is the backbone for software systems. During the long time of
software evolution, it is gradually weakened by continuous code modification and
expansion driven by new requirements. Therefore, measuring software and refactoring
codes are necessary to keep software structure stable and clean. In this paper, we
propose two metrics of cohesion and coupling to characterize package structure. We
consider not only the dependencies of intra-package and inter-package, but also the
backward dependencies of inter-package. The two metrics are proved theoretically
that they are satisfied with Briand’s four properties. Based on these metrics, a
refactoring algorithm is presented to improve the quality of package structure.
Through tests on ten open source software systems, the experiment result shows our
metrics can measure software structure correctly and improve codes to fit for the rule
of high cohesion and low coupling.

Keywords: Software dependency network, Software metric, Software measurement,
Software refactoring, High cohesion and low coupling

Introduction
It is well known that software lifecycle has two phases: a development phase and a main-
tenance phase. In the development phase, programmers make codes carefully under the
guidelines of software architecture design, such as the rule of high cohesion and low cou-
pling. Comparing to the development phase, the maintenance phase is much longer and
can last for several years. During the long time ofmaintenance, the software is not station-
ary, but evolves gradually. Driven by the new requirements, software functionalities are
continuously updated and refactored. Therefore, the amount of code increases and it also
becomes more and more complicated. This may cause the software to deviate from the
original design, and result in the degradation of software quality and comprehensibility,
and finally generate a “technical debt” 1. So it is necessary to keep software architecture
stable and codes clean during the evolution to prolong software service life (Tom et al.
2013).

1Technical debt is the term used to describe the time/money/resources that will need to be spent in order to rebuild a
software system that is already been “completed”.
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Faced with the increasing software functionality and complexity, it needs careful pro-
tection on software architecture without function degradation. Refactoring, is one of
powerful tools to improve software design and increase maintainability and usability
for software systems (Fowler 1997). Through code modification and software struc-
ture adjustment, refactoring makes software clean, which can pass code review and
get good software measurement. However, simple refactoring with code modification
in manual, is time consuming and has little effort. Thus, some researchers are look-
ing for guidelines for automatically refactoring based on software metrics. On the
other side, there are some researchers in software engineering focusing on the dynamic
characteristics of software structure with methods in complex network. Based on the
combination of complex network and software engineering, a software system can
be represented into a network, then transferred into a unified object for evolution
analysis.
In this paper, based on complex network theory, we present two metrics about pack-

age cohesion and coupling, to measure software quality better and guide refactoring
automatically. Compared with previous work(Mi et al. 2019), the new metrics take into
account overall dependencies between classes, and also consider the backwards depen-
dencies of classes. To check the validity of our metrics, we first prove they strictly meet
the four properties proposed by Briand (Briand et al. 1996). Based on these two metrics,
we also provide a refactoring algorithm to adapt package-class relations for better balance
of cohesion and coupling. Finally, through several experiments on multiple open source
software systems, we verify the validity of our metrics, and efficiency of the refactoring
algorithm.
We have presented a preliminary version of software measurement and refactoring

in (Mi et al. 2019). Beside a general revision and improvement, this paper extends our
previous work in the following directions:

• Besides the cohesion metric, we also present the coupling metric. The combination
of cohesion and coupling can measure software package structure more objective and
clear. We also prove the new coupling metric is strictly satisfied with the properties
proposed by Briand (Briand et al. 1996).

• Cohesion and coupling are correlated but not overlapped. Bias to any one metric is
not good to measure software correctly. Based on the relation of cohesion and
coupling metrics, we present an evaluation model of package structure, then update
the refactoring algorithm.

• We compare our new refactoring algorithm with other algorithms. In the experiment
of disturb and recover, under different disturb ratios, our algorithm can find almost
disturbed classes and place them back to the correct packages.

The remainder of this paper is structured as follows. In “Related work” section, we
describe the current work of software measurement and complex network in software
engineering. In “Fundmentals of software codes” section, we introduce some concepts
of software codes and code dependencies. In “Software network and its attributes”
section, we present the construction of software network and its related attributes. In
“Our metrics” section, we describe the new metrics of cohesion and coupling, and
prove them validity in theory, then give a new algorithm for package refactoring. In
“Experiments and analysis” section, we design several experiments to verify the validity
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of our metrics and the efficiency of refactoring algorithm. Finally, we conclude our work
in “Conclusion” section.

Related work
A software system can be evaluated “GOOD”, with not only satisfying the functional-
ity requirements, but also meeting the design and programming guidelines. The typical
one is high cohesion and low coupling. In these guidelines, many metrics have been
developed to measure software quality. These metrics have different levels of granular-
ity, from the basic program variable to the whole architecture structure. According to
the implementation, these metrics can be divided into two categories: statistics-type and
network-type.
We first review the statistics-typemetrics, which are calculated based on different levels

of programming objects, such as class, package and system. we list as follows.
(a). For the class level, Chidamber and Kemerer proposed the CK metric set for OO

design evaluation (Chidamber and Kemerer 1994). CK is a group of six metrics on class
and method, which are pure static statistics. Lee et al. proposed a dynamic metric of
information-based coupling (ICP), which defines the coupling degree for every class
based on information flow through method invocations (Lee 1995). Harrison et al. pro-
posedMOODmetric set, including CF (coupling factor) (Harrison et al. 1998), which can
measure cohesion indirectly through measuring coupling. It is calculated by the sum of
all possible dependencies between classes, divided by the sum of existed dependencies of
all classes. Bieman et al. proposed two cohesion metrics: TCC (Tight Class Cohesion) and
LCC (Loose Class Cohesion), based on the instance variables shared in different methods
(Bieman and Kang 1995).
(b). For the package level, Martin proposed seven statistical metrics (Martin 2002),

which are easily implemented and widely used in many development tools to assist pro-
grammers. Misic studied on the package cohesion, and concluded that relying solely
on the internal relationships of packages is not sufficient to determine cohesion (Misic
2001). Sarkar et al. proposed a new metric suite to characterize the modular quality of
software packages (Sarkar et al. 2008). Abdeen et al. proposed a cohesive metric based
cyclic dependence (Abdeen et al. 2009), to evaluate package modularity, encapsulation,
variability, and reusability.
(c). For the system level, Gui et al. used an approach like (Lee 1995) to define system

coupling as the average coupling of all classes in a software system (Gui and Scott 2006).
This is a system-level coupling measurement that can be used to evaluate component
reusability.
Next, we summarize the network-type metrics and their implementation. Compared to

the common statistics methods, complex network technologies have become more and
more popular since they provide a macro perspective to analyze software. Software sys-
tems can be represented as complex networks, which also called software networks. In a
software network, nodes are software entities, such as methods, fields, classes, or pack-
ages, and edges represent dependencies between entities (Pan et al. 2011). Therefore,
many recent studies have focused on software networks, and reached many useful results
(Potanin et al. 2005; Concas et al. 2007; Pan et al. 2010; Pan et al. 2011).
One of the most interesting properties in complex network is community structure

(Girvan and Newman 2002; Newman 2006; Fortunato 2010). Communities are generated
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by dividing a network into several parts, based on the rules of tight internal connections
and sparse external connections. Communities play an important role in understanding
network characteristics (Li et al. 2013) (Pan et al. 2011). Software networks have the same
community properties with other networks, such as being small world and scale-free
(Myers 2003; Pan et al. 2011). Shen et al. made in-depth research on several Java software
systems and found that the relevant networks contain same features (Ping-ting and Liang-
yu 2017). Pan et al. represented Java software systems as bipartite networks, and proposed
an algorithm to reconstruct the organizational structure of software packages (Pan et al.
2014). With the widespread application of complex network technology on software net-
works, many related tools are developed to analyze existed software systems. Zheng et al.
used an improved degree model to analyze the Linux system (Zheng et al. 2008). Besides
community structure analysis, complex network technologies have also been applied in
the field of software evolution. Valverde et al. proposed a model based on node repli-
cation and edge rearrangement (Valverde and Solé 2005). He et al. proposed a model
based on the growth of software design patterns (He et al. 2006). Li et al. proposed a soft-
ware evolution model combining complex network theory and evolutionary algorithms
(Li et al. 2006).

Fundmentals of software codes
Software codes

Software systems are made from codes written by professional programmers accord-
ing to practical functionality requirements. These codes must obey the syntax rules
and structure requirements of programming languages. Take Java as a typical lan-
guage, the common program structure of object-oriented (OO) software systems
is two-tier: class and package. All codes must be enclosed in mutiple class files,
then these class files are collected in different packages according to their func-
tionalities and roles. Class is the basic unit. And package, as an intermediate layer,
can play the role of aggregating classes and regulating class access as well as can
reduce system complexity and increase maintainability and understandability. Note
that the rationality of package organization affects software quality to a certain
degree.
For better demonstration, we show a Java system in Fig. 1. In this system, there are three

packages. Detailedly, package1 has three classes: A, B, C; package2 has also three classes:
D, E, F, and the last package package3 has three classes: H, I, J.

Fig. 1 An example of Java software system
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Code dependencies

When a call occurs between two classes, a dependency is created. There are several types
of dependencies in oriented-object programming languages. Kang et al. summarized code
dependencies between classes into ten relations (Kang et al. 2004). These relations have
different weights in the classical theory of software engineering, however, to our best
knowledge, there is no authoritatively quantitative values for weighting factors.
Additionally, the influence of packages on dependencies can not be omitted, since pack-

ages also contribute to system dependencies. As a middle tier, package can aggregate
classes with same role or functionality, and limit outside illegal access. Thus, the depen-
dencies can be labelled into two types: intra-package dependencies and inter-package
dependencies. An intra-package dependency means its caller and callee are in the same
package, while the two participators of inter-package dependency locate in different
packages.

High cohesion and low coupling

Programming languages are continuously growing with more and more powerful fea-
tures, such as function encapsulation, inheritance and polymorphism. These features
make codes implement the requirements right and efficiently, while they have to cause
the dependency problem (Tom et al. 2013). As shown in Fig. 1, codes are split into sev-
eral class files, where they generate many dependencies among them. For example, class I
inherits class E and calls the function of class F. That means, class I are depended on the
classes E and F. If there are some changes in classes E or F, it must put impacts on class I.
Unfortunately, the dependencies are inevitable since it cannot put all codes into one file.
From Fig. 1, we can see that a class has higher risk of unstable modification if it has

more dependencies on other classes. Therefore, programmers try to get rid of class
dependencies, and make codes self-contained. This is called the famous principle of high
cohesion and low coupling. The cohesion indicates the degree of every program mod-
ule, like class or package, can finish its functionality with the support from inner codes.
Conversely, the coupling presents how a module depends on other outside modules. To
avoid the cascade modification and latent bugs, one of the promising methods is to make
codes high cohesion and low coupling. The ideal system is one where all modules remain
independent without any dependencies. Unfortunately, that is very difficult because
of the massive and complex software requirements. Therefore, programmers need to
design and implement changes carefully to increase code cohesion and decrease module
coupling.

Software network and its attributes
Class dependency graph network

Definition 1 In this paper, the software systems we studied are made from oriented-
object programming languages. Thus, based on the package-class structure and the
dependencies between classes, the software system can be represented as a Class Depen-
dency Graph (CDG) network (Ping-ting and Liang-yu 2017), which is a directed graph.
Let G = (Vc,Ec,C) denote a CDG, where Vc is the set of vertexes/classes, Ec is the set of
edges/dependencies, and C is the set of communities/packages respectively. Every package
is mapped to be a community of the network. In this directed network, there is an edge
vi → vj if and only if there is at least one following dependency between vi and vj:
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• R1—Inheritance and implementation: vi extends or implements vj;
• R2—Aggregation: vj is the data type of member variable in vi;
• R3—Parameter: vj is the data type of parameter/return value/declared exception of

member function in vi;
• R4—Signature: vj is the type of local member variable in vi;
• R5—Invocation: vj is invoked insides the member function in vi;

In other words, for a node, its outgoing edges denote the classes it depends on,
that is, forwards dependencies. Similarly, the incoming edges mean the classes it sup-
ports, namely backwards dependencies. Additionally, for generality, we assume that the
weights of above five dependencies are same, then the dependency between two classes
is weighted by the add up of all the dependencies.
We use a software system developed with Java language as an example, to show how

to construct a CDG network. Corresponding to the source codes shown in Fig. 1, we can
generate the CDG shown in Fig. 2. Different to the existing coarse-granularity software
networks, our CDG describes the software structure deeply and clearly, since it is based
on five fine-granularity dependencies {R1,R2, . . . ,R5}.
In Fig. 1, there are three packages. Detailedly, package1 has three classes: A, B, C;

package2 has also three classes: D, E, F, and the last package package3 has two classes: H
and I. It is easily observed that there are four dependencies between classes: D depends
on A, F depends on D, I depends on E, and I depends on F . Based on the definitions of
five dependencies {R1,R2, . . . ,R5}, the CDG is generated and shown in Fig. 2.

Attributes of software network

Definition 2 Let G = (V ,E,C) stand for a directed network, where V, E, C denote the
set of vertices, edges and communities respectively. Note that for the networks generated
from software systems, the communities are formed based on the package-class structure
naturally. Each vertex belongs to only one community, and there is no common vertices
between communities, that is, ∀i �=j, Ci ∩ Cj=∅. mij denotes the value between vi and vj in
adjacency matrix M. And for two vertices vi, vj in a software network, if vi, vj belong to in
the same community, then α(vi, vj) = 1. Otherwise α(vi, vj) = 0.

Definition 3 An internal edge is an edge whose two vertices are located in the same
community. The number of internal edges in a community, is calculated with

WPR =
∑

i,j
mijα(vi, vj). (1)

Fig. 2 An Example of CDG
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Corresponding to a software network, WPR indicates the cohesion maturity for a package,
since the internal edges are located in a package, that is, the package don’t need any outer
dependencies. Obviously, the larger WPR is, the greater cohesion is.

Definition 4 An external edge is an edge whose two vertices are in two different packages.
There are two types of external edges: outgoing edges and incoming edges. For a community,
the number of outgoing edges is calculated with

WPER =
∑

i∈Ck

mij(1 − α(vi, vj)), (2)

while the number of incoming edges is

WPAR =
∑

j∈Ck

mij(1 − α(vi, vj)). (3)

Corresponding to a software network, WPER means the “powerful” degree of a package
which can support other packages. AndWPAR is the “dependent” degree of a package which
needs more support on other packages. Thus, for a package, the larger WPER is, the more
important is; the larger WPAR is, the more dependent is.

Definition 5 We can quantify the importance for a package. Let PRE indicate the num-
ber of other packages that a package depends upon, and PRA denote the number of other
packages that depend on a package. The related calculation is listed as follows:

PRE =
∑

ij
γ (Ci,Cj), (4)

PRA =
∑

ij
γ (Cj,Ci). (5)

In formulas (4) and (5), when classes in Cl depends upon classes in Ck , γ (Cl,Ck) = 1.
Otherwise, γ (Cl,Ck) = 0.

Ourmetrics
It is well known that the rule of high cohesion and low coupling is very important in
software architecture design. The degree of cohesion and coupling between packages, has
a great impact on software maintainability and reusability. However, manual evaluation
for cohesion and coupling is time consuming and labor intensive. So it is necessary to
construct evaluation metrics and algorithms without manual operations, for better code
evaluation and refactoring.

Cohesion and coupling metrics

In (Abdeen et al. 2009), Abdeen proposed a cohesion metric packages. For a package,
this metric considers not only the intra-package dependencies, but also the inter-package
dependencies. However, it omits the backwards dependencies, namely the case that a
class is dependent on others. From the perspective of software quality, the inter-package
calls brought by the backwards dependencies, have a high probability of affecting overall
package reusability. Considering the affect of backwards dependencies, we define a new
cohesion metric COHM, for measuring software package cohesion.
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COHM = WPR
WPR + WPER + δ · WPAR

. (6)

WhenWPR+WPER+ δ ·WPAR = 0, COHM is set as 0. ThoughWPER andWPAR both
denote inter-package dependencies, the influence of backwards dependencies on a class
is smaller than the forwards dependencies’ influence. Note that backwards dependencies
are passive and not controlled by the callee class. However, a class can control its forwards
dependencies. So, we multiplyWPARwith an arbitrary coefficient δ less than 1 to empha-
size that it’s less important thanWPER. Here, we tentatively fix δ = 0.5. According to the
meaning of cohesion, it is easily known that the larger value of COHM indicates higher
cohesion.
Inspired by Martin’s efferent and afferent couplings (Martin 2002), we also propose a

new package coupling metric COUM. This metric considers the relations between pack-
ages caused by all relations between classes, which can truly reflect the hierarchical
relations between packages. The COUM for one package is calculated as follows:

COUM = PRE + PRA
WPR + PRE + PRA

, (7)

where WPR represents the number of times the package depends on itself. Note that
when the denominator is 0, COUM is set as 0. In this formula, the numerator denotes the
sum of the number of associations between the community and other communities, and
the denominator represents the sum of the number of all associations in the community.
According to the meaning of coupling, the smaller the COUM value is, the lower the
degree of package coupling is.
We present Algorithm 1 to calculate the metrics of cohesion and coupling for a package.

In this algorithm, N is the number of all classes and Np1 denotes the number of classes in
the package p1. We iterate all classes in the package p1 to calculate cohesion and coupling.
It is observed that we only consider the case that two classes have dependencies. Next,
if the two classes are in the same package, we add up the dependency values from M to
get the value of WPR, otherwise, we get the value of WPER or WPAR according to the
direction of the dependency. Finally calculate cohesion and coupling for package p1 after
visit all classes.
Let’s analyze the complexity of Algorithm 1. It is easily seen that there are a nested two-

layers loop in Algorithm 1. Assume the number of classes of whole software is N, and for
a package P1, it hasNP1 classes. Then the outer loops runsNP1 times, while the inner loop
runs N times. Therefore, the complexity of Algorithm 1 is O(NP1N). When performing
Algorithm 1 on all packages, the total complexity isO((NP1 +NP2 + · · ·+NPx) ·N). Since
NP1 + NP2 + · · · + NPx = N , the total complexity is O(N2). Remark that the total value
of COHM and COUM for a software system, are set as the average values of all packages’
counterparts.

Theoretical verification

The concept of cohesion and coupling has been used to represent the dependencies
between modules. Briand et al. defined some mathematical properties to characterize the
cohesion and coupling (Briand et al. 1996). Such a mathematical framework can generate
a consensus in the software engineering community, provide better guidelines for com-
munication among researchers, and better evaluation methods for commercial analyzers
and practitioners. These properties are necessary and helpful to prove the usefulness of
cohesion/coupling measurement although not completely precise.
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Algorithm 1: Calculation of cohesion and coupling for a package
Input: Packages C, Adjacent matrixM, vertex number N, the package P1.
Output: The cohesion and coupling values for P1.

1 Initialize PRE, PRA,WPR as 0.
2 for i in NP1 do
3 for j in N do
4 ifMij!= 0 then
5 if Cvj = P1 then
6 WPR+ = Mij;
7 else
8 WPER+ = Mij;
9 if Cvj doesn’t be computed then

10 PRE + +;
11 end
12 end
13 end
14 end
15 for j in N do
16 ifMji!= 0 then
17 if Cvj != P1 then
18 WPAR+ = Mji;
19 if Cvj doesn’t be computed then
20 PRA + +;
21 end
22 end
23 end
24 end
25 end
26 calculate COHM with formula (6);
27 calculate COUM with formula (7);
28 return the result.
29 Here, we use CDG in Fig. 2 as an example to illustrate the calculation of COHM and

COUM. For package2, class F depends on class D in the same package, class D
depends on class A in package1, class E is depended on class I in package3 and class F
is depended on class I in package3. So,WPR = 1,WPER = 1, andWPAR = 3. Since
package2 depends on package1 and package3 is depend on package2, we have
PRE = 1, and PRA = 1. According to the formulas (6) and (7), COHM = 0.29, and
COUM = 0.67.

Here, we verify theoretically the validation of our inter-package cohesion and coupling
by analyzing their mathematical properties. Briand presented five properties for cohesion
and coupling. The definitions are listed as follows.2

2For generality and refinement, we combine properties 4 and 5 in (Briand et al. 1996) into one property, namely
PROPERTY 4 including two parts: cohesion and coupling.
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PROPERTY 1: Non-negativity The cohesion and the coupling of a modular
system|modular is nonnegativity.
PROPERTY 2: Null Value If there is no intramodule relationship among the elements of
a (all) module(s), then themodule (system) cohesion is null. And If there is no intermodule
relationship among the elements of a (all) module(s), then the module (system) coupling
is null.
PROPERTY 3: Monotonicity Adding intramodule relationships does not decrease
[module|modular system] cohesion. And adding intermodule relationships does not
decrease [module|modular system] cohesion.
PROPERTY COHESION 4: Merging of Modules The cohesion of a [modulelmodu-
lar system] obtained by putting together two unrelated modules is not greater than the
[maximum cohesion of the two original modules I the cohesion of the original modular
system].
PROPERTY COUPLING 4: Merging of Modules The coupling of a [moduleImodular
system] obtained by merging twomodules is not greater than the [sum of the couplings of
the two original moduleslcoupling of the original modular system], since the twomodules
may have common intermodule relationships.

Proposition 1 Formulas (6) and (7) are satisfied with four verification properties
proposed by Briand.

Proof (1) Non-negativity
In formula (6),WPR,WPER, δ,WPAR are all non-negative, thereforeCOHM is also non-

negative. In formula (7), PRE, PRA, and WPR are all non-negative, thus COUM is also
non-negative.
(2) Null Value
If the number of classes in a package is zero or the package has no relation with

any other packages, that is, WPR, WPER, WPAR, PRE, PRA are all zero, then both
denominator of COHM and COUM will be null.
(3) Monotonicity
There are two cases of adding new edges to a package. One is adding internal edges in a

package, the other is linking external edges between different packages. For the first case,
when adding some internal edges for a package C, we use C′ to denote the new package.
Then for COHMmonotonicity, we have

COHMC′ − COHMC

= (WPERC + δ · WPARC) · (WPRC′ − WPRC)

(WPRC′ + WPERC′ + δ · WPARC′) · (WPRC + WPERC + δ · WPARC)
,

since WPERC and WPARC aren’t changed under the condition of adding internal edges.
Obviously,WPRC′ > WPRC . So both denominator and numerator are non-negative, then
COHM is increasing monotonously. For COUMmonotonicity, we have

COUMC′ − COUMC

= (WPRC − WPRC′) · (PREC + PRAC)

(WPRC′ + PREC′ + PRAC′) · (WPRC + PREC + PRAC)
,
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since PREC and PRAC aren’t changed under the condition of adding internal edges. Obvi-
ously, WPRC′ > WPRC , then the denominator is non-negative and the numerator is
negative, so COHM is decreasing monotonously.
For the second case of adding external edges for a package C, let C′ denote the new

package. As to COHMmonotonicity, we have

COHMC′ − COHMC

= WPR · (WPERC + δ · WPARC − WPERC′ − δ · WPARC′)

(WPRC′ + WPERC′ + δ · WPARC′) · (WPRC + WPERC + δ · WPARC)
,

since WPR isn’t changed under the condition of adding external edges. Obviously,
WPERC′ ≥ WPERC and WPARC′ ≥ WPARC , thus, the denominator is non-negative and
the numerator is negative. So that, COHM is decreasing monotonously. As to COUM
monotonicity, we have

COUMC′ − COUMC

= WPRC · (PREC′ + PRAC′ − PREC − PRAC)

(WPRC′ + PREC′ + PRAC′) · (WPRC + PREC + PRAC)
,

since WPR doesn’t change under the condition of adding external edges. Obviously,
PREC′ ≥ PREC and PRAC′ ≥ PRAC , thus, both denominator and numerator are
non-negative. So that, COUM is increasing monotonously.
To sum up the two above cases, adding the internal edges in a package, will increase

COHM and decrease COUM; while add the external edges between different packages,
will decrease COHM and increase COUM. These changes are coincident with the rule of
high cohesion and low coupling. Therefore, we prove both COHM and COUM satisfies
the monotonicity property.
(4) Merging of Modules
Without loss of generality, assume that two packages(modules) Ca, Cb, where all classes

in package Ca have no dependencies or backwards dependencies on the classes in the
package Cb. The cohesions of package Ca and Cb are calculated as follows:

COHMCa = WPRCa

WPRCa + WPERCa + δ · WPARCa
,

COHMCb = WPRCb

WPRCb + WPERCb + δ · WPARCb
.

Then we combine Ca and Cb to generate a new package Cc. The cohesion of Cc is list as
follows:

COHMCc = WPRCa + WPRCb

WPRCa + WPERCa + δ · WPARCa + WPRCb + WPERCb + δ · WPARCb
.

We use Na
Da

to denote COHMCa − COHMCc , where

Da = (WPRCa + WPERCa + δ · WPARCa) ·
(WPRCa + WPERCa + δ · WPARCa + WPRCb + WPERCb + δ · WPARCb),

Na = WPRCa · (WPERCb + WPARCb) − WPRCb · (WPERCa + WPARCa).

We also use Nb
Db

to denote COHMCb − COHMCc , where

Db = (WPRCb + WPERCb + δ · WPARCb) ·
(WPRCa + WPERCa + δ · WPARCa + WPRCb + WPERCb + δ · WPARCb),

Nb = WPRCb · (WPERCa + WPARCa) − WPRCa · (WPERCb + WPARCb).
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Obviously, Da,Db > 0, and Na = −Nb, therefore COHMCa − COHMCc ≥ 0 or
COHMCb − COHMCc ≥ 0 holds. Namely, COHMCc ≤ max{COHMCa ,COHMCb}.
In other words, the new cohesion of merged package is not bigger than two original
cohesions.
For the coupling metric, the fourth property proposed by Braind requires COUMCa +

COUMCb ≥ COUMCc . For the new merged package Cc, we have

COUMCc = PRECc + PRACc

WPRCc + PRECc + PRACc

= PRECa + PRECb + PRACa + PRACb

WPRCa + WPRCb + PRECa + PRECb + PRACa + PRACb
.

Then, we can use Nc
Dc

to denote COUMCa + COUMCb − COUMCc , where

Dc = (WPRCc + PRECc + PRACc) · (WPRCc + PRECc + PRACc) ·
(WPRCc + PRECc + PRACc),

Nc = (PRECa + PRACa) · (WPRCb + PRECb + PRACb)
2 +

(PREb + PRACb) · (WPRCa + PRECa + PRACa)
2.

It is easy to see both Dc and Nc are all non-negative. So, COUMCa + COUMCb ≥
COUMCc . That proves the fourth property.
To sum up, we have proved that our metrics of cohesion and coupling are satisfied with

all properties proposed by Briand.

Refactoring algorithm
As mentioned above, for a software system, programmers pursue the goal of high cohe-
sion and low coupling. Note that these two parts are not interchangeable. In software
engineering, we tend to think the influence of cohesion and coupling are equally impor-
tant. When we consider only one of them, we are not able to know the software system
correct and clear. Therefore, combining cohesion with coupling can better reflect package
modularity and fully measure software structure. Thus, we propose a refactoring algo-
rithm based onCOUM andCOHMmetrics to optimize software structure. Our algorithm
is based on the principle of greedy algorithm to pursue high cohesion and low coupling.
The detail of refactoring algorithm is summarized in Algorithm 2.
First, we move a candidate class to other packages, who have dependencies to it, for

higher COHM and lower COUM. Obviously, the candidate class can only be a class that
has inter-package dependencies. Moreover, for a class with less inter-package dependen-
cies and more intra-package dependencies, moving it can disrupt the original software
organization. Therefore, such classes should also be excluded from the set of candidate
classes. In Algorithm 2, we adopt T1 as the difference threshold of forwards dependen-
cies on the target package and the source package, and T2 is similar to T1, but designed
for backwards dependencies. In this paper, T1 = 2, and T2 = 3, are designed based on
experience.
Next, when a candidate class move causes the value of COHM to increase and the

value of COUM to decrease, a refactoring is performed. Unluckly, cohesion and cou-
pling do not always change cooperatively in the opposite direction Therefore, there is a
trade-off when COHM and COUM both increase or decrease together. Since software is
carefully designed and implemented by professional programmers, refactoring is crucial,
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Algorithm 2: Refactoring algorithm base on our metrics
Input: Adjacent matrixM; communities C; vertex number N.
Output: The original values of COHMogn,COUMogn; the new values of

COHMref ,COUMref .
1 Calculate the original values of COHMogn and COUMogn according to Algorithm 1.
2 while there is a unvisited class do
3 Select a unvisited class A, and set COHMmax = 0,COUMmin = 0.
4 Let Ps be the source package of A;
5 for traverse all packages do
6 Let Pt be the currently visiting package.
7 Set Dn = (as the number of dependencies of A depends on Pt).
8 Set Do = (as the number of dependencies of A depends on Ps).
9 set Dnb = (the corresponding backwards dependencies on Pt).

10 set Dob = (the corresponding backwards dependencies on Ps).
11 if (Dn − Do > T1 ‖ Dnb − Dob > T2 ‖ (Dn ≥ 1&&Dnb ≥ 1)) then
12 Calculate COHMogn,COUMogn for both Ps and Pt .
13 Move A to Pt and update C.
14 Re-calculate COHMref ,COUMref for both Ps and Pt .
15 DfCOHM = COHMref − COHMogn.
16 DfCOUM = COUMref − COUMogn.
17 RHU = |DfCOHM/DfCOUM|.
18 RUH = |DfCOUM/DfCOHM|.
19 if ((COHMref > COHMmax&&COUMref < COUMmin) ||
20 (DfCOHM > 0&&DfCOUM > 0&&RHU > 1.5)||
21 (DfCOHM < 0&&DfCOUM < 0&&RUH > 1.5)) then
22 if (COHMref > COHMmax&&COUMref < COUMmin) then
23 COHMmax = COHMref , COUMmin = COUMref ;
24 mark pmax as Pt .
25 end
26 if (DfCOHM > 0&&DfCOUM > 0) then
27 COHMmax = COHMref ;
28 mark pmax as Pt .
29 end
30 if (DfCOHM < 0&&DfCOUM < 0) then
31 COUMmin = COUMref ;
32 mark pmax as Pt .
33 end
34 end
35 Move A back to the Ps and update C.
36 end
37 end
38 Set A as visited.
39 if COHMmax > 0&&COUMmin < 0 then
40 Move A to package Pmax and update C.
41 Set all classes that depend on A as unvisited.
42 end
43 end
44 Calculate COHMref and COUMref after refactoring, then return.
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namely each refactoring should be of great value to the entire software system. Therefore,
refactoring should occur when a good change is achieved to an extent that’s not too low.
For the above reasons, if the values of COHM and COUM are changed in the same

direction, we construct an evaluation model, that is: when the “good” (healthy to the
software structure) changes are more than the “bad” changes at a threshold, the class is
moved; otherwise the class stays without any refactoring. Here, this threshold is set at
50%. Empirically, performing a refactoring at this “good” extent is not wasteful. Finally,
we repeat the above process and stopping moving until the entire software reaches the
optimal configuration.
Let’s analyse the complexity of Algorithm 2. Assume N be the number of classes, and

Np the number of packages. There is a nested two-layers loop in Algorithm 2. The outer
loop is the while-loop at the 2nd line, while the inner loop is the for-loop at the 5th line. As
to the inner for-loop, only the values of COHM and COUM of source package and target
package are changed in the process of refactoring, therefore, we needn’t consider other
packages. According to Algorithm 1, the complexity of COHM and COUM for the source
package is O(N2). Thus the complexity of for-loop at 5th line is O(N2Np). Therefore, the
total complexity of Algorithm 2 is O(N3Np). Since our algorithm obeys the thought of
greedy algorithm, it may encounter the problem of “local optimal”. However, during the
process of refactoring, the average values of cohesion and coupling for the whole software
are always improved monotonously. So the correctness of Algorithm 2 is confirmed. Fur-
thermore, the amount of classes is finite, so that the algorithm must be terminated after
all classes are visited.

Experiments and analysis
Refactoring experiments and analysis

Our experiments are executed on a computer with configurations of i5-3230M, 8GDDR3,
Windows 10. We select ten open-source software systems for experimental verification.
These software systems have different functionalities and good maturity, and have also
been widely applied in the industry. The basic information statistics are collected in
Table 1.
In Table 2, we show the result of refactoring ten software systems. It can easily observed

that for all software systems, after refactoring, the cohesion values are improved, while
the coupling values are decreased. Figure 3 shows COHM comparison before and after
refactoring. We can see that after refactoring, the value of COHM of each software is

Table 1 Basic information of multiple Java software systems

Name PN CN EN NP

Ant 1.9.9 58 998 5169 2

Cglib-nodep 3.2.6 9 202 914 1

Emma 2.0.5313 11 143 574 0

Hsqldb 2.4.0 21 553 4519 2

Jaxen 1.1.6 16 204 947 0

Jgroups 4.0.10 31 859 4454 2

Ormlite 5.0 11 176 938 0

PDF-Renderer 1.0.5 9 154 548 0

RabbitMQ Client 5.0.0 7 402 1661 1

Tomcat 9.0.1 42 663 1887 2

PN: Package number; CN: Class number; EN: Edge number; NP: Neglected packages
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Table 2 Improvement of our metrics after refactoring

Name RCN WFR Before/After/Diff(COHM) Before/After/Diff(COUM)

Ant 671 49 0.223/0.249/ + 0.026 0.345/0.307/ − 0.038

Cglib-nodep 151 8 0.270/0.332/ + 0.062 0.163/0.159/ − 0.004

Emma 143 12 0.327/0.347/ + 0.019 0.213/0.165/ − 0.048

Hsqldb 311 31 0.288/0.319/ + 0.032 0.224/0.062/ − 0.162

Jaxen 204 17 0.315/0.424/ + 0.110 0.283/0.119/ − 0.163

Jgroups 460 95 0.230/0.295/ + 0.064 0.260/0.148/ − 0.112

Ormlite 176 35 0.262/0.333/ + 0.071 0.231/0.137/ − 0.093

PDF 154 14 0.357/0.389/ + 0.033 0.118/0.112/ − 0.006

RabbitMQ Client 189 4 0.492/0.510/ + 0.018 0.096/0.096/ − 0.001

Tomcat 522 18 0.414/0.448/ + 0.035 0.273/0.222/ − 0.051

RCN:Rest class number;WFR:Waiting for refactoring

significantly improved, up to 35%. The change of COUM value is shown in Fig. 4. Simi-
larly, after refactoring, the value of COUM is significantly decreased, up to 72% improved.
Therefore, through refactoring, the software structure is improved significantly to get
closer to the goal of high cohesion and low coupling.
In our past work, Mi et al. proposed an effective package-level cohesion metric, which

can effectively improve software structure (Mi et al. 2019). Pan et al. also proposed a
community cohesion model for refactoring (Pan et al. 2014). We compare our refactoring
algorithm to theirs respectively. Note that Mi and Pan only consider the cohesion metric.
However, the coupling metric similarly plays an important role on software structure. So
we also compare COUM at the stop of different refactoring algorithms. Table 3 records
the result of time consumption of the refactoring algorithm and the value of COUM. It is
remarked that the complexity of our refactoring algorithm is equal to Mi’s and less than
Pan’s complexity O(N3N3

p ). For easy observation, we show the comparison of COUM
after refactoring with three algorithms in Fig. 5. For Mi’s algorithm, the value of COUM is
slightly higher than ours in most cases. As to Pan’s algorithm, the COUM is much higher
than ours, which means Pan’s algorithmmay cause high coupling between packages. And
worse, their refactoring algorithm consumes more time, several hours for some software
systems. Therefore, our refactoring algorithm can guide the software structure correctly
and execute efficiently.

Fig. 3 The change of COHM after refactoring. COHMbf denotes the COHM value of the entire software before
refactoring. COHMaf denotes the COHM value of the entire software after refactoring



Zhou et al. Applied Network Science            (2020) 5:50 Page 16 of 20

Fig. 4 The change of COUM after refactoring. COUMbf denotes the COUM value of the entire software before
refactoring. COUMaf denotes the COUM value of the entire software after refactoring

Disturbing-recovering experiment and analysis

Several researches used to score the refactoring manually, which seems a little subjec-
tive. For reaching more objective comparison, we also design an experiment of disturbing
and recovering to verify the correctness and efficiency of our metrics in guiding the soft-
ware structure. Random disturbing for a package is that some classes in this package are
randomly selected and placed into other packages. Recovering means that the disturbed
classes can be recovered back to the original packages through refactoring algorithm.
Since software is an artifact developed carefully by programmers with professional

skills, we deem the original structures of software systems as “PERFECT” structures.
When we randomly disturb a package, the “PERFECT” structure is broken into chaos.
Then we can use the refactoring algorithms to optimize the disturbed software systems.
After refactoring, the more classes can be correctly recovered, the better the refactoring
algorithm is. The precision rate P of recovering is calculated as

P = NRecovered
Ndisturbed

,

Table 3 Comparison of refactoring algorithms

name
Ours Mi’s Pan’s

TC COUM TC COUM TC COUM

Ant 121 0.307 122 0.342 8353 0.389

Cglib-nodep 1 0.159 1 0.159 15 0.045

Emma 1 0.165 1 0.166 16 0.306

Hsqldb 44 0.062 43 0.054 3388 0.161

Jaxen 1 0.119 1 0.134 34 0.236

Jgroups 126 0.148 127 0.194 3254 0.302

Ormlite 1 0.137 1 0.139 20 0.235

PDF-Renderer 1 0.112 1 0.126 17 0.363

RabbitMQ Client 1 0.096 1 0.096 35 0.198

Tomcat 71 0.222 69 0.213 3811 0.280

TC: Time consumption (seconds)
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Fig. 5 The value of COUM

where NRecovered represents the number of disturbed classes recovered by the algo-
rithm, and Ndisturbed denotes the total number of disturbed classes. We implement the
disturbing-recovering experiment on ten Java open-source software systems. For each
system, we repeatedly test 100 times and get their average. Then, we compare our
refactoring algorithm with Mi’s under the condition of different disturbing ratios.
The detail of disturbing-recovering experiment using our refactoring algorithm under

10% disturbing ratio is shown in Table 4. It can be found from the result that our refactor-
ing algorithm can recover the disturbed classes very well and most classes can be placed
back. This explains that our metrics can optimize the software structure effectively.
We also compare the performance between our algorithm andMi’s under the condition

of different disturbing ratio 6%, 10%, 14% respectively. The comparison result is shown
in Table 5. We can see that under different disturbing ratios, the average of our recovery
percentages are higher than Mi’s in most cases, except only one software Ant.

Table 4 Results of disturbing-recovering experiment (10%)

name NDC NRC RP(%) LRP(%) URP(%)

Ant 35 27 76.2 78.4 73.7

Cglib-nodep 8 6 74.8 77.5 71.0

Emma 11 10 86.4 88.6 81.8

Hsqldb 17 14 81.1 83.8 78.4

Jaxen 14 10 70.3 72.7 66.7

Jgroups 32 24 75.0 78.8 71.9

Ormlite 13 10 75.8 80.4 70.8

PDF renderer 11 9 81.8 84.7 78.9

RabbitMQ Client 14 11 81.3 83.1 70.8

Tomcat 30 25 85.1 86.8 83.8

NDC: Number of disturbed classes; NRC: Number of recovered classes
RP:Average precision of recovering; LRP: Minimal precision of recovering; URP: Maximal precision of recovering
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Table 5 Disturbing-recovering comparison under different disturbing ratios

name
6% 10% 14%

RPO(%) RPM(%) RPO(%) RPM(%) RPO(%) RPM(%)

Ant 79.2 82.4 76.2 80.0 75.6 78.4

Cglib-nodep 82.3 76.2 74.8 74.0 67.4 66.9

Emma 92.8 92.0 86.4 88.7 86.9 86.4

Hsqldb 88.1 86.3 81.1 80.9 79.8 78.9

Jaxen 76.0 74.5 70.3 69.5 64.8 64.6

Jgroups 75.7 76.8 75.0 74.0 65.8 66.1

Ormlite 78.2 72.8 75.8 67.2 66.7 64.3

PDF-Renderer 87.4 84.6 81.8 80.4 71.8 73.1

RabbitMQ Client 87.9 85.6 81.3 81.2 74.7 72.9

Tomcat 91.7 86.0 85.1 84.9 82.3 81.4

RPO: Average Recovering percentage of our algorithm
RPM: Average Recovering percentage of Mi’s algorithm

A more intuitive visualization is also demonstrated in Fig. 6. Under different disturb-
ing ratios, our algorithm gets a more steady performance. Therefore, the disturbing-
recovering experiment shows our metrics are good for software measurement, and the
refactoring algorithm can be used to improve software quality for avoiding the risk
structure deviation.

Conclusion
Software is a well-designed artifact implemented by programmers with professional skills.
In the long maintenance phase, software faces the risk of code quality degradation and
architecture deviation caused by continuous code revision. It is urgently necessary to cre-
atemetrics, methods and tools to assist programmers in amacroscopic view. In this paper,
we utilize the community methods in complex network and propose two metrics of pack-
age cohesion and coupling for software measurement. These two metrics are proved to
satisfy the properties proposed by Briand(Briand et al. 1996). Then, based on the new

Fig. 6 The fluctuation of recovering precision5
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metrics, we construct an evaluation model for package maturity, and propose a refactor-
ing algorithm tomake software structure better. Through several experiments onmultiple
open-source software systems, it is shown that ourmetrics are capable of improving pack-
age structure to fit the rule of high cohesion and low coupling, but also recovering the
disturbed classes back to the correct place.
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