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Abstract
Recent work has employed information theory in social and complex networks. Studies
often discuss entropy in the degree distributions of a network. However, no specific
work on entropy exists in clique networks. This work is an extension of a previous study
that discussed this topic. We propose a method for calculating the entropy of a clique
network and its minimum and maximum values in temporal semantic networks based
on titles of scientific papers. In addition, the critical network of moments was extracted.
We use the titles of scientific papers published in Nature and Science over ten-year
period. The results show the diversity of vocabulary over time, based on the entropy
values of vertices and edges. In each critical network, we discover the paths that
connect important words and an interesting modular structure.

Keywords: Networks of cliques, Shannon entropy, Time–varying graphs, Semantic
networks, Network theory

Introduction
Information theory has evolved in recent decades and has been applied in different fields,
such as biology, economics and quantum confined systems (Mousavian et al. 2016;Mishra
and Ayyub 2019; Nascimento and Prudente 2018; Brillouin 2013). Recently, some authors
have introduced these concepts to measure the information contained in the distribution
of degrees and geodesic distances from real networks, or in classical models and semantic
networks to classify and differentiate these systems by the heterogeneity of their links
(Solé and Valverde 2004; Ji et al. 2008; Viol et al. 2019).
In the study of real networks, modeling the dynamics of the entry and exit of vertices

and edges of the networks is necessary. Themainmodels include themodeling of a system
by a clique network, e.g., movie actor networks (Barabasi and Albert 1999), co–authoring
networks (Newman 2001), concepts networks (Caldeira et al. 2006) and semantic net-
works (Teixeira et al. 2010; Pereira et al. 2011; Pereira et al. 2016; Grilo et al. 2017). The
latter considers the network that is composed of words, concepts or entities with semantic
meaning represented by the vertices, with edges that consist of connections between two
words that appear in the same unit of meaning, that is, in a sentence (phrase), paragraph
or title of the analyzed speech (Pereira et al. 2016; Grilo et al. 2017). Semantic networks
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that are modeled by a clique network can provide interesting answers for the study of
the organization of human language. Teixeira et al. (2010) proposed the incidence-fidelity
(IF) index to obtain a critical configuration of the semantic network of an oral discourse.
Cunha et al. (2015) applied this index to networks of scientific paper titles based on pub-
lications in high-impact factor journals. The Semantic network of titles (SNT) is formed
by the union of titles of publications of a scientific journal, over a given period of time,
where the words are vertices of the network and the edges connect words that belong to
the same title (Pereira et al. 2011). Within this context, Casteigts et al. (2012) formalized
the concept of time-varying graph (TVG).
Despite the growing interest in Shannon entropy, no studies have applied this measure

to clique semantic networks. Therefore, this work proposes a method that calculates the
vertex and edge entropy of an SNT and their maximum and minimum limits for entropy
values according to the initial conditions. The findings can be generalized for any clique
network.
This work synthesizes the methodology presented in Cunha et al. (2020) and expands

the possibilities of its application and results. The dataset includes the titles from the
journals Nature and Science from 1998 to 2008. The networks are built as a TVG and
analyzed using a sliding time window proposed by Cunha et al. (2020) andmore explained
here. The TVG is then called time-varying semantic network of titles (TVSNT).
In addition to the entropy calculation, the (IF) index (Teixeira et al. 2010) is applied to

seek the critical network in prominent time windows, to show the connections between
the most important vertices.
The results are explored according to the meanings of these indexes, and comparisons

between the two systems are performed from the correlations between the entropy values.

Background
Network of cliques

Considering their substantial applicability, clique networks fit the modeling of various
social systems. We will provide a brief review of the semantic networks of cliques and the
semantic networks based on titles of scientific papers.
Semantic network of cliques. According to the definition provided in Grilo et al.

(2017) and the premise of (Caldeira et al. 2006), we consider a semantic network of cliques
as a system of knowledge representation established by a specific context and imbuedwith
functionality intention, where the vertices are words, concepts or entities with seman-
tic meaning and the smallest unit of meaning is the sentence (e.g., a phrase of a text or
discourse, title of a scientific paper, and keywords of a paper) and the edges consist of
connections between two words that appear in the sentence.
According to this definition, a word changes its meaning depending on its neighbors

in a sentence. Thus, a network is the union of these minor units of meaning, i.e., the
cliques union. An increasing number of studies are investigating semantic networks of
cliques, i.e., Caldeira et al. (2006) analyzed the structure of meaningful concepts in written
discourses; Teixeira et al. (2010) and Lima–Neto et al. (2018) applied semantic clique net-
works to analyze the relationship between two words that emerge in oral speeches from
a critical network, that is, a configuration is obtained using an IF index. In this configu-
ration, the network displays the most information with the least residue (Teixeira et al.
2010); Nascimento et al. (2016) analyzed a semantic network formed by the keywords of a
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doctoral thesis in the area of Physics Teaching in Brazil from 1996 to 2006; Andrade et al.
(2019) employed the measures of the centralities of degree, proximity and betweenness
to understand the coherence and consistency of a proposal for a university program with
the subjects’ menus and work on the semantic networks of the titles of scientific papers.
SNT. An SNT is a semantic network of cliques, where each clique represents one

title and its words are clique vertices. Consequently, an edge represents the connection
between two words that belong to the same title. Some authors have proposed impor-
tant study methodologies for SNTs: Pereira et al. (2011, 2016) investigated the topological
structure of an SNT of scientific papers as a method to analyze the diffusion efficiency
of information, Henrique et al. (2014) employed an SNT to compare the titles of jour-
nal papers in mathematics education in English and Portuguese; the work by Cunha et
al. (2013) considered a TVSNT and observed an effect on the network memory; Cunha
et al. (2015) applied the IF index in SNTs of 15 high-impact factor journals and identi-
fied the correspondent critical network for each journal; Pereira et al. (2016) examined
the evolution of density during the construction of semantic networks as an indicator of
the diversity of scientific journal concepts; and Grilo et al. (2017) proposed a method that
analyzes the robustness of an SNT using vertex removal strategies, which enable the iden-
tification of a critical removal fraction for which the topological structure of the network
is changed.
Note that the authors of (Pereira et al. 2011) were the pioneers in the study of SNTs.

The authors proposed rules for manual treatment and a method for data collection, con-
struction and analysis of networks. The work by Fadigas and Pereira (2013) uses the
same dataset to apply specific indexes for clique networks, which they proposed, and
topologically characterizes the networks using these indexes.
Indices used in this paper. For each title network, the properties of the clique networks

were utilized (Fadigas and Pereira 2013), as shown in Table 1.

IF index

Based on the premise of (Caldeira et al. 2006), words that occur together in the same
sentence were associatively evoked to construct the idea to be presented. According to
(Teixeira et al. 2010), based on this criterion, peers whose association is not significant
were included in the network and mask the structure formed by the strongest associa-
tions. In this way, filtering is necessary to ensure that only the most relevant associations
for the discourse are considered in the construction of the network.
To filter a clique semantic network and obtain the optimal network, Teixeira et al.

(2010) created the (IF) index, as shown in Eq. 3. IF index generates a network with a
critical configuration that contains the maximum amount of information with the min-
imum amount of textual residue . This index measures how “strong” and “faithful” the
relationship between a pair of words is. For a given pair of words, the index considers the
frequency of appearance in the text (incidence I, Eq. 1) and the frequency of appearance
in the context, in which at least one word of the pair is evoked (fidelity F, Eq. 2). The IF
index is the product of these two indices, as shown in Eq. 3.

I(α,β) = |Cα ∩ Cβ |
| ⋃n

1 Ci| = S(α,β)

nq
(1)
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Table 1Main indices of clique network used in this paper

Index Description

nq Number of titles in the initial configuration.

n Number of network vertices in the final configuration.

m Number of edges in the final configuration.

m0 Number of edges in the initial configuration.

n0 Number of vertices in the initial configuration, n0 ≥ n .

#(vi) Frequency of vertex i in the initial configuration, i.e., the number of titles that
contain vertex i (1 ≤ #(vi) ≤ nq).

#(i, j) Frequency of edge (i, j) in the initial configuration, i.e., the number of titles that
contain the words i and j, 1 ≤ #(i, j) ≤ nq , and i, j = 1, 2, ..., n, with i �= j and
(i, j) = (j, i).

qi Title size i. Number of vertices of title i in the initial configuration, (1 ≤ i ≤ nq).

qmin . Number of vertices of the smallest title in the initial configuration, (1 ≤ qmin ≤
n).

qmax . Number of vertices of the largest clique in the initial configuration, (1 ≤ qmax ≤
n).

〈k〉 〈k〉 =
∑n

1 ki
n

= 2m

n
,

where 〈k〉 is the average degree of an undirected network and ki is the degree
of a vertex i, that is the number of edges incident on the vertex i.

khubi khubi ≥ 〈k〉 + 2σ ,
are the degree values of the hubs, that is, vertices of very high degrees. σ is the
standard deviation of the degree distribution.

“Initial configuration” is related to the isolated cliques, and “final configuration” is related to the built “network of cliques”. The
indices are valid for each time window considered

F(α,β) = |Cα ∩ Cβ |
|Cα ∪ Cβ | = S(α,β)

Sα + Sβ − S(α,β)

(2)

IF(α,β) = I(α,β) × F(α,β) = (S(α,β))
2

nq × (Sα + Sβ − S(α,β))
(3)

In the Eqs. 1, 2 and 3, α and β represent the words in a word pair; Ci is the set of sen-
tences that contain the word i; and Sα , Sβ and S(α,β) are the number of sentences in which
the word α, word β and word pair (α, β), respectively, appear. nq is the total number of
sentences in the text. Thus, once IF index is calculated for all pairs of words, its semantic
network becomes weighted at the edges.
Considering that IFL is the minimum allowable value in the network for the IF index,

this filtering is performed by removing the edges with IF < IFL values; only edges with
IF > IFL remain in the network.
Critical Network. Critical networks were employed to investigate mechanisms inher-

ent to human language in oral speeches (Teixeira et al. 2010; Lima–Neto et al. 2018). A
value of IFL = IFc for which the network abruptly changes its connectivity exists. This
phenomenon can be verified with the average minimum path in Fig. 1. Figure 2 shows the
critical network for the (TVSNT) from scientific papers of Nature, w8,1 in t = 8.

Temporal networks

Brief history. The use of time is very important in systems analysis in which elements
connect. Within the scope of social and complex networks, previous works have been
interested in introducing temporal parameters in networks.
Doreian and Stokman (1997) applied models of evolution to study the development of

social structures. Barabâsi et al. (2002) highlighted dynamic and structural mechanisms
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Fig. 1 Behavior of the average minimum path taking into account the IFL for TVSNT of Nature for w8,1 in (a)
t = 7 and (b) t = 223

in a co-authorship on network and topologically characterized it over time; Li et al. (2007)
proposed a model of a scientific collaboration network to verify the scale-free pattern in
the weight distributions of the network edges over time. Tang et al. (2010) introduced the
concepts of paths and temporal distances and the small word phenomenon in a tempo-
ral graph based on the condition of high edge agglomeration and low average temporal
distance of nodes in networks of mobile agents and social and biological systems. In
2012, Nicosia et al. (2012) and Casteigts et al. (2012) formalized several concepts and

Fig. 2 Critical network for the Nature TVSNT, w8,1 in t = 8
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metrics employed in the study of dynamic networks to create the concept of the TVG,
which enables the modeling and analysis of networks that have edges and/or vertices that
vary over time. The TVG also enabled the integration of the vast collection of concepts,
formalisms and results obtained in previous works (Nicosia et al. 2012).
Amblard et al. (2011) investigated the co-authoring relationships and citations among

authors of scientific articles; Silva et al. (2012) analyzed the temporal evolution of brain
signals in neuron networks of free-acting rats; Cunha et al. (2013) investigated the mem-
ory effect in the time series of a network of titles in the journal Nature; Paranjape et al.
(2017) defined temporal network motifs as induced subgraphs on sequences of edges;
Holme and Saramäki (2012, 2013) introduced several applications, suggestions for algo-
rithms and specific metrics for networks that vary over time. Holme and Saramäki (2013)
discussed the optimal transport structure and relationship between the temporal length
and geometric length in a temporal network; Cunha et al. (2020) proposed a method to
analyze a TVG from a sliding time-window and build a time series of network indexes, and
Sousa et al. (2020) proposed a model named Preferential interaction, which reproduces
a weighted-free network of time-varying scale for systems of fixed number of vertices,
which can be applied to the investigation of electroencephalogram signal networks in
individuals.
TVG. Considering the formalization proposed by Nicosia et al. (2012); Casteigts et al.

(2012), a TVG is a static graph G = (V ,E) with temporal parameters (functions or sets):
presence function (ϒ), latency function (σ ) and lifetime (�). Thus, a TVG is the fivefold
shown in Eq. 4:

G = (V ,E,ϒ , σ ,�). (4)

In Eq. 4, V = {v1, v2, ..., vn} is the set of vertices and E = {e1, e2, ..., em} is the set
of edges of the system, where ek = (i, j), with i �= j and i, j = (1, 2, ..., n − 1, n). For
these sets, n = |V | and m = |E|. The time sets are presented as follows: � ⊂ N|� =
{t1, t2, t3, ..., t, ..., t(�−1), t�} represents the system lifetime, which is discrete in time. Each
element of � represents a date or time instant. The interval between the extreme dates is
the total time T = t� − t1 + 1. ϒ = E × � → {0, 1} is the presence function that guar-
antees the existence of a given edge at a given time t ∈ �; and σ is the latency function,
which represents the time required to form an edge.
Time sliding window function. The analysis of a TVG can be performed using the sliding

window function wτ ,s, where τ is the size of the time window and s represents the step
taken by the window in time (Cunha et al. 2020). Figure 3 shows examples of the use of
the function wτ ,s for a networks analysis.
Assuming the values of τ and s are constant and are arbitrated by the researcher, the set

of windows fits into the TVG is a fuction of τ , s and T, as shown in Eq. 5. In this equation,
nw is the number of total windows, i.e., number of networks to be analyzed.

wτ ,s(T) = {
G1,G2, ...,Gnw−1,Gnw}

,

nw =
⌊
T − (τ − s)

s

⌋

.
(5)

Information entropy

The formalism of information as an entropy measure was introduced by Claude Shannon
in 1945. According to Shannon theory, the information measure of a variable depends
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Fig. 3 Examples of time sliding window functions. a s < τ , data overlap exists. In (b), s = τ , and in (c) s > τ ,
no data overlap exists

only on its probability distribution (Shannon 1948). Consequently, the theory can be used
in several areas, such as biology, economics, and confined quantum systems (Mousavian
et al. 2016; Mishra and Ayyub 2019; Nascimento and Prudente 2018). The theory may
compose a methodological link that unites different areas (Zenil et al. 2016), including
statistical and thermodynamic physics, in which several recent works have shown some
importance for information entropy (Zurek 2018; Gao et al. 2019).
The mathematical concept of information considers that the information contained

in a message is associated with the number of possible values or states of this message
(Shannon 1948). For example, if the system has only one possible state (e.g., the degree of
vertices in a regular network), no information is obtained upon inspection. As the num-
ber of possible different states for a system increases, the amount of information in the
system increases, that is, the discovery of its real state facilitates further learning.
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The entropy is the expected value for the uncertainty of the random variableX (a system
state), which refers to a probability distribution, as shown in Eq. 6.

H(X) = −k
∑

i
pi log pi (6)

In Eq. 6, X is a random variable, pi is the probability of the state i for this variable (with
∑

i pi = 1), and k is a constant for which if arbitrated for k = log 2, the entropy value
is given in bits. The value of k will be employed. Each calculated entropy value has a
maximum value and an associated minimum value. When these limits are known, they
help to evaluate how much the real value deviates from these idealized situations.
In a probability distribution for the state of the random variable X, the minimal entropy

situation occurs when the uncertainty is minimal. As an example, when only one possi-
ble state for X exists, we are 100% certain about this state, so H(X) = 0. The maximum
entropy situation occurs when allN possible states for the variable have an equal probabil-
ity of occurrence, i.e., p = 1/N and H(X) = − ∑ 1

n log2(
1
N ) = log2N . Thus, the entropy

value for the random variable X of N possible states is within these limits, as shown in
Eq. 7.

0 ≤ H(X) ≤ log2N bits (7)

Method
Dataset, collection and treatment

The dataset is composed of the titles of articles published in the journals Nature and
Science from 1999 to 2008 (Pereira et al. 2011). These journals have high-impact factor
values and similar publication frequencies in the collected period1.
The words in these titles were treated according to the treatment rules, which were

proposed in Pereira et al. (2011) and organized in a way that each week of publications
(Journal number) corresponds to a text file, where each line corresponds to a title. The
network is then built from these files.

Building a TVSNT

The SNT is modeled for a TVG, where V is the set of different words and E is the set of
pairs of words in the same title; � is the collected period, which is given in weeks, since a
week is the minimum period of publication of the journals. For Nature, T = 514 weeks,
and for Science, T = 512 weeks. The presence function ϒ indicates if two words occur
in the same title at least once in a given instant. For this work, we will not use the latency
function σ , which is a constant.
The sliding time window wτ ,s, is defined initially as τ = 8 weeks and s = 1 week, i.e.,

w8,1. The network parameters that are discussed here will be calculated in each window.

Application information entropy in TVSNT

Entropy in titles Networks. According to (Cunha et al. 2020), two random variables can
be obtained from the process of titles or cliques network formation: the vertex and the
edge. The probabilities of the occurrences of the vertex i and the edge (i, j) are calculated
for each time window considered, according to Eq. 8 and Eq. 9, respectively. The time

1In the period collected, Science has 11798 titles and Nature has 30490 titles, published weekly.
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instant t corresponds to the number of the window.

pi(t) =
[
#(vi)
n0

]

t
, with

∑
pi(t) = 1 (8)

p(i,j)(t) =
[
#(i, j)
m0

]

t
, with

∑
p(i,j)(t) = 1 (9)

Equations 10 and 11 express the Shannon entropies for these distributions, whereHv(t)
andHe(t) represent the entropies of the vertices and edges, respectively, at the given time
t:

Hv(t) = −
n∑

i=1
pi(t) log2 pi(t) (10)

He(t) = −
∑

i�=j
p(i,j)(t) log2 p(i,j)(t) (11)

In order to improve the understanding about the calculation of information entropy in
TVSNT, we present in Fig. 4 an example of network of cliques and its formation process,
the associated probabilities, and the entropy values of vertices and edges. In Fig. 4a, we
show the cliques in the initial configuration, and in Fig. 4b, we present the network of
cliques built by juxtaposition and overlapping processes (Fadigas and Pereira 2013).
Limited values for entropy. The factors that contribute to the increase and reduction

of entropy in a system are highlighted here. The minimum entropy value is associated
with the variable’s maximum certainty. Two factors contribute strongly to this certainty:
(i) the minimum of possible states for the variable and (ii) the greater repetition of one or
some possible states for the variable.

Fig. 4 Example of a network of cliques in its formation process, the associated probabilities and the entropy
values of its vertices and edges. In (a) the cliques in the initial configuration. In (b) the network of cliques (final
configuration) built by juxtaposition and overlapping processes. In (c) initial values of properties and the
probabilities of vertices and edges. In (d) the entropy values of vertices and edges for the initial configuration
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On other hand, the maximum entropy is associated with the variable’s minimum cer-
tainty, i.e. with the maximum of possible of states for the variable, where that each state
has the lowest possible probability.
The limits shown in Eq. 7may not apply to the associated entropy from the construction

of cliques networks. In this section, the extremes are calculated based on the boundary
conditions for the formation of networks.
The following conditions were employed for the investigated journals2: the number

of cliques in the initial configuration nq, size of largest clique qmax, smallest clique size
qmin �= 0, and number of vertices n and number of vertices in initial configuration n0.
To calculate the limits, we will assume the existence of configurations that maximize

and minimize the entropy.
Step 1: We imagine that the initially empty cliques with n0 vertices are available to

distribute in them, where n0 ≥ n. Of n0 vertices, n is the number of vertices that are
necessarily different vertices.
Step 2: The n vertices in the nq cliques are distributed without vertex repetition on each

clique, where the number of vertices per clique qi do not exceed the maximum value qmax
and are not less than the minimum value qmin, i.e., qmin ≤ qi ≤ qmax.
This moment is referred to as Configuration 1. The distribution is performed in a way

that there is no repetition of vertices and edges, using Eq. 12. In this configuration, we
will have all different vertices and edges with the minimum number of edges. In the final
network, x cliques of size q and y cliques of size (q + 1) exist; thus,

q =
⌊

n
nq

⌋

y = n − qnq
x + y = nq
xq + y(q + 1) = n

(12)

Configuration 1 generates the highest vertex entropyHv max = log2 n because it guaran-
tees the disposition of all vertices without repetition and the lowest entropy for the edges
of the network once it guarantees the smallest number of edges.
The repetition of a variable also contributes to its reduction in entropy. In clique net-

works, this phenomenon does not occur for edges because the repetition of an edge
implies that the edge exists in more than one clique. Two vertices that compose the edge
are forced to be connected to all the other vertices of the clique, which causes a consid-
erable increase in the number of edges, that is, the possibility of an increased number of
states, and consequently, an increase in entropy.
We build Configuration 2:
Step 3: From Configuration 1, the remaining n0 − n repeated vertices are added, one by

one, with the maximum repetition of vertices for the first vertices added.
Step 4: If n0−n ≥ nq−1, a repeated vertex will exist in all cliques. After the distribution,

if (n0−n)− (nq−1) ≥ nq−1, the process continues, with the choice of repeating another
vertex in the cliques.
Step 5: The process is repeated until the remaining vertices are less than nq − 1, and

thus, they will be distributed as a single vertex repeated in the number of cliques that can
fit.

2Depending on the investigated system, the use of all of these conditions or the inclusion or replacement of the existing
condition may not be necessary.
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Fig. 5 Step by step of the calculation of the maximum and minimum limits for the entropy values of the
vertices and edges of the network of cliques in Fig. 4

Step 6: The value nq − 1 is subtracted from the vertices that have not been added until
this subtraction yields a number n′ ≤ nq − 1. Thus, the last vertex is repeatedly added
from clique to clique into n′ cliques.
Configuration 2 increases the probability that some vertices will reduce the entropy to

the smallest value possible while respecting the boundary conditions of the problem.
For the maximum edge entropy, the number of edges should be increased as much as

possible to avoiding their repetition. For this purpose,
Step 7: The appropriate distribution of vertices will be performed according to the ini-

tial conditions to obtain a configuration with x cliques of size qmax and y cliques of size
qmin, with the possibility of a clique with size qD and qmin < qD < qmax, which is referred
to as Initial Configuration 3.
Step 8: The repeated vertices n0−n that remain are separately added to cliques in order

to avoid repetition of edges in the cliques (Final Configuration 3).
This procedure increases the number of maximum cliques, which causes an increase in

the number of distinct edges and, consequently, their entropy.
Using Fig. 4 as a starting point, we summarize in Fig. 5 the process to calculate the

maximum and minimum limits for the entropy of vertices and edges.
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Case n < nq
For the TVG of this work, with w8,1, in every window n ≥ nq. For larger time windows,
n < nq may occur. In this case, some adjustments will be required to calculate the limits,
for example, inConfiguration 1, q = 0, q+1 = 1, y = n e x = nq−n. This case contradicts
the boundary condition that q = 0 < qmin. Thus, some n − n0 will need to be distributed
in cliques, in which each clique has the number of vertices q = qmin.

Results and discussion
Figure 6 shows the entropy values normalized by their extremes H ′ = H−Hmin

Hmax−Hmin
of the

vertices and edges of the two journals over time. The normalized entropy values eliminate
the effect of the size of the networks and allow a better comparison between the diversity
of the vocabulary of the titles used to build the semantic networks at different times.
The moments where entropy decreases from its maximum may indicate trends in the

journal’s vocabulary over time. The vertex entropy values are higher and vary substantially
less than the edges entropy values. This finding shows that windows with clique networks
have minimal edge overlap.
Moreover, in various intervals, Hv and He have opposite growth trends. We know that

an increasing He implies the generation of new edges, which is possible due to the incre-
ment in repeated vertices in the cliques, which causes Hv to decrease. In some of the
study periods, an opposite growth trend was observed between the journals for the edges
entropy standard: one journal reached a high entropy value and the other journal had a
low entropy value.
Notwithstanding the fact that entropy measures are sensitive to sample size, we use the

entire dataset collected in the study period. This approach enables a proper comparison of
the two journals, even though they have similar entropy values. Note that the real vertices
have entropy Hv ∼= log2 n in any time window of the journals. For edge entropy, these
values deviate from the corresponding maximum in certain periods. Figures 7 and 8 show
how entropies are correlated with their respective maximum and minimum values.
We note a strong correlation between the entropy of vertices and their maximum val-

ues, following the entropy of edges with their minimums for both journals. This suggests

Fig. 6 Entropies normalized by their maximum and minimum extremes for Nature and Science journals over
time (Cunha et al. 2020)
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Fig. 7 Maximum entropy values, as a function of the real values Hv and He for the journals Nature and
Science. The line shows the linear adjustment for the points and shows the difference between the
correlation of the vertex entropies and that of the edge entropies, α is the linear fit coefficient and ρ is
Pearson’s correlation coefficient

Fig. 8 Minimum entropy values, as a function of the real values Hv and He for the journals Nature and
Science. The line shows the linear adjustment for the points and shows the difference between the
correlation of the vertex entropies and that of the edge entropies, α is the linear fit coefficient and ρ is
Pearson’s correlation coefficient
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that, over time, the vocabulary of the journals maintained a high diversification for w8,1,
although for τ = T , the vocabulary is not that diversified.
The entropy values calculated here do not require the use of a null model (i.e., random

network) for comparison. The process of constructing Configurations 1, 2 and 3 is already
randomized. A network of cliques has high clustering, which means that a correspondent
random network does not exist since the clustering coefficient tends to zero (C → 0) in
random networks (Watts and Strogatz 1998).
It was found, for each time window, the critical network using the incidence-fidelity

index [11]. These networks allowed us to identify the most relevant vertices (i.e. words)
considering their connections. Figures 9 and 10 show the critical networks for Nature in
t = 223 (the highest H ′

e) and t = 7 (the lowest H ′
e) and the vertices considered hubs

(khubi ≥ 〈k〉 + 2σ ).
As in Teixeira et al. (2010), the TVSNT studied in this work presented a critical network

for IFc = IFL ≈ 10−3. We highlight, on the one hand, that in the critical network from a
network with high entropy, the hubs are poorly connected to each other, indicating greater
diversity of the vocabulary. On the other hand, in the critical network from a network

Fig. 9 General network and critical network for Nature in t = 223, with the highest H
′
e . Hubs

(khubi ≥ 〈k〉 + 2σ ) for networks are shown without (top line) and with (bottom line) the IFc = IFL ≈ 10−3
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Fig. 10 General network and critical network for Nature in t = 7, with the lowest H
′
e . Hubs (k

hub
i ≥ 〈k〉 + 2σ )

for networks are shown without (top line) and with (bottom line) the IFc = IFL ≈ 10−3

with low entropy, hubs are strongly connected to each other, indicating the robustness
and recurrence of vocabulary.
The increase in the entropymeasuremay be associated with the emergence of new ideas

represented by the diversity of the vocabulary and the connections between the words of
the titles used to build the semantic network; while the decrease in the entropy measure
may be associated with the robustness and consolidation of ideas and interests of authors
and editors of a journal in a given time window.

Conclusions
The results of this study show a strong correlation between the entropy values and their
respective maximum values, especially for vertices entropy. It is reasonable to say that it
is equivalent to calculate the maximum entropy to estimate the entropy.
Figure 6 shows that journals have a greater diversity of words than word pairs.
With the journal’s vocabulary in a window, the number of possible combinations for

word pairs is greater than that for repeating them in titles.
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When applying the IF index, we noticed that in the critical network, it is possible
to identify the main themes, and how they are linked via their vocabulary (specifically,
greater diversity of the vocabulary for network with high entropy and robustness and
recurrence of the vocabulary for network with low entropy).
The measurement of vocabulary diversity and the diversity of connections between

words in a semantic network of scientific article titles allows us to follow (i) the emer-
gence of new ideas over time, represented by the increase in vocabulary diversity of titles
or (ii) the robustness and consolidation of ideas and interests of authors and editors of a
journal in a given time frame.
The method for constructing clique semantic networks is coherent with previous works

with regard to the vocabulary diversity of high-impact scientific journals. The study of
vertices and edges entropy in clique networks can be combined with the emergence of
communities in these networks and the correlations with other indicators that are specific
to this type of network (e.g. reference diameter and fragmentation (Fadigas and Pereira
2013)).

Abbreviations
IF: Incidence-fidelity; SNT: Semantic network of titles; TVG: Time-varying graph; TVSNT: Time-varying semantic network of
titles

Acknowledgements
The authors thank the Federal Institute of Education, Science and Technology of Bahia, Barreiras; the Pro-Rectory for
Research, Graduate and Innovation (PRPGI - IFBA); and the Senai Cimatec-BA University Center for their financial support.

Author’s contributions
All authors contributed equally to this work. The author(s) read and approved the final manuscript.

Funding
This work also received financial support from National Counsel of Technological and Scientific Development — CNPq,
Brazil (grant number 305291/2018-1).

Availability of data andmaterials
The dataset can be easily found and collected on the Journals’ websites: https://www.nature.com/nature/articles and
https://science.sciencemag.org/content/by/year.

Competing interests
The authors declare that they have no competing interests.

Author details
1Programa de Modelagem Computacional, Centro Universitário Senai Cimatec, Av. Orlando Gomes, 1845, 41650-010
Salvador, Brasil. 2Departamento de Ensino, Instituto Federal da Bahia, R. Gileno de Sá Oliveira, 271 - Recanto dos Pássaros,
47808-006 Barreiras, Brasil. 3Universidade do Estado da Bahia, Rua Silveira Martins, 2555, Cabula, 41150-000 Salvador, Brasil.

Received: 26 March 2020 Accepted: 26 July 2020

References
Amblard F, Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2011) On the temporal analysis of scientific network

evolution. In: CASoN. pp 169–174. https://doi.org/10.1109/cason.2011.6085938
Andrade JC, Barreto RSFD, Cunha MV, Ribeiro NM, Pereira HBB (2019) Interdisciplinaridade e teoria de redes: rede

semântica de cliques baseada em ementas e rede de componentes curriculares. iSys-Revista Brasileira de Sistemas de
Informação 12(3):24–52

Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512
Barabâsi A-L, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific

collaborations. Physica A Stat Mech Appl 311(3):590–614
Brillouin L (2013) Science and Information Theory. Courier Corporation, North Chelmsford
Caldeira SMG, Lobão TCP, Andrade RFS, Neme A, Miranda JGV (2006) The network of concepts in written texts. Eur Phys J

B-Condens Matter Complex Syst 49(4):523–529
Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-varying graphs and dynamic networks. Int J Parallel

Emergent Distrib Syst 27(5):387–408
Cunha MV, Miranda JGV, Pereira HBB (2015) Incidência fidelidade aplicada a rede semântica de títulos. In: IV Brazilian

Workshop on Social Network Analysis and Mining (BraSNAM). CSBC, Recife. pp 1–12

https://www.nature.com/nature/articles
https://science.sciencemag.org/content/by/year
https://doi.org/10.1109/cason.2011.6085938


Cunha et al. Applied Network Science            (2020) 5:53 Page 17 of 17

Cunha MV, Rosa MG, Fadigas IS, Miranda JGV, Pereira HBB (2013) Redes de títulos de artigos científicos variáveis no
tempo. In: II Brazilian Workshop on Social Network Analysis and Mining (BraSNAM). CSBC, Porto Alegre. pp 194–205

Cunha MV, Santos CCR, Moret MA, Pereira HBB (2020) Shannon entropy in time–varying clique networks. In: H. Cherifi
JMEM, Gaito S, Rocha L (eds). International Conference on Complex Networks and Their Applications. Springer, Cham.
pp 507–518. Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational
Intelligence

Doreian P, Stokman F (1997) Evolution of Social Networks. Routledge, London
Fadigas IS, Pereira HBB (2013) A network approach based on cliques. Physica A Stat Mech Appl 392(10):2576–2587
Gao X, Gallicchio E, Roitberg AE (2019) The generalized boltzmann distribution is the only distribution in which the

gibbs-shannon entropy equals the thermodynamic entropy. J Chem Phys 151(3):034113
Grilo M, Fadigas IS, Miranda JGV, Cunha MV, Monteiro RLS, Pereira HBB (2017) Robustness in semantic networks based on

cliques. Physica A Stat Mech Appl 472:94–102
Henrique T, Fadigas IS, Rosa MG, Pereira HBB (2014) Mathematics education semantic networks. Soc Netw Anal Min

4(1):200
Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125
Holme P, Saramäki J (2013) Temporal Networks. Springer, Heidelberg
Ji L, Bing-Hong W, Wen-Xu W, Tao Z (2008) Network entropy based on topology configuration and its computation to

random networks. Chin Phys Lett 25(11):4177–4180
Li M, Wu J, Wang D, Zhou T, Di Z, Fan Y (2007) Evolving model of weighted networks inspired by scientific collaboration

networks. Physica A Stat Mech Appl 375(1):355–364
Lima–Neto JLA, Cunha MV, Pereira HBB (2018) Redes semânticas de discursos orais de membros de grupos de ajuda

mútua: Semantic networks of oral discourses of members of mutual aid groups. Obra Digital (14):51–66. https://doi.
org/10.25029/od.2017.177.14

Mishra S, Ayyub BM (2019) Shannon entropy for quantifying uncertainty and risk in economic disparity. Risk Anal
39(10):2160–2181

Mousavian Z, Kavousi K, Masoudi-Nejad A (2016) Information theory in systems biology. part i: Gene regulatory and
metabolic networks. In: Seminars in Cell & Developmental Biology. Elsevier. pp 3–13. https://doi.org/10.1016/j.
semcdb.2015.12.007

Nascimento JO, Pereira-Guizzo CS, Moreira DM, Monteiro RLS, Pereira HBB, Moret MA (2016) Redes sociais e complexas:
um modelo computacional para a investigação da pós-graduação brasileira em ensino de física. In: VII Encontro
Científico de Física Aplicada - Blucher Physics Proceedings. Editora Blucher, São Paulo. pp 110–114

Nascimento WS, Prudente FV (2018) Shannon entropy: A study of confined hydrogenic-like atoms. Chem Phys Lett
691:401–407

Newman ME (2001) Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys Rev E
64(1):016132

Nicosia V, Tang J, Musolesi M, Russo G, Mascolo C, Latora V (2012) Components in time-varying graphs. Chaos Interdiscip
J Nonlinear Sci 22(2):023101

Paranjape A, Benson AR, Leskovec J (2017) Motifs in temporal networks. In: Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining. ACM, Cambridge. pp 601–610

Pereira HBB, Fadigas IS, Monteiro RLS, Cordeiro AJA, Moret MA (2016) Density: A measure of the diversity of concepts
addressed in semantic networks. Physica A Stat Mech Appl 441:81–84

Pereira HBB, Fadigas IS, Senna V, Moret MA (2011) Semantic networks based on titles of scientific papers. Physica A Stat
Mech Appl 390(6):1192–1197

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(4):623–656
Silva BBM, Miranda JGV, Corso G, Copelli M, Vasconcelos N, Ribeiro S, Andrade RFS (2012) Statistical characterization of an

ensemble of functional neural networks. Eur Phys J B 392:85–358
Solé RV, Valverde S (2004) Information theory of complex networks: on evolution and architectural constraints. In:

E. Ben-Naim ZT, Frauenfelder H (eds). Complex Networks. Springer, Berlin. pp 189–207. Lecture Notes in Physics
Sousa RA, Lula-Rocha VNA, Toutain T, Rosário RS, Cambui ECB, Miranda JGV (2020) Preferential interaction networks: A

dynamic model for brain synchronization networks. Physica A Stat Mech Appl. In press
Tang J, Scellato S, Musolesi M, Mascolo C, Latora V (2010) Small-world behavior in time-varying graphs. Phys Rev E

81(5):055101
Teixeira GM, Aguiar MSF, Carvalho CF, Dantas DR, Cunha MV, Morais JHM, Pereira HBB, Miranda JGV (2010) Complex

semantic networks. Int J Mod Phys C 21(03):333–347
Viol A, Palhano-Fontes F, Onias H, de Araujo DB, Hövel P, Viswanathan GM (2019) Characterizing complex networks using

entropy-degree diagrams: unveiling changes in functional brain connectivity induced by ayahuasca. Entropy 21(2):128
Watts DJ, Strogatz SH (1998) Collective dynamics of’small-world’networks,. Nature 393(6684):409–10
Zenil H, Kiani NA, Tegnér J (2016) Methods of information theory and algorithmic complexity for network biology. In:

Seminars in Cell & Developmental Biology, vol. 51. pp 32–43. https://doi.org/10.1016/j.semcdb.2016.01.011
Zurek WH (2018) Complexity, Entropy and the Physics of Information. CRC Press, Boca Raton

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.25029/od.2017.177.14
https://doi.org/10.25029/od.2017.177.14
https://doi.org/10.1016/j.semcdb.2015.12.007
https://doi.org/10.1016/j.semcdb.2015.12.007
https://doi.org/10.1016/j.semcdb.2016.01.011

	Abstract
	Keywords

	Introduction
	Background
	Network of cliques
	IF index
	Temporal networks
	Information entropy

	Method
	Dataset, collection and treatment
	Building a TVSNT
	Application information entropy in TVSNT
	Case n < nq

	Results and discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Author's contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

