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the network. This work presents a comparative study of some representative
state-of-the-art methods for overlapping community detection from the perspective of
the structural properties of the communities identified by them. Experiments with
synthetic and real-world benchmark Ground-Truth networks show that, although the
methods are able to identify modular communities, they often miss many structural
properties of the communities, such as the number of nodes in the overlapping region
and the memberships of the nodes. This is a strong suggestion that a deeper
comprehension of the overlapping properties of the communities is needed for the
design of more efficient community detection methods.
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Introduction

The organization of nodes in communities, i.e., groups of nodes with several internal
connections and a few external connections, is one of the most prominent properties in
complex networks. Communities have been studied in many fields, like social sciences,
biology and economics, since it can reveal key functional roles of the elements in the
complex system modeled (Newman and Girvan 2004a; Fortunato 2010; Palla et al. 2005;
Ravasz et al. 2002).

A great number of works investigating communities in networks assume the division of
nodes as a partition problem, i.e., a node must belong to one and only one community,
thus, the most traditional methods for identifying communities are suitable for situations
where a node cannot be part of multiple groups simultaneously. Although the investiga-
tion of the disjoint community structure is fundamental for a better comprehension of the
networks, it is intuitive that, in many situations, elements can participate concomitantly

in several groups. For instance, in a social context, a particular person is deeply connected
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to her family, whilst also related to her coworkers and members of her sports club. From
the perspective of network science, the organization of nodes in different groups should
be considered by community detection methods and, in this sense, many authors have
been dedicating efforts in characterizing communities with overlapping nodes in addi-
tion to developing methods that are able to automatically identify them, despite it is still
an open task (Peel et al. 2017; Peixoto 2020; Jebabli et al. 2018; Harenberg et al. 2014).

The characterization and identification of community structure are intrinsically linked.
Any method for community detection must precisely assume how a group of nodes is
organized as a community and, even though intuitive and clear general concepts can be
adopted, there is no consensual definition in this sense (Peixoto 2020; Fortunato 2010;
Cherifi et al. 2019; Xie et al. 2011). More specifically, when the overlaps of nodes are
considered, the problem becomes even more challenging since, besides the internal con-
nection of the nodes in groups, assumptions on the way that the nodes are organized in
overlapping regions must be made (Fortunato 2010; Harenberg et al. 2014). One point
that is now clear is that there is algorithm that can generalize the problem of commu-
nity detection in networks and obtain a canonical solution (Schaub et al. 2017; Peel et
al. 2017; Leskovec et al. 2010). Moreover, the definition of what is a community is still
far from a consensus as more questions are raised about what properties of complex
systems a group of nodes should represent. Despite the difficulty in characterizing the
limits of density for the definition of what is a community, some recent works show
that structural properties of networks may show very low correlation with the meta-
data of the nodes, i.e, the functional communities presented in the network (Peel et al.
2017; Yang and Leskovec 2014; Harenberg et al. 2014; Peixoto 2020; Jebabli et al. 2018;
Kudelka et al. 2019). Thus, when a particular criterion is defined to be optimized as
an objective function by a community detection method, it can be considered as an
implicit assumption about the characterization of an overlapping community structure
(Schaub et al. 2017; Peel et al. 2017; Jebabli et al. 2018).

Particularly for the characterization of overlapping community structure, many defini-
tions of communities can be found in the literature. Lancichinetti et al. (2009) assume that
a community is a local structure that maximizes a fitness function controlled by a flexibil-
ity parameter. Rhouma and Romdhane (2014) propose the control of the embeddedness of
communities by a fuzzy coefficient. Some authors propose variations of Newman’s mod-
ularity (Newman 2006), which considers a group of nodes as a community if the fraction
of internal edges overcomes the expected number of edges in a random version of the net-
work with the same degree distribution, in order to adapt it to overlapping communities.
This is the case of Nicosia et al. (2009) and Shen (2013). The work of Palla et al. (2005)
also considers the identification of dense regions of the network in order to define com-
munities, but, in a different perspective, the authors assume that a community comprises
cliques of size k, which is a parameter of the method, connected by cliques of size (k — 1).

In order to classify and understand overlapping community methods, some works
found in the literature present surveys and comparative studies and can be used as good
references for studies in the area, such as the works of Orman et al. (2012), Xie et al.
(2011), Hric et al. (2014), Amelio and Pizzuti (2014), Dao et al. (2020), Harenberg et al.
(2014) and Jebabli et al. (2018). The present work also performs a comparative analysis of
some of representative state-of-the-art methods for overlapping community detection in
complex networks, however, the focus is not primarily on quality measures and hit rates
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of the methods as performed in some works (Xie et al. 2011; Hric et al. 2014; Dao et al.
2020).

In a different perspective, the experiments conducted in this work investigate the struc-
tural properties of the overlapping communities identified by the studied methods and
the similarity of patterns in the topology of the extracted communities with Ground-
Truth communities. The investigation of some structural properties of communities is
performed in some works in the literature (Clauset et al. 2004; Ravasz et al. 2002; Palla et
al. 2005; Leskovec et al. 2010), but more recently it has become clearer the importance of a
deep investigation in the topological properties of the community structure identified by
community detection (Peel et al. 2017; Jebabli et al. 2018; Orman et al. 2012; Kudelka et al.
2019). A similar approach was previously followed by Hric et al. (2014), but only consider-
ing the disjoint community structure. The authors test a basic hypothesis for community
detection methods: does the topological organization of the networks solely are able to
reveal the communities of a network? The authors conducted experiments to assess if
community detection methods are able to correctly classify the Ground-Truth commu-
nities (which they call metadata networks), disconsidering objective measures and verify
that, on most cases, there is a substantial difference between identified and metadata
groups. Harenberg et al. (2014) also investigate measures on the structure and the meta-
data of networks and verify that there is no clear relation between them. More recently,
Peel et al. (2017) have proven that there are theoretical and practical problems in trying
to uncover metadata from network structure, pointing out and discussing some reasons
for that.

The present work is an invited extension of Vieira et al. (2019), published in the Pro-
ceedings of the Conference on Complex Networks 2019 and its main objective is to
promote a wide comparison of some of the most successful methods for overlapping com-
munity detection found in the literature, particularly in works focusing the comparison
of methods (Xie et al. 2013; Hric et al. 2014; Amelio and Pizzuti 2014; Jebabli et al. 2018),
whose computational implementations are freely available in the web: Bigclam (Yang and
Leskovec 2013), CFinder (Palla et al. 2005), Copra (Gregory 2010), Demon (Coscia et al.
2014) and SLPA (Xie et al. 2011).

This work prioritizes the use of methods related in the literature as good meth-
ods for overlapping community detection (which is the case of SLPA and COPRA).
It also considers Demon and Bigclam due to their good results reported by Cos-
cia et al. (2014) and their ability in dealing with large scale networks, which is
very appropriate in real-world scenarios. CFinder was also considered, as it is one
of the first methods proposed in the literature for overlapping community detec-
tion, considered in almost all works regarding this subject. It is worth to mention
that after some preliminary experiments on the state-of-the-art methods for overlap-
ping community detection, we have selected a subset of five of them that presented
the lowest execution time and some state-of-the-art methods were not considered in
this work.

The study regards objective measures and relate these results with some structural
properties of the communities identified by the methods. Two main research questions
are raised and will be investigated in this work: I) Is there an overlapping community
detection method that stands out regarding from the others and can be adopted as a state-
of-the-art method? II) Does the quality measures frequently considered in the literature
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for the validation of overlapping community detection method are really appropriate and
consistent with the real community structure?

The main objective of this extension is the same as the original work, however with
more experiments to support it, considering a wider set of metrics and networks of dif-
ferent types. First, the overlapping community detection methods are compared regard-
ing objective functions, namely: Overlapping Normalized Mutual Information (ONMI)
(McDaid et al. 2011) based on Lancichinetti et al. (2009), Omega (Collins and Dent 1988),
Modularity (Shen 2013) and F1-score. Then, we investigate if the obtained results are a
consequence of the community structure or due to the sequence of steps of the commu-
nity detection methods. This dependency extends the findings of Peel et al. (2017), going
against a basic and consensual notion that the community structure must be encoded by
the connections of a network and must be identified from them, and suggesting that the
community structure may be a consequence of the working mechanisms of the meth-
ods. Thus, in many cases, the resulting community structure may lead to good results
regarding objective measures, but this result may be biased by the method, since simi-
lar assumptions about what is a modular community are made by the method and the
metrics. On the other hand, structural properties of the communities identified by the
methods may differ a lot from the organization of the elements in real-world contexts.
From the perspective of networks, the actual organization of nodes in communities will
be treated as the Ground-Truth of the networks in this work, even aware of the limita-
tions of this strategy, as pointed by Peel et al. (2017). The following structural properties
of the communities are investigated: number of memberships of the nodes, sizes of the
communities, number of nodes in the overlapping region and probability of edges in the
overlapping region.

The experiments are conducted on synthetic and real-world networks. The set of
synthetic networks are generated by the LFR benchmark (Lancichinetti et al. 2008), fre-
quently considered for the evaluation of overlapping community detection algorithms.
The set of real-world networks correspond to benchmark networks found in the litera-
ture, some of them with the metadata annotation of the association of the nodes to the
communities, treated as Ground-Truth in this work, and some of them without this infor-
mation. The investigation performed in this work allow us to verify that the methods
are able to extract highly modular communities from small and medium sized networks
when objective measures are considered, confirming the results obtained by other authors
in the literature (Nicosia et al. 2009; Gregory 2010; Xie et al. 2013). It is also observed
that most state-of-the-art methods are unable to identify the correct groups for nodes in
networks with Ground-Truth. Moreover, the identified communities are often very dis-
tinct from those observed for the Ground-Truth networks when structural properties are
considered. The investigation on synthetic and real-world networks, with and without
Ground-Truth information also suggest that the structural properties of the communities
obtained by the community detection methods are more related to the method itself and
its way of operation than the topological organization of the networks.

Overlapping community detection

Problem statement

The division of a network in communities is traditionally defined as a partition, where
each node belongs to a single community, or alternatively as a cover, where a node can
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participate in different groups at the same time, which is the approach explored in the
context of the present work.

The problem of overlapping community detection can be stated as follows. Consider a
network G(V, E) where V represents the set of nodes and E represents the set of edges,
such that » = |V| and m = |E|. In many contexts, it is appropriate to represent the
weights and the directions of the links between pairs of nodes, however, this adds a level of
complexity that can make the problem of community detection even harder to solve (For-
tunato 2010). Although some methods can be applied to directed and weighted networks,
such as SLPA (Xie et al. 2013), OSLOM (Lancichinetti et al. 2011) and Demon (Coscia
et al. 2014), it is usual to omit the weights and the directions of the links when com-
paring community structure methods (Fortunato 2010). This strategy is widely adopted
in many works that present community detection methods designed to unweighted and
undirected networks (Yang and Leskovec 2013; Palla et al. 2005; Gregory 2010). However,
the weights and directions are also disregarded in works that propose methods for com-
munity detection in directed and weighted networks, such as Demon (Coscia et al. 2014)
and SLPA (Xie et al. 2013) and works that focus on a comparison of methods, as the work
of (Hric et al. 2014), in order perform the comparison in a broad class of methods. In this
work, the edges are considered in the simplest form, undirected and unweighted, allowing
the investigation to be conducted in a wider set of methods and networks.

G can be represented by an adjacency matrix A, where an element A, = 1, if a node u
is connected to a node v and A, = 0, otherwise, and A,, = A,,. A community structure
in a network can be identified when there is a division of the network in groups with high
density of internal edges and a low density of external edges. An overlapping community
structure C can be defined as a cover of V in n, communities C = {C;,i = 1..n.} and
a node # can participate in one or more community C; with a belonging factor «,c; of
node % in community C; such that0 < o, <1, Vu € V,VC; € Cand Zlnc auc, =
1,Vu e V.

As well as in the partition problem, the sense of community becomes more evident
as the difference between intra and inter edges increases and there is not an universal
definition for a particular division of the network in communities, overlapped or not. The
next section discusses some of the definitions of community structure explored in the
literature and methods to identify them.

Characterization and identification of overlapping community structure

The organization of nodes in communities is traditionally seen as a partition of the net-
work, each node belongs to only one community. The identification of network structure
considering the definition of communities as a partition problem is very important to
reveal functional roles of nodes and provides a clear picture of the network and many
works in the literature present reviews and surveys of disjoint community detection (For-
tunato 2010; Radicchi et al. 2004; Schaeffer 2007). However, it is very intuitive that, in
practical contexts, communities may overlap and the same node can participate in several
groups.

When a method for community detection is proposed, the authors assume, implicitly
or explicitly, how in which extent a group of nodes can be organized as a community and,
even though intuitive and clear general concepts can be adopted, there is no consensual
definition in this sense (Fortunato 2010; Radicchi et al. 2004; Schaeffer 2007). When the
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community detection problem is considered from the perspective of overlapping nodes,
the problem becomes even more challenging since, besides the internal connection of the
nodes in groups, assumptions on the way that the nodes are organized in overlapping
regions must be made (Xie et al. 2011; Hric et al. 2014). Yang and Leskovec (2012) find
that, in real-world networks, overlapping community structure shows highly dense over-
lapping regions and observe that this is the opposite to the traditional view of community
structure. The authors point that, traditionally, communities emerge from the “strength
of weak ties" theory (Granovetter 1973), meaning that communities are dense clusters
connected by a small number of weak links. This is the basic assumption made by the
min-cut partition problem (Schaeffer 2007) and followed by the traditional method for
community detection proposed by Newman and Girvan (2004a), which works by remov-
ing bridges between dense groups. However, Yang and Leskovec argue that by making this
assumption, a random pair of nodes in an overlapping region tends to be disconnected,
since the overlapping region may be considered as a bridge between two communities.
Moreover, the consequence of this traditional perspective is that, the more communities
a pair of nodes share, the less likely is for them to be connected, which is unnatural and
unintuitive.

A large number of methods can be found in the literature aiming on the identifica-
tion of overlapping community structure and it is difficult to separate the methods for
community detection from the assumptions made by the authors about how a commu-
nity should be defined. Thus, when a particular criterion is defined to be optimized as an
objective function by a community detection method, it can be considered as an implicit
assumption about the characterization of an overlapping community structure.

Lancichinetti et al. (2009) define a local fitness function for communities based on the
density of nodes inside the groups using a parameter that controls the resolution of the
solution. The authors also propose an heuristic to optimize this quantity based on the
analysis of an histogram of the fitness function.

The work of Rhouma and Romdhane (2014) proposes an agglomerative method for
identifying overlapping nodes (DOCNet) which works by the defining of a core of a com-
munity and expanding it with fuzzy belonging coefficients that control the embeddedness
of the communities.

Newman and Girvan (2004b) is one of the most famous measures for the assessment
of community partition and considers a group of nodes as a community if the fraction
of internal edges overcomes the expected number of edges in a random version of the
network with the same degree distribution. Although it has been originally defined for
the partition problem, it has been adapted by some authors in order to be appropri-
ate for overlapping communities. This is the case of the works of Nicosia et al. (2009)
and Shen (2013) which also define algorithms to optimize their extended versions of
modularity.

Palla et al. (2005) assume an explicit definition of community structure in order pro-
pose a method for overlapping community detection based on the identification of dense
regions of the network, called CFinder. The authors relax the strongest definition of a
community — the clique — and assume that a community is a group of k-cliques con-
nected by (k — 1)—cliques, considering the overlapping regions as edges of a network in
which the communities are the nodes.
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Yang and Leskovec (2012) start from the observation that the overlapping regions
are heavily connected and make more explicit assumptions about the structural prop-
erties of overlapping communities. Then, the authors consider these assumptions to
define a model for overlapping community structure that simulates dense overlapping
regions. Then the authors propose a method for maximizing the likelihood of networks
to the model (Yang and Leskovec 2012) and a method to fit the community struc-
ture of an empirically observed network to the model following a Non-negative Matrix
Factorization approach is proposed (Bigclam) (Yang and Leskovec 2013).

Other works are based on the Label Propagation method (RAK) by Raghavan et al.
(2007) and consider a set of nodes as a community if they share the same label after a
propagation process, which can be defined considering different updating rules. Copra,
proposed by Gregory (2010) extends RAK Label Propagation by allowing the nodes to
propagate not only one label, but a set of labels with a value above a threshold v, which
controls the potential overlapping degree between the communities. Coscia et al. (2014)
propose a local-first approach (Demon) for the RAK Label Propagation that allows the
nodes to democratically vote in the communities surrounding them. Demon extracts the
ego network, i.e., the network built around an ego node, for each node of the network
and applies the RAK Label Propagation method, ignoring the ego node, which is, then,
evaluated by its neighbors. SLPA, proposed by Xie et al. (2013) and also known in the liter-
ature as Ganxis, adapts the propagation rule of RAK Label propagation in order to restrict
the updates only to nodes in the borders of the communities. According to the authors,
internal vertices do not need to be updated and this adaptation significantly reduces the
execution time of the method without compromising the quality of the results.

A game theory perspective is considered by Zhou et al. (2015) for the problem of over-
lapping communities in a work in which the authors propose a function to assess the
quality of the union of hierarchical groups and a greedy algorithm to identify overlap-
ping communities. In addition to the relationship of the elements, Xin et al. (2015) also
incorporate text analysis in order to better identify semantic overlapping communities in
social network contents. Li et al. (2018) also incorporate more information than just the
relationship of the nodes but, instead of the context of the elements, the authors consider
a priori information about which nodes must be in a certain community and which nodes
must not be in the same community.

Evaluation of overlapping community structure
It is a common sense in network since that a community is a group of nodes with many
internal edges and few external edges (Fortunato and Barthélemy 2007; Fortunato 2010;
Schaeffer 2007). However, community detection is still an open problem mainly due to
the difficulty in finding an universal definition of the limits of density that should be con-
sidered to characterize a community (Fortunato and Barthélemy 2007; Gregory 2010).
When the perspective of overlapping communities is considered, community detection is
an even more challenging problem since, beyond the characterization of the core of the
groups, the structure of the overlapping region must also be assumed (Yang and Leskovec
2012).

As discussed in “Characterization and identification of overlapping community struc-
ture” section, many methods can be found in the literature for overlapping community
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detection and each method assumes the definition of communities that the authors con-
sider more appropriate (Schaub et al. 2017; Cherifi et al. 2019). Moreover, when a method
for community detection is proposed, the authors frequently compare it to other meth-
ods and evaluate its performance considering some metrics and measure, which can be
directly related to the method or not (Yang and Leskovec 2013; Nicosia et al. 2009; Xie et
al. 2013).

Many metrics have been proposed in the literature in order to evaluate the quality
of community detection methods by assessing the community structure, overlapping or
non-overlapping, identified by them (Dao et al. 2020). One of the most accepted measures
for the evaluation of disjoint community structure in networks is Newman’s modularity
(Newman 2006). Nicosia et al. (2009) propose a more general definition of modularity in
order to deal with overlapping community structures in directed networks. The authors
consider a term f,,,),c; that can be defined as a function to weight the belonging of the
nodes # and v to community C; and define the overlapping modularity as

o 1 ﬁout ,k"”tﬁ”‘ _ki”
QNtcosta — p Z Z |:,3(u,v),Ci Ay — (uy),Ci"u Fuy),C"v , 1)

m
C;eCu,veV

where k" and k%% are, respectively, the in-degree and the out-degree of a node u. The
belonging coefficient 8 makes the modularity definition as general as possible, since it
can be defined from any appropriate function of that relates the participation of # and v in
Ci, such as a multiplication. Thus, the definition of an aggregation function for the coef-
ficients B is a key aspect of the extended modularity proposed by Nicosia et al.. Nicosia
et al. (2009) use their extended modularity in order to evaluate a community detection
method proposed by them and, as stated by the authors, after testing several different
functions, the best results were obtained with a logistic function with a linear scaling.
The same function proposed by Nicosia et al. for the definition of 8 is also considered by
Gregory (2010).

A simpler extension of the modularity for overlapping community structure is pro-
posed by Shen (2013). It relaxes the fact that a node can belong to only one community
and defines a more flexible factor oy, c;, that denotes how much a node u belongs to the

community C;.

A . kuk,
Oshen _ " 3 (Am, — Zum) 0y, C,0y,C;- ()

CieC uv

The factor «,,c; can be simply defined as the weight of the contribution of u to C;, which
is equal to the weights of contributions of # in any community that it participates.
Lancichinetti et al. (2009) propose a variation of the Normalized Mutual Information
(NMI) (Danon et al. 2005), a measure that assesses the similarity between two partitions
based on the information mutually contained on them, in order to adapt it to overlapping
community structures. Given two sets of overlapping communities, McDaid et al. (2011)
identified that the variation of the NMI proposed by Lancichinetti et al. overestimates the
similarity of communities in some particular situations when all the communities of one
cover have a perfect match in the other cover, regardless of the number of its communi-
ties. Thus, McDaid et al. propose a different normalization of the NMI, which they call
Overlapping Normalized Mutual Information (ONMI), considered in this work. Overlap-
ping adaptations of the NMI are frequently used in many works in the literature regarding
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overlapping communities, such as Gregory (2010), Yang and Leskovec (2013) and Coscia
et al. (2014). In this work, we consider the Overlapping Normalized Mutual Information
proposed and implemented by McDaid et al., based on the definition of Lancichinetti et
al. (2009).

Another quality measure for overlapping community structure frequently considered
in the literature is Omega index (Collins and Dent 1988), an adaptation of the Rand
index, defined for partition problem, which assesses, for each pair of nodes, the ratio of
communities both are correctly placed simultaneously.

Considering the evaluation of the communities identified by the methods, a very com-
mon measure considered is F1-score, that can be interpreted as a weighted average of the
precision and recall. As traditionally used for more general data classification, the preci-
sion can be viewed as the ability of a method in correctly classify some items and recall
can be interpreted as the ability of the method in correctly identify nodes regarding a
class of interest. Many definitions of what is a class of interest can be adopted, from the
Ground-Truth communities to the nodes in the overlapping region.

Two significant difficulties when assessing a method for community detection are the
reduced transparency in the results obtained by the authors when publishing their meth-
ods and the lack of a test bed for the methods. For instance, in Yang and Leskovec (2013),
the quality of the methods are not presented as absolute values, but relatively to other
competing algorithms and in Palla et al. (2005), only some structural properties of the
communities are presented for a small set of networks. In Gregory (2011), the method
is mostly evaluated with different parameterizations in the experiments and in Coscia
et al. (2014), the synthetic networks are much less mixed than other synthetic networks
explored in the literature.

Moreover, each evaluation measure captures an aspect of the community structure but
inevitably misses many other, limiting the understanding of the methods and posing seri-
ous risks to their validation. For this reason, when evaluating an overlapping community
detection method, it is very important to consider a wide set of networks, considering
different sources and features. Many works consider real-world networks, even accepting
that it is difficult to control and understand their properties. In this sense, the use of syn-
thetic networks is a useful strategy, since it allows a more controlled environment. The
LER synthetic benchmark (Lancichinetti et al. 2008) have been widely used in the litera-
ture, since it generates networks with overlapping communities, allowing the definition
of a set of parameters of the topology of the generated networks. In the end, it is impor-
tant to be aware that many definitions of community structure can be considered and any
benchmark network only cover some of them. For instance, it is known by now that real-
world overlapping communities exhibit the property of dense overlapping regions (Yang
and Leskovec 2012), which is not observed in the networks generated by the LFR bench-
mark. In this sense, Chykhradze et al. (2014) proposed a benchmark capable of generating
networks with overlapping community structure that consider this property.

The evaluation of overlapping community structure can be considered a even more
challenging task if we consider some fundamental aspects of the community detection
problem. First, Yang and Leskovec (2012) point that it is difficult to obtain networks with
Ground-Truth community structure and, even when they are possible to obtain, comprise
a large number of nodes and edges, being hard to evaluate, due to the lack of scalable algo-
rithms. Moreover, there is not a best and universal metric that is able to properly evaluate
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community structure, since each one assume a different view of what a community should
look like (Almeida et al. 2011; Jebabli et al. 2018; Harenberg et al. 2014). The work of Yang
and Leskovec (2014) discusses that the actual functional communities may be different
from the structural communities and Harenberg et al. (2014) empirically identifies that
a clear relation between the quality of structural and functional communities can not be
observed. In a more recent work, Peel et al. (2017) show that the metadata of the elements
in a networked system are not the same as what is frequently assumed as the Ground-
Truth of the communities and no algorithm can solve an general community detection
problem.

Despite the many issues in the definition of communities and methods to identify them,
community detection remains a very valuable tool to reveal important information about
the organization of elements in complex systems (Peel et al. 2017). In this sense, many
works have being emphasizing the importance of evaluating the structural properties of
the communities, in addition of objective assessment of the division of nodes, in order
to better evaluate the community detection methods and understand the organization of
nodes (Leskovec et al. 2010; Harenberg et al. 2014; Jebabli et al. 2018; Yang and Leskovec
2014; Orman et al. 2012). This work conducts experiments, presented in the next section,
to evaluate the properties of the community structure identified by community detection
methods and enhance the understanding of the division of nodes in overlapping groups.

Experiments and discussion

In this work, we perform a broad comparison of some of the most successful methods
for overlapping community detection reported in the literature. This section describes
the results obtained by a set of experiments on synthetic and real-world networks in
order to assess the quality of the methods considering some objective quality metrics
frequently used to validate their performance and relate the values obtained with some
structural properties observed for the communities identified. The main idea is to inves-
tigate whether the quality of the methods, measured from an objective perspective, can
be somehow explained by the topology of the resulting networks and the operating mode
of the methods.

Experimental setup
All the experiments were performed in the same computational environment: an Intel
Core i9-9900K processor with 32Gb RAM running an Ubuntu 18.04 OS.

All the methods considered in this work were executed considering the code made
available by the authors in the respective original works. Although it is interesting
to investigate some variation on the parameters, due to the requirement of delim-
iting a scope for this work, it was necessary to define an arbitrary set of parame-
ters for the considered methods. In an attempt to get the best possible results, the
methods were parameterized as suggested by the authors, as follows: CFinder (Palla
et al. 2005) (size of k-cliques k = 4), Bigclam (Yang and Leskovec 2013) (mini-

mum number of communities m¢ = 5, maximum number of communities x¢c =
100, number of trials nc = 10), Demon (Coscia et al. 2014) (merging threshold
€ = 0.3, minimum community size mc = 3), COPRA (Gregory 2010) (maximum

memberships of nodes v = 8) and SLPA (Xie et al. 2011) (propagation threshold
r = 0.45).
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It is important to mention that the parameterization of the methods is a fundamental
step in the execution of community detection methods, since different parameters may
lead to very different results. Moreover, different measures may reveal distinct properties
of the methods and the networks. Each work that presents a community detection method
considers a set of measures for the evaluation of the methods and a set of parameters,
that may differ from those suggested by the authors. Thus, the experimental setup defined
in this work can be distinct to those presented by the works in which the methods are
presented and a direct comparison between the results can be limited.

Experiments on synthetic networks

In order to define the experiments on synthetic networks, we consider the LFR bench-
mark (Lancichinetti et al. 2008). In this work, we defined a standard set of parameters
which we considered as a base for the experiments, as suggested by the authors (Lanci-
chinetti et al. 2009). The parameters are set as follows: the number of nodes is # = 1000;
the average degree of the nodes is k = 20; the maximum degree is ky,zx = 50; the mini-
mum and maximum sizes of communities are ¢,;;; = 20 and ¢4, = 100 respectively; the
nodes degrees and community sizes are governed by power-laws, with exponents 71 = —2
and tp = —1; the mixing parameter is © = 0.4; the number of memberships of the over-
lapping nodes is O, = 2; the number of overlapping nodes is % = 0.2. In order to
investigate the behavior of the methods in networks with different parameters, we defined
four sets of synthetic networks, each one obtained by the variation of a particular param-
eter: u varies from 0.1 to 0.8 with steps of 0.1; # varies from 1000 to 10000 with steps of
1000; Oy, varies from 1 to 8 with steps of 1; % varies from 0.1 to 0.6 with steps of 0.1. For
each set of parameters, ten instantiations were generated by the LFR benchmark.

First, Fig. 1 shows the average execution time of the methods considering a variation
of the number of nodes from 1000 to 10000. It is important to notice that this work
only consider high performance methods, able to execute in a reasonable time. The LFR
benchmark generates random networks. Thus, the number of edges may suffer from
fluctuations, which can make it difficult to evaluate the computational efficiency of the
methods in the small and medium networks considered in this work.

Quality measures on synthetic networks

After the application of the overlapping community detection methods on all the gener-
ated networks, the resulting community structures were investigated regarding some of
the objective measures most frequently considered in the literature in order to assess the
quality of the methods and validate them. The main idea is to obtain quality measures
in a very similar fashion as mostly found in other works to enrich the discussion on the
community structure.

We investigated the following quality measures frequently considered by other authors
in order to evaluate and validate community detection methods: Overlapping Normal-
ized Mutual Information (ONMI), Omega index, Modularity and F1-score. For the sake
of simplicity, Modularity refers to the overlapping modularity proposed by Shen (2013)
(Eq. 2), which is referred by Q for the remainder of this work. F1-score assesses the ability
of a method to identify the set of nodes in the overlapping regions. Each result plotted in
the figures represents the average of the results observed for the ten instantiations of each

parameter set.
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Fig. 1 Real-world networks considered in this work

Considering the experimental setup described in the beginning of this section, four
parameters were varied (u, n, Oy, and O,) and four objective measures were assessed
(ONMI, Omega, Modularity and F1-score) for the community structure identified by
five methods (Bigclam, CFinder, Copra, Demon and SLPA). Therefore, a large amount of
results were generated and, in order to preserve the organization and readability of the
work, this section only reports the most remarkable and significant observations, together
with general conclusions about taken from the experiments. A more detailed descrip-
tion of the experiments and a complete report of the figures obtained are exhibited in
Appendix A.

Figure 2 presents the quality measures (ONMI, Omega, Modularity and F1-score)
observed for the community structure obtained by the considered methods for the LFR
benchmark networks with the basic parameter set and the number of memberships vary-
ing from O,, = 1 to O,, = 8 and illustrates well the general discussion in this section (for
more detailed observations, please refer to Appendix A).

First, a typical behavior that can be observed is that Copra performs relatively well,
overcoming the other methods, when the parameters sets generate networks with a very
well defined community structure, specially when the network comprises disjoint com-
munities (v = 0.1, O, = 1, O, = 100). The same performance is observed when the
number of nodes in the network is greater than 2000. However, more mixed communi-
ties (u > 0.3) or more overlapped communities (O,, > 2 or O, > 200) lead to very
poor results of the method. Copra is based on the Label Propagation method of Ragha-
van et al. (2007) and requires the definition of a parameter v that controls the potential
overlapping degree between the communities and taking v = 1 considers the problem as
a disjoint community detection. Gregory observes that more modular communities are
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found as v varies from 1 to 9 in large scale networks (with more than 5000 nodes). How-
ever, the quality of the community structure does not significantly increases from v = 8
to v = 9 and, for this reason, in a more general case, the author recommends v = 8, which
is the parameter considered in this work. In the original paper (Gregory 2010), the author
observes a significant reduction in the performance of Copra regarding ONMI, but with
different parameters from those observed in this work (O, > 600). One of the possible
reasons for this is the difference in the experimental setup considered in this work and in
Gregory (2010). In Gregory (2010), the author considers ¢ = 0.1 or & = 0.3, but in this
work 4 = 0.4. Although the author defines a basic parameter set, considered for many
experiments in the original work, and recommends v = 8, for these experiments, particu-
larly, the author considers v = 1 and v = 4. Such parameterization, reducing the potential
degree of overlapping of the communities, could disfavor the identification of overlap-
ping nodes and consider the overlapping regions as separate communities, dealing with
the problem from the perspective of disjoint communities, even though benefiting ONMI
values. This can be observed not only regarding ONMI, but Omega, that also considers
the number of global hits or Modularity, which favors the identification of dense regions.

Even showing a typically worse performance than the other methods, the quality val-
ues observed for SLPA can be considered competitive, specially in experiments that do
not investigate the variation of parameters regarding the overlapping structure of the
communities (1« and #) and measures that do not consider the nodes in the overlapping
region (ONMI, Omega and Modularity). On the other hand, the F1-score for the com-
munities identified by SLPA, which evaluates the quantity of nodes in the overlapping
region correctly guessed by the method, shows very poor results in all of the experiments
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performed. When looking closer to the communities identified by SLPA, we can see that
the method places few nodes in the overlapping region, which is illustrated and more
discussed in “Structural properties of communities on synthetic networks” section. As
observed, and previously reported, for Copra, SLPA also solves the community detection
problem as a partition problem and its use for overlapping structures should be made
carefully. SLPA also extends the Label Propagation Method of Raghavan et al. (2007), but
it limits the number of updates only in the borders of communities, in order to improve
the execution time of the method. This strategy actually improves the execution time and
allows the method to identify communities with a reasonable performance, however, in
the work where SLPA is presented (Xie et al. 2011), the authors only analyze it with met-
rics that does not evaluate the nodes in the overlapping region, being unable to identify
this drawback of the method with overlapping communities.

In all experiments performed for the evaluation of objective measures, Bigclam shows
clear patterns and the performance of the method is proportional to the variation of the
parameters. Despite the fact that all the methods are very sensitive to definition of their
parameters, this is particularly emphasized in Bigclam. Bigclam works with the definition
of a network model that simulates an overlapping community structure and the fitting of
this model to an empirically observed network. In order to do this, the maximum num-
ber of communities (maxc) must be set for the execution of the method. By default, the
method considers maxc = 100, which clearly underestimates the number of communi-
ties in the LFR networks, specially when the number of nodes is increased to n > 2000
for the LER networks. Of course, we were aware of this before the execution and we had
the opportunity to set maxc to a higher and more appropriate value. However, this is a
very difficult task to be performed properly, specially considering the extensive batch of
executions performed in this work. Moreover, any efforts in this sense would make the
comparison of methods unfair, since it would be virtually impossible to place all the meth-
ods in equal conditions. For instance, if we decided to take investigate a more appropriate
parameter for maxc in Bigclam, we should proceed similarly for Copra and the choice of
v. When the basic number of nodes is considered (n = 1000 nodes), Bigclam presents
very competitive results, being able to identify relatively modular communities and guess
the correct communities of the nodes.

Demon is also based on the Label Propagation Method of Raghavan, Albert and
Kumara, as well as SLPA and Copra, and it is interesting to notice that even though the
three methods are based on the same idea, their behaviors are remarkably different when
comparing the results of the objective quality measures. As opposed to Copra (which typ-
ically shows a drastic performance reduction when the communities are worse defined)
and SLPA (which shows competitive results for global measures as ONMI and Omega but
poor results for F1-score), the results of Demon are very reliable and, in spite of not pre-
senting outstanding quality results, follow clear patterns for the measures, which can be
considered a positive feature of the method.

Structural properties of communities on synthetic networks

Currently, many works show that community structure and community detection meth-
ods can only be understood if the structural properties of the communities are inves-
tigated (Jebabli et al. 2018; Yang and Leskovec 2014; Harenberg et al. 2014; Kudelka et
al. 2019), as discussed in “Introduction” One of the main objectives of this work is to
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investigate if the community structures identified by the methods for overlapping com-
munity detection arise from the connections embedded in the network or if they are a
mere consequence of the assumptions that the methods make about what is a community
structure and the sequence of steps implemented by the methods to obtain this struc-
ture. Frequently, when a community detection method is proposed, the authors rely on
traditional quality measures, such as those explored in “Quality measures on synthetic
networks” sections, in order to compare the proposed method to others in the literature
and validate it. However, the resulting community structure may provide good results
for quality measures, even missing important properties of the community structure that
are not captured by them. This section investigates the structural properties of synthetic
networks with known overlapping community structure, treated as Ground-Truth, and
compare them to the community structure extracted by the methods studied in this work.
The experimental setup comprises the synthetic networks generated by the LFR bench-
mark with the same basic parameter set and variations of the mixing parameter p, number
of nodes #, maximum membership of nodes O,, and number of nodes in the overlapping
region O, as described in the beginning of this section. The following structural prop-
erties of the communities are investigated: number of memberships of the nodes, sizes
of the communities, number of nodes in the overlapping region and probability of edges
between two nodes in function of the number of communities they share. A huge amount
of results and plots were generated, since each structural property for each parameter
variation and each method was tested. This section discusses the outstanding and more
general results from the experiments, in order to build a solid understanding of the meth-
ods and the community structure. A more detailed and complete presentation of the
results, along with specific discussion are displayed on Appendix B.

The structures of the Ground-Truth networks are sensitive to the variations of param-
eters in all experimented scenarios (with less intensity when pu is varied). None of the
methods considered in this work are able to perfectly identify communities that capture
the shapes and the variations of the curves observed in the Ground-Truth networks. The
complex nature of the community structure of the Ground-Truth networks is evident
when we analyze the overlapping size, i.e., the number of nodes in the overlapping regions,
since it is not a fixed parameter in the LFR benchmark. In this sense, more rich and
revealing conclusions can be made in this experiment. Figure 3 presents the Complemen-
tary Cumulative Distribute Function (CCDF) of the overlapping size of the communities
identified by the considered methods when the maximum number of memberships
(parameter O,,) is varied. Even taking into account the limitation of the experiment, we
believe that Fig. 3 summarizes well the ability of the methods in identifying the overlap-
ping properties of the communities and can be considered to motivate most comments
and discussions performed in this section in this sense (for a more detailed version of the
results, please refer to Appendix B).

In this scenario, all methods overestimate the number of memberships, but most of
them capture the order of magnitude. However, even though the methods identify nodes
as part of multiple communities, all methods underestimates, in many degrees of magni-
tude, the probability of occurrence of overlapping nodes. Copra and SLPA place all nodes
in a single community for networks, independent of the maximum number of member-
ships considered, and a plot can not be obtained on most cases. This behavior for Copra
ans SLPA persists with the variation of other parameters and the methods do not capture
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the belonging of nodes to more than one community with many combination of param-
eters, which corroborates with the observation of poor F1-score for SLPA and Copra, as
reported in “Quality measures on synthetic networks” section and confirms that these
methods treat the division of the network in communities as a partition problem. Still
considering the memberships, for Bigclam, CFinder and Demon the curves are highly
overlapped, which suggests that the methods are not sensitive to changes in the overlap-
ping region. Specifically, when investigating the variation of parameters that control the
overlapping of nodes (O,, and Oy,), the curves observed for Bigclam, CFinder and Demon
are almost coincident, meaning that the presence of nodes in the overlapping region is
irrelevant to these methods and suggesting that, in this experimental setup, their suit-
ability to overlapping community detection may be limited. This is a strong suggestion
that the identified community structure does not reflect the Ground-Truth community
structure, but a consequence of the way that the methods operate.

The distribution of the sizes of communities is the most consolidated and commonly
investigated structural property of communities, frequently considered in the study of
community detection methods (Schaeffer 2007; Fortunato 2010; Orman et al. 2012), less
related to the overlapping characteristics of the networks than the other aspects consid-
ered in this study. In order to investigate this property, Fig. 4 shows the community size
distribution observed for the synthetic networks when the number of nodes (parameter
n) is varied.

In this work, the minimum and the maximum community sizes are fixed in the basic
parameter set of the LFR benchmark. Two main remarkable results can be noticed regard-
ing the sizes of the communities identified by the methods for the LER networks. First,
almost all shapes of curves follow a very clear tendency, distinct from those observed for
the Ground-Truth networks, that resemble much more a signature of the methods than
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a property of the communities, even with small variations in scale. Second, the meth-
ods are able to identify community structures with up to about 10? nodes, which is the
maximum size of communities set for the LFR benchmark. A particular behavior can be
observed for Copra, Demon and SLPA, which are able to identify communities with up to
2 x 102 nodes when 7 = 1000, but with 10? nodes with n > 1000, suggesting that, as the
networks become larger, the community structure becomes more clear and the methods
are more prone to identify them. As this experiment allows us to investigate the meth-
ods regarding structural properties not necessarily related to the overlapping nature of
the networks, but to their ability in identifying modular structures, it is worthy noticing
that some particularities of the methods may directly affect the identified structures, as
discussed in Appendix B.

As discussed in “Overlapping community detection” section, Yang and Leskovec (2012)
observed an important property in the structure of real-world networks with Ground-
Truth communities that is usually neglected by community detection methods: the region
of the network where communities overlap tend to be denser than the rest of the network.
Moreover, there is a positive correlation between the number of shared communities of a
pair of nodes and their probability of being connected, i.e. a pair of nodes that share two
communities are more likely to be connected than a pair of nodes that share one commu-
nity, a pair of nodes that share three communities are more likely to be connected than
a pair of nodes that share two communities, and so on. Considering the LFR synthetic
networks, we investigate the findings of Yang and Leskovec in two different perspectives:
whether this dense overlapping regions actually exist in the synthetic networks generated
by LER and whether the methods are able to identify dense overlapping regions.

Figure 5 presents the probability of occurrence of an edge between a random pair of
nodes as a function of the number of communities that they participate concomitantly
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and illustrate well the following discussion (for a more detailed version of the results
obtained in this experiment, please refer to Appendix B).

In this sense, first it is important to observe that the increasing in edge probabil-
ity as a function of shared communities in Ground-Truth networks is not a universal
behavior. The edge probability usually increases when a random pair of nodes shares
one community, as expected even in disjoint communities, however, when the num-
ber of shared communities is increased, the edge probability does not increase in
Ground-Truth communities (with few exceptions observed for some particular exper-
iments and parameter sets). This indicates a clear limitation in the LFR benchmark,
which is able to generate networks that simulate some structural properties of disjoint
communities, but fail in reproducing an important feature of overlapping communi-
ties. From the studied methods, Bigclam, Demon and CFinder are those that better
capture dense overlapping regions, even though it is not an universal behavior and
only occurs in some scenarios. Copra and SLPA do not identify substantial overlapping
regions in most experiments and the analysis of edge probability can not be made. Due
to the limitation of LFR benchmark in reproducing communities with dense overlap-
ping regions, it is fundamental to investigate the ability of the methods in real-world
networks.

It is important to mention that, as reported on “Introduction” section, this work only
considers a subset of the state-the-art-methods, which presented low execution time after
some preliminary experiments. However, we believe that the subset of methods consid-
ered in this work are a good representation for the state-of-the-art, since the preliminary
results did not affect the observations discussed from the experiments reported in this

section.
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Experiments on real-world networks

In order to investigate the structural properties of communities from real world sce-
narios, two sets of networks were considered: a set of benchmark networks, frequently
explored for the evaluation of community detection methods and sampled Ground-Truth
networks.

As discussed in the “Introduction” section, many authors show that the evaluation of
community detection method is a hard task, since a definition of what is a commu-
nity is not clear (Schaub et al. 2017; Jebabli et al. 2018; Almeida et al. 2011). Yang and
Leskovec (2012) state that, traditionally, works that aim in studying overlapping com-
munities lack of reliable Ground-Truth, what makes it even more difficult to evaluate
overlapping community structure in networks and, later, the authors identified that func-
tional communities may be different than structural communities (Yang and Leskovec
2014), what is corroborated by other authors, like Harenberg et al. (2014). More recently,
Peel et al. (2017) have demonstrated that treating metadata as the Ground-Truth commu-
nities may induce to several problems, but enphasize the importance of the investigation
of the community structure found in networks in order to better understand complex
networked systems.

Some metadata about communities in networks, treated in this work as Ground-Truth
may even be found in the literature, but since they are very large (frequently with millions
of nodes), it is unpractical to consider them to evaluate community detecting methods.
Thus, a sampling strategy was adopted in this work for Ground-Truth networks due to
the impossibility of the methods in dealing with their complete versions, with millions
of nodes. A variation of the sampling strategy proposed by Yang and Leskovec (2012) for
Ground-Truth networks is adopted. The original strategy randomly chooses a seed node
u from the network and identifies all the communities at which u participates. Then, it
separates all the nodes from these communities and determines the induced subgraph
considering these nodes. In this work, we do not select the seed node randomly. Instead,
we first identify the node which participate in most communities and define it as the
seed node. By doing this, we expect to obtain a sample network with denser overlapping
regions and closer to a real world scenario.

The set of real-world networks investigated is composed of five benchmark networks
and four sampled networks with Ground-Truth communities. The networks are pre-
sented in Table 1 with their number of nodes n, number of edges m and the type
(benchmark or sampled).

Quality measures of real-world networks
Table 2 shows some results regarding objective measures of the communities extracted
by the explored methods on real-world networks. As in the experiments with synthetic
networks, the overlapping modularity Q considered implements the extension proposed
by (Shen 2013) (Equation 2). The Overlapping Normalized Mutual Information (ONMI)
(McDaid et al. 2011) (based on Lancichinetti et al. 2009) is presented only for networks
with Ground-Truth information. The execution time for each method and each network
is also presented.

First, it is possible to observe from Table 2 that, for most Ground-Truth networks, the
methods were able to execute in a reasonable time, allowing them to be used in real world
small and middle sized applications. For some benchmark networks, CFinder and Demon
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Table 1 Real-world network considered in this work

Network n m Type
CA-GrQc! 5242 14496 Benchmark
CA-HepPh' 12008 118521 Benchmark
Cit-HepTh' 27770 352324 Benchmark
Email? 1133 5451 Benchmark
Keys? 10680 24319 Benchmark
Amazon' 10308 21575 Sampled
DBLP! 7515 31784 Sampled
Live Journal' 5843 12543 Sampled
Youtube! 6792 28177 Sampled

lDownIoaded from: http://snap.stanford.edu/data/
Downloaded from: http://www-personal.umich.edu/~mejn/netdata/

presented a high execution time, making them prohibitive to be considered in real time
applications. Bigclam and SLPA, specially, presented consistent results, executing almost
all the networks in a short time. For slightly larger networks the methods start to show
a high execution time and some considerations must be done. All the methods shown a
high execution time for CitHepTh (with ~ 27k nodes and &~ 352k edges). It is important
to highlight that CFinder was unable to run CitHepTh and CAHepph.

Some observations regarding quality measures are made with the purpose of comple-
ment the analysis performed for synthetic networks and better understand the structural
properties of the community detection methods. First, it is possible to observe that the
Ground-Truth community structure of the Youtube network is not modular (Q = 0.30)

if we consider that a modular community structure has 0.30 < Q < 0.70. The studied
methods are able to identify non modular community structure, with Q ~ 0, evenif Copra
slightly overestimates Q (Q = 0.36). COPRA, Bigclam and SLPA were able to identify
modular communities in almost all networks. When these results are compared to those
observed for synthetic networks (“Quality measures on synthetic networks” section), it is
possible to see that the Modularity of the real-world networks is consistent to the Modu-
larity of the synthetic networks obtained when the parameter set generates a well defined
community structure. This shows that the real-world networks actually exhibit a clear
community structure and indicates the choice of these networks is good for the purpose of
this work. It is interesting to notice that, for Amazon network, Bigclam, Demon, COPRA
and SLPA were able to identify communities with much more modular structure than the
Ground-Truth, specially SLPA, which obtained é = 0.80, while the Ground-Truth mod-
ularity is Q = 0.40. Differently from the Modularity of the real-world communities, the
results for Overlapping Normalized Mutual Information (ONMI) observed in Table 2 are
much poorer than those observed for the synthetic networks and show that the meth-
ods were unable to identify the communities correctly although the results obtained by
COPRA stand out from the other methods. Some hypothesis to explain why the methods
mostly show a low ONMI, while presenting a high Q are discussed in the next sections.

Structural properties of communities on real-world networks
Considering the features of the community detection methods and the results for objec-
tive quality measures previously presented, it is possible to investigate other aspects of
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the structural properties of the networks. As performed for the synthetic LFR bench-
mark networks and presented in “Structural properties of communities on synthetic
networks” section, we investigate four structural properties of the overlapping commu-
nities identified by the community detection methods considered in this work: node
memberships, community size, overlapping size and edge probability in the overlapping
region. The structural properties were investigated for all the networks and generated a
large amount of results. The most relevant and general conclusions from this experiment
are reported in this section. In order to avoid to harm the readability of the work, the plots
are completely displayed in Appendix C, where more specific comments about the results
can be also found.

Figure 6 shows the Complementary Cumulative Distribute Function (CCDF) of node
memberships, i.e., the number of communities in which each node participate for
all the identified communities and the Ground-Truth communities for each network
and illustrates the discussion in this section (for more detailed results, please refer to
Appendix C).

First, it is very important to observe that except for COPRA and SLPA, the methods
do not necessarily assign a community to each node and some nodes can be left with no
community and, thus, the probability of a node to belong to at least one community can
be less than one. This behavior particularly stands out for CFinder, that severely underes-
timates the number of nodes that belong to one community. It is also possible to observe
that the patterns for curves observed for the Ground-Truth communities are not captured
by any of the studied methods. It is also interesting to notice that, despite to differences
in scale, some methods, like SLPA, Demon and Bigclam, although different among them,
have shown a very similar behavior when the network is varied, in most cases, suggesting
that the resulting community structure is not very dependent on the relations existing on
the network, but mostly on the strategy of the algorithm. It is important to note that most
methods depend on the definition of parameters to execute, which may strongly affect
the community structure and a deeper instigation should be performed for each method
in order to draw more conclusive observations.

The investigation of the size of communities obtained by the methods in the synthetic
LFR benchmark allows us to conclude that the methods capture a great number of aspects
of this property. However, this is not observed in the real-world networks. Except for
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COPRA, which is able to identify communities with very similar size to the Ground-
Truth, this is atypical and such similarity can not be observed in the other scenarios.
It is interesting to notice that the shapes of the curves observed for Demon and, more
clearly, for Bigclam for the community size is very consistent for most networks, though
very different from the Ground-Truth, suggesting that the structural properties of the
communities may be highly affected by the mechanisms used by the methods and not by
the network itself, as observed in other experiments on synthetic networks.

It is worth to notice that, for most methods, the occurrence of overlapping regions is
very unlikely. The exception is Bigclam, which identifies communities with relevant over-
lapping regions, specially in the Ground-Truth networks. Yet considering the networks
with Ground-Truth, the number of small overlapping regions is very high. Moreover, for
three Ground-Truth networks (Amazon, DBLP and Live Journal), the methods under-
estimate the sizes of overlapping regions in all the range of the distribution. In the
communities identified by COPRA, SLPA and CFinder the occurrence of nodes in the
overlapping region is extremely rare. Therefore, we can argue that these methods are
treating the community detection as a partition problem for a large number of nodes.
CFinder and, specially, SLPA also identify very small overlapping regions for almost all
networks. When considering the results from Table 2, it may suggest that the methods
fail in identifying the overlapping nodes, concentrating the hits on the nodes that belong
to only one community.

If we take into consideration the results presented in Table 2, we can see that, even
though in some cases the modularity observed for community structure identified by the
studied methods is lower than the modularity observed for the Ground-Truth communi-
ties, the methods are able to identify modular communities, while ONMI is very low (the
exception is Youtube network, for which the Ground-Truth community structure is not
modular). Apart from Youtube network, the probability of occurrence of large Ground-
Truth communities are higher than the probability of occurrence of large networks in the
community structure identified by the studied methods. In this cases, possibly, the meth-
ods are mistakenly disconsidering larger communities as they are prone to identify very
high modular structures, even if they are very small compared to Ground-Truth commu-
nities. This may be causing the methods to fail in discovering the right communities, for
instance, considering dense overlapping regions as separate communities. The tendency
of the methods in underestimating the overlapping nodes, as observed in many experi-
ments in this work, also contributes to the identification of modular communities, even if
harming ONMI. A slightly different behavior from the other methods can be observed for
Copra, that shows large communities more frequently for Amazon and DBLP networks
and also presents higher values for ONMI in these cases.

We also investigate the findings of Yang and Leskovec (2013) regarding the density of
edges in the overlapping region and evaluate whether this property is observed in the
Ground-Truth networks, verifying if the methods investigated are able to capture this
behavior even for the benchmark networks.

Figure 7 shows the probability of an edge between two nodes to exist in function of the
number of communities shared by them.

Unlike the observation made for the synthetic LFR benchmark, in the real-world net-
works there is, in fact, a positive correlation between the number of shared nodes and the
edge probability in Ground-Truth communities. This observation strongly suggests that
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the LFR benchmark, which is considered by a great number of authors in order to eval-
uate and validate community detection methods, must be used carefully if one needs to
identify communities that meet the properties of real-world communities. Regarding the
considered methods, the increasing in edge probability is better captured by Bigclam and
Demon, and CFinder usually overestimates it signifiantly. Overall, however, the methods
fail in capturing the density of overlapping regions, as stated by Yang and Leskovec (2012).
When the other results are considered, a clearer view of the results presented in Fig. 7 is
possible. For instance, in SLPA and COPRA the occurrence of large overlapping regions
and the presence of nodes in several communities is rare. Thus, it is expected that the
probability of an edge to exist in the overlapping region does not show a clear pattern
among the different networks.

Conclusions

This work presents a comparative analysis of the overlapping community structure iden-
tified by five of the state-of-the-art methods for overlapping community detection in
complex networks focusing on their topological properties. A wide set of 435 networks,
comprising of synthetic networks, generated by the LFR benchmark, real-world bench-
mark networks, frequently used in the literature and real-world sampled networks with
Ground-Truth were considered. Objective quality measures, frequently considered in
the literature (ONMI, Modularity, Omega index and F1-score) were also considered and
related to the structural properties of the communities, regarding the features of the
methods and assumptions made about the characterization of communities.

This works confirms some recent findings from other authors that highlight the impor-
tance of the analysis of the topology of the community structure in order to better
understand the way that the elements are organized in a complex network (Peel et al.
2017; Jebabli et al. 2018) and other authors that state that there is not a best algorithm
that solves a general community detection problem (Almeida et al. 2011; Peel et al. 2017;
Schaub et al. 2017). Moreover, the notion that, despite the definition of what is a commu-
nity, the way that the methods perform may lead to very different divisions of the network
(Cherifi et al. 2019; Schaub et al. 2017), is extended by the results obtained from the exper-
iments performed in this work, since the topological organization of the communities, in
many cases, looks more like a signature of the method than the actual organization of the
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Ground-Truth communities, which answers the Research Question II (“does the quality
measures frequently considered in the literature for the validation of overlapping com-
munity detection method are really appropriate and consistent with the real community
structure?”). The results of the experiments in this work also corroborate the views of
Peel et al. (2017) and Harenberg et al. (2014) that the topological properties of the com-
munity structures are may be weakly correlated with the metadata of the elements in the
system, making the functional communities, in many case, impossible to be recovered by
community detection methods, that lay only in information encoded in the connections
of the network.

Despite the difficulty in the definition of the communities and the possibility of recov-
ering communities from the network, an important aspect that poses a great challenge
in the analysis of overlapping community detection methods, which indirectly affects the
correct evaluation of the applicability of each one, is the difference in the conditions in
which the methods are compared, which arises from two main sources: the parameteri-
zation of the methods and the measures chosen for the evaluation of the methods. In the
works where the methods are proposed, the authors perform a series of experiments in
order to investigate the impact of the parameterization in the performance of their per-
formance. However, in practical contexts it is virtually impossible to test different sets
of parameters and one must rely on suggested or default parameters. Particularly in this
work, where a very large number of experiments were performed and each method were
executed many times, it was impracticable to investigate how the methods behaved when
their parameters were varied. Moreover, even with a huge effort, it is unfeasible to define
an experimental setup that put all the methods in the same conditions and, thus, the full
potential of the methods were not explored. The results obtained in some experiment,
thus, were directly affected by the poor parametrization of the methods. For instance,
SLPA requires the definition of a parameter that controls the threshold limit and, by set-
ting the default value, the method severely underestimated the number of nodes in the
overlapping regions and the parametrization of Bigclam requires the definition of the
maximum number of communities to be investigated, which is clearly smaller than the
number of communities in real world scenarios. Besides the lack of a general test bed for
community detection methods, one difficulty for a direct comparison between the results
in this work and those shown in the works in which the methods are originally presented
is, mainly due to a frequently reduced transparency in the presentation of the results. For
instance, in Yang and Leskovec (2013), the quality measures are presented in a relative
way, comparing to competing methods.

Regarding the results obtained in the experiments in this work, we can see that there is
not a single method that performs clearly better than the other in all the scenarios and a
rank of methods can not be defined, which answers the Research Question I (“is there an
overlapping community detection method that stands out regarding from the others and
can be adopted as a state-of-art method?”). The methods perform way better when the
networks exhibit a very clear community structure. This characteristic is much evident
for Copra, which shows outstanding results when the communities are less mixed and
the overlapping has only few nodes. A remarkable result observed in the experiments is
that all the methods perform relatively well when the number of memberships per node
is set as one, i.e., when the community detection problem is solved as a partition prob-
lem. Many authors in the literature discuss that the community detection problem is still
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an open problem (Peel et al. 2017; Jebabli et al. 2018; Peixoto 2020) and when overlapping
communities are considered, the problem is even more challenging (Fortunato 2010). The
traditional view is that a community is a dense group of nodes connected by a few num-
ber of edges. When this view is extended to overlapping community detection, it leads the
methods to neglect the nodes in the overlapping region and, thus, treat the problem as
a partition community detection, potentially identifying the overlapping regions as sep-
arate communities. Indeed, the community detection methods investigated in this work
tend to strongly underestimate the number of nodes in the overlapping region, a fact that
can be captured by the analysis of the structural properties of the communities, as origi-
nally pointed out by Yang and Leskovec (2012), and is recently discussed by many authors
(Chykhradze et al. 2014; Jebabli et al. 2018) (also answering RQI). Opposing to the find-
ings of Yang and Leskovec, the low density of nodes in the overlapping region can also be
observed in the Ground-Truth communities generated by the LER benchmark, which can
arguably indicate a limitation in the experiments conducted in this work. More recently,
Chykhradze et al. (2014) proposed the CKB benchmark in order to generate benchmark
networks with dense overlapping regions, which should be considered in future works.
However, traditional measures for assessing the quality of overlapping methods (such
as ONMI, Omega and Modularity) fail in identifying this behavior. When the F1-score is
analyzed, for instance, it is easy to observe that the methods miss the overlapping nodes,
even when identifying modular communities and placing the majority of nodes in the
correct groups. This kind of investigation allows us to argue that it is virtually impossible
to define an universal method that is able to identify satisfactory in all situations. Thus,
if we need a method to be appropriate to overlapping communities, we must understand
the properties of this kind of communities and assume these properties in the operation
of the method. Bigclam is a good example in this sense, since it incorporates a recent
finding of Yang and Leskovec (2013) that overlapping regions tend to be denser than the
rest of the network in order to define a model to be fitted. In a more general view, it is
important to deeply investigate and understand the structural properties of communities
in particular contexts, in order to be able to propose methods that extract communities
with those properties, aware that the applicability of the methods are limited to those

scenarios.

Appendix A: Detailed comparison of quality measures on synthetic networks
Figure 8 presents the quality measures (ONMI, Omega, Modularity and F1-score)
observed for the community structure obtained by the considered methods for the LFR
benchmark networks with the basic parameter set and the mixing parameter varying from
u=01ton=0.8.

First, it is important to observe that all methods are very susceptible to variations on pu.
From Fig. 8, it is possible to see that, naturally, the quality of ONMI and Omega results
drops as the mixing parameter u is increased. The results observed for Copra stand out
when compared to the other methods with © = 0.1, with an ONMI almost one, however,
it exhibits a great decay, not only for ONMI and Omega, but for all quality measures,
specially when i = 0.4. The F1-score observed for Bigclam and Demon remain almost
constant for all values of «. On the other hand, for Copra and Bigclam, high values of F1-
score are observed for © = 0.1 (= 1.0 and ~ 0.8 respectively), but when the value of p is
increased, the efficiency drops significantly.
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Figure 9 presents the quality measures (ONMI, Omega, Modularity and F1-score)
observed for the community structure obtained by the considered methods for the LFR
benchmark networks with the basic parameter set and the number of nodes varying from
n = 1000 to n = 10000.

When the number of nodes is increased, the values of ONMI, Omega and Modularity
are improved until a certain value of n (1 &~ 4000) but then the efficiency remains almost
constant, as seen in Fig. 9. The only exception is Bigclam, which shows an elevation of
these values from #n = 1000 to n = 2000, but then it drops significantly. One possible
explanations, as discussed in “Experiments and discussion” section is the parametrization
of Bigclam, that requires the definition of the maximum number of communities to be
extracted. One observation that stands out from the plots on Fig. 9 is that Copra does not
show good results for » = 1000, but as the number of nodes increases, the results are
rapidly improved.

Figure 10 presents the quality measures (ONMI, Omega, Modularity and F1-score)
observed for the community structure obtained by the considered methods for the LFR
benchmark networks with the basic parameter set and the number of memberships
varying from O,, = 1to O, = 8.

It can be observed from Fig. 10 that, as the number of memberships increase, the least
the methods are able to identify the correct communities. On the other hand, it is interest-
ing to notice that the Modularity values remain almost constant in all the range of values
of Oy, except for Copra, which rapidly decreases. It is also important to highlight that all
values for F1-score are zero when O,,, = 1, since the class of interest is the nodes in the
overlapping region, absent with this configuration. One important observation that can
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be done from Fig. 10 is that all the methods perform way better when O,, = 1, suggesting
again that the methods are more appropriate for the identification of disjoint communities
than overlapping communities.

Figure 11 presents the quality measures (ONMI, Omega, Modularity and F1-score)
observed for the community structure obtained by the considered methods for the LFR
benchmark networks with the basic parameter set and the number of overlapping nodes
varying from O, = 100 to O, = 600 (% = 0.1t0 % = 06).

A very similar behavior can be observed when the results of ONMI, Omega and
Modularity are compared for the variation of memberships of nodes (O,,) and frac-
tion of nodes in the overlapping region (O,). The performance of the methods
is notably harmed when O, is increased. Again, Copra performs better for net-
works with a low density of nodes in the overlaps (O, = 100), but the perfor-
mance gets worse as O, is increased. This results corroborate the observation that
the methods are way more suitable to applications when the communities are not
overlapped.

Appendix B: Detailed comparison of structural properties on synthetic
networks

Figures 12, 13, 14 and 15 present the Complementary Cumulative Distribution Function
of the memberships of nodes, i.e., the number of communities in which each node partic-
ipate, observed on the community structure identified by each of the methods considered
in this work on the LFR benchmark networks with the basic parameter set.
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The distribution of membership on the Ground-Truth community structure (Fig. 12)
allows us to see that, as defined by the parameter set, the nodes can participate in one
or two communities and all the curves are overlapped. Only SLPA is able to capture this
limitation of two memberships per node even though it underestimates the number of
nodes with two memberships (for the Ground-Truth communities, this number is ~ 0.2
and for SLPA communities this number is & 0.001). For Bigclam and Demon, the number
of memberships is quite overestimated, and these methods find communities in which
the nodes participate in more than ten communities, even with a low frequency. A similar
behavior can be observed in Figs. 13, 14 and 15, which illustrate the variation of #, O,, and
Oy, respectively. In all these experiments, Bigclam and Demon overestimate the number
of memberships of the nodes, even with a low probability. An interesting result can be
observed from Fig. 13, where the memberships of the nodes in the communities observed
by Bigclam are limited to 10 when » = 1000, n» = 2000 and » = 3000 but limited to 20
when z > 3000.

Figures 16,17, 18 and 19 present the Complementary Cumulative Distribution Function
of the sizes of the overlapping regions of the communities identified by each of the meth-
ods considered in this work on the LFR benchmark networks with the basic parameter
set.

Figure 16 shows that the curves observed for the Ground-Truth communities regard-
ing overlapping size have similar shapes when p varies, with slight differences in scale.
The number of nodes in the overlapping region is very small when compared to the num-
ber of nodes in the network in all the experiments considered varying n, O,, and O,
(Figs. 17, 18 and 19). The obvious exception is when O, is varied (Fig. 19). It is interest-
ing to notice that Bigclam shows a drastic variation on the shape of the distribution for

all values of u when the overlapping size is superior to & 3. Another relevant result is
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that, again, Bigclam shows very distinct behaviors when n = 1000, n = 2000 or n = 3000
and n > 3000. Regarding the overlapping size, except in the experiment when the num-
ber of nodes of the network varies, CFinder is able to capture relatively well the shape of
the distributions obtained for the Ground-Truth communities. Bigclam and Demon show
almost coincident curves when the number of memberships O, and the number of nodes
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in the overlapping region O, vary (Figs. 18 and 19), indicating that the methods are not
sensitive to variations on overlapping properties of the network.

Figures 20, 21, 22 and 23 present the Complementary Cumulative Distribution Function
of the sizes of communities identified by each of the methods considered in this work on
the LFR benchmark networks with the basic parameter set.
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The sizes of the Ground-Truth communities range from 20 and 100, as defined by
the parameter set on LFR benchmark. Figures 20, 21, 22 and 23 show that the consid-
ered methods are able to identify communities in this range of magnitude. Moreover, the
majority of the observed distribution curves are almost overlapped, capturing a remark-
able property of the Ground-Truth communities. A recurrent behavior of Bigclam can
be highlighted: a drastic change in the distribution when the number of nodes exceeds
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3000. It is interesting to observe that the distribution of communities sizes is one of the
most consolidated and studied structural properties in works comprising communities in
network.

Figures 24, 25, 26 and 27 present the probability of occurrence of an edge between a
random pair of nodes as a function of the number of communities that they participate
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concomitantly. The results also consider each of the methods considered in this work on
the LFR benchmark networks with the basic parameter set.

From Figs. 24, 25, 26 and 27 it can be observed that the property reported by
Yang and Leskovec (2012) that the probability of edges increases with the num-
ber of shared communities can not be observed in the Ground-Truth communities
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generated by the LFR benchmark. It is particularly observed with specific sets of
parameters, but can not be taken as a rule. The increasing in the edge probability
is observed for some methods with most parameter sets, such as Bigclam, CFinder
and Demon.
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Appendix C: Detailed comparison of structural properties on real-world

networks

Figure 28 shows the Complementary Cumulative Distribute Function (CCDF) of node
memberships, i.e., the number of communities in which each node participate for all the
identified communities and the Ground-Truth communities for each network.
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Figure 28 allows us to clearly see that except for COPRA and SLPA, all the considered
methods do not necessarily assign a community to each node and some nodes can be
left with no community and, thus, the probability of a node to belong to at least one
community can be less than one. This behavior particularly stands out for CFinder, that
severely underestimates the number of nodes that belong to one community. It is also
possible to observe that the Complementary Cumulative Distribute Functions (CCDFs)
for the Ground-Truth communities show an almost linear behavior (in log — log scale),
which was not captured by any of the studied methods. It is important to note that most
methods depend on the definition of parameters to execute, which may strongly affect the
community structure and a deeper investigation should be performed for each method in
order to draw more conclusive observations.
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The CCDF for the sizes of communities identified by the methods were also considered
and the results are presented in Fig. 29.

Figure 29 also shows that, despite for differences in scale, the Ground-Truth communi-
ties shows an almost linear behavior (in log — log scale) in a wide range of the distribution,
which was not captured by any of the methods. First, it is worth to note that the commu-
nities obtained by COPRA are very similar in size to the Ground-Truth. However, this is
atypical and such similarity can not be observed in the other scenarios. It is interesting to
notice that the shapes of the curves observed for Demon and, more clearly, for Bigclam
is very consistent for most networks, though very different from the Ground-Truth, sug-
gesting that the structural properties of the communities may be highly affected by the
mechanisms used by the methods and not by the network itself, which must be better
understood with further investigation on the methods.

The size of the overlapping region, i.e., the number of nodes at each region on the inter-
section of communities, was also investigated and the CCDFs for these quantities are
presented in Fig. 30.

The methods do not show a clear and constant pattern for the distribution of
overlapping size and the curves observed for a certain method are very distinct
from one network to another. It is worth to notice that, for most methods, the

occurrence of overlapping regions is very unlikely. The exception is Bigclam, which
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identifies communities with relevant overlapping regions, specially in the Ground-
Truth networks. Yet considering the networks with Ground-Truth, the number of
small overlapping regions is very high. Moreover, for three Ground-Truth networks
(Amazon, DBLP and Live Journal), the methods underestimate the sizes of overlap-
ping regions in all the range of the distribution. In the communities identified by
COPRA, SLPA and CFinder the occurrence of nodes in the overlapping region is
extremely rare.

Figure 31 shows the probability of an edge between two nodes to exist in function of the
number of communities shared by them.

First, it is important to mention that this experiment is very memory consum-
ing and it could not be performed for CitHepTh, which occurs because the num-
ber of communities that each pair of nodes share must be computed in order to
compute the probability of the existence of an edge. Particularly in a large com-
munity ¢ with, say, n, nodes, each node shares at least one community with
n, — 1 other nodes and a data structure with at least n, x n, entries must be
stored.

From Fig. 31 it is possible to notice that, in fact, there is a positive correlation
between the number of shared nodes and the edge probability in Ground-Truth net-
works. This behavior is captured by Bigclam, CFinder and Demon although the edge
probability does not show a clear pattern in all. Copra and SLPA mostly fail in cap-
turing dense overlapping regions, as stated by Yang and Leskovec (2012) and it is
important to notice that CFinder and Demon are able to identify dense overlapping
regions but largely overestimate the probability of an edge to exist. Overall, it is diffi-
cult to make more conclusive observations. But when the other results are considered,
a clearer view of the results presented in Fig. 31 is possible. For instance, in SLPA,
COPRA and CFinder the occurrence of large overlapping regions and the presence of
nodes in several communities is rare. Thus, it is expected that the probability of an edge
to exist in the overlapping region does not show a clear pattern among the different

networks.
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