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Abstract

The mobility of scientists between different universities and countries is important to
foster knowledge exchange. At the same time, the potential mobility is restricted by
geographic and institutional constraints, which leads to temporal correlations in the
career trajectories of scientists. To quantify this effect, we extract 3.5 million career
trajectories of scientists from two large scale bibliographic data sets and analyze them
applying a novel method of higher-order networks. We study the effect of temporal
correlations at three different levels of aggregation, universities, cities and countries.
We find strong evidence for such correlations for the top 100 universities, i.e. scientists
move likely between specific institutions. These correlations also exist at the level of
countries, but cannot be found for cities. Our results allow to draw conclusions about
the institutional path dependence of scientific careers and the efficiency of mobility
programs.

Keywords: Global mobility, Scientist careers, Spatial networks, Temporal correlations,
Multi-order graphical models

Introduction
Mobility of high-skill labour is a hot topic in economics, politics and research policy. One
of the most prominent manifestations of this phenomenon is the international mobil-
ity of scientists. Global mobility of scientist has increased over the past decade and is
regarded by the OECD (2017) as being a “key driver of knowledge circulation world-
wide”. In the past this phenomenon has caused fears of “Brain Drain”, whereby high-skilled
labour moves abroad to the benefit and detriment of the receiving and sending country,
respectively. This pessimistic view has been challenged by recent research showing that
both sending and receiving countries may benefit from this labour mobility (Agrawal et
al. 2011; Petersen 2018; Saxenian 2005). Nevertheless, modern economies rely on high-
skill labour to maintain their competitive advantage (Bahar et al. 2012; Beechler and
Woodward 2009; Beine et al. 2001; Chambers et al. 1998). For this reason, attracting and
retaining scientists are becoming a key concern for migration policy (Boucher and Cerna

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-020-00279-x&domain=pdf
http://orcid.org/0000-0001-8290-2742
mailto: gvaccario@etzh.ch
http://creativecommons.org/licenses/by/4.0/


Vaccario et al. Applied Network Science            (2020) 5:36 Page 2 of 14

Fig. 1 The affiliation data can be aggregated from affiliation level (e.g., university) to city and country as shown
in panel a. In panel b the top 10%most common paths at city level in 2004 for the MEDLINE corpus are shown

2014). Reference PDF Following the arguments from above, scientist mobility plays a cen-
tral role in the exchange of knowledge. This implicitly assumes that scientists can move
relatively freely and that there is a high degree of “mixing”. Mixing in this context means
that different scientific careers are possible, and they do not always follow the same pat-
tern. However, we know that geography constrains scientists’ career trajectories (Verginer
and Riccaboni 2018) in particular, and research and development activities in general
(Scholl et al. 2018). Additionally, Deville et al. (2014); Clauset et al. (2015) have shown
that institutional prestige constrains scientific careers. Indeed, both geography and pres-
tige are essential to capture complex features of scientists’ mobility (Vaccario et al. 2018).
In this work, we test if scientific careers are indeed global and free, resulting in a world-
wide scientist mobility network with high levels of exchange and mixing. Or alternatively,
if scientific careers often follow similar patterns and thus lead to weak mixing. We test
this hypothesis by looking at scientific careers among the 100 top universities as ranked
by the Times Higher Education (World Reputation Rankings 2015).
Previous works have projected career trajectories at the city, regional and country level

to study their patterns and economic impact (Miguélez and Moreno 2014; Petersen 2018;
Verginer and Riccaboni 2018). These projections are obtained by aggregating trajectories
traversing institutions located in the same cities, regions or countries. By doing so, scien-
tists’ mobility can be studied at different levels of aggregation: affiliation, city and country
levels (see Fig. 1). For this reason, we complement our analysis by looking at career trajec-
tories beyond the 100 top universities and consider also the city and country level. Hence
with our study, we explore academic mobility at three different levels of aggregation.
To empirically address the importance of academic mobility and consequences for

knowledge exchange, we reconstruct the career trajectories of scientists through bibli-
ographic data. Specifically, we use the affiliations reported on scientific publications, to
track scientific careers. We refer to these time-ordered sequences institutions of individ-
ual scientists as the “career trajectories”, in line with the literature on labour mobility.
Previous research (Clauset et al. 2015) has aggregated these trajectories to construct a
static network where nodes represent research institutions and link the flow of scien-
tists between them. However, recent advances in computer and network science have
raised concerns over the naive aggregation of temporal sequences into static networks.
In particular, neglecting temporal correlations can lead to erroneous conclusions about
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the accessibility and importance of nodes (Lentz et al. 2013) and the possible dynamic
processes unfolding on networks (Pfitzner et al. 2013). To address this issue, we use
Higher-Order Networks, a novel method to represent and model sequential data (Ros-
vall et al. 2014; Scholtes et al. 2014; Xu et al. 2016). This network representation allows
us to capture temporal correlations by means of topological characteristics. Additionally,
Scholtes (2017) has combined different higher-order networks to obtain a Multi-Order
Graphical Model that encode temporal correlations of varying lengths. We build on these
recent developments in network science to contribute to the literature on scientists’
mobility in particular and high-skill labour in general.
The rest of the paper is structured as follows. First, in “Reconstructing mobility

paths”, we introduce the data we will be using for the analysis. We then describe, in
“Analyzing scientists’ mobility as a network”, how career trajectories may be repre-
sented using a network perspective and introduce higher-order network models. In
“Quantifying temporal correlations”, we estimate the importance of temporal correlations
in our data by using multi-order network models. Moreover, we analyze the implications
of the identified temporal correlations for knowledge exchange in “Career trajectories and
mixing”. To complement the analysis at the university level, we also test for the existence
of temporal correlations at city and country level, in “City and country level”. Finally, we
discuss our findings and their implications in the “Discussion” sections.

Reconstructingmobility paths
To study the mobility patterns of scientists, we need a large scale dataset on the insti-
tutions, scientists have worked. We extract this data from publications records. Indeed,
the affiliation is a piece of meta-data available with virtually every published paper. We
rely on this meta-data to reconstruct career trajectories. Precisely, we extract from two
large bibliographic datasets the sequence of affiliations for a given disambiguated author,
namely MEDLINE and MAG. Specifically for the analysis at the institution level, i.e.,
the 100 most “prestigious” universities we use the Microsoft Academic Graph (MAG)
dataset, and for the comparison at city and country level, we use the MEDLINE corpus.
Extracting affiliation sequences from these corpora yields sequences of time-stamped
(i.e., publication date) locations. An example of such a record, as found in the MED-
LINE corpus, is shown in Table 1. This record is equivalent to the records extracted from
MAG (see Table 2), except for the fact that MAG lists the affiliation but not the city or
country.
For the analysis at affiliation level, we use the Microsoft Academic Graph (MAG)

released for the KDD Cup competition in 2016. The KDD cup version of the MAG data
contains more than 126 Mill. publications (Sinha et al. 2015). Each publication is also
endowed with various attributes such as unique ID, publication date, title, journal ID,
author ID, and affiliations From this data, we extracted the career trajectories of scien-
tists at affiliation level by using the affiliations reported on their publications. For the
precise details of the extraction procedure see Verginer and Riccaboni (2018). We obtain
235 935 scientist career trajectories moving through 100 universities. These 100 univer-
sity have been disambiguated manually and the list of matched universities is available
upon request from the authors. We use the MAG for the analysis at university level
because it has disambiguated authors and covers a wide array of journals across fields.



Vaccario et al. Applied Network Science            (2020) 5:36 Page 4 of 14

Table 1 Example of career path of a specific author (LM Shul.)

Year City Pubmed ID

...
...

...

2000 Miami, FL, USA 11054153

2000 Miami, FL, USA 10928576

2000 Miami, FL, USA 10714670

2000 Miami, FL, USA 10634252

2001 Baltimore, MD, USA 11763581

2001 Baltimore, MD, USA 11391746

2002 Baltimore, MD, USA 15177058
...

...
...

Only a subset of her publications is shown. For each record we have the year of publication, the city of the affiliation and the
relative PubMed ID identifying the paper

This means that especially for US and EU based institutions, we have comprehensive
coverage of publications.
However, the MAG has limitations that hinder a reliable analysis of scientists’ career

beyond the 100 top universities. First, the string based matching employed by MAG is
imperfect. For example, the MAG contains different affiliation IDs for the campuses of
the University of California (e.g., UCLA, UCI, etc.) and a separate ID for the University
of California UC. Hence, when creating careers trajectories considering all the affiliation
IDs, one finds trajectories with fictitious locations, e.g., UCLA → UC → UCLA → UC.
Note that this is not a problem when analyzing top institutions as the trajectoryUCLA →
UC → UCLA → MIT would become UCLA → MIT . Second, there is no unambiguous
definition of what constitutes a research center. For example, the University of California
is composed of ten campuses (e.g., UCLA, UCI, etc.), but UC and its campuses have differ-
ent IDs that do not reflect this hierarchical structure. Given these issues, to study also the
careers of scientists not affiliated with the top 100 universities, we do not use affiliations
but their location at city and country level. For this purpose, we use MEDLINE.
MEDLINE is the largest, publicly available bibliographic database in the life sciences

and maintained by the U.S. National Library of Medicine (NLM). It contains over 26
Mill. papers published in 5,200 journals and 40 languages, goes back in time until 1966

Table 2 Example of career path of a specific author (I HAJR.) in the MAG

Year Affiliation MAG ID

...
...

...

2012 Simon Fraser University 822D2439

2012 Simon Fraser University 8126FAC7

2012 Simon Fraser University 775402B2

2013 Centrum Wiskunde & Informatica 80F5235B

2014 Brown University 8126FAC7

2014 Brown University 7CE98F90
...

...
...

2015 Stanford University 7E028B00
...

...
...

Only a subset of her publications is shown. For each record we have the year of publication, the affiliation name and the relative
MAG ID identifying the paper
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and is continuously updated. The corpus covers research in biomedicine and health pre-
dominantly. Moreover, we rely on the high-quality dataset by Torvik and Smalheiser
(2009); Torvik (2015) to aggregate universities to the city and the country level. With this
dataset, we can geo-localize the affiliation strings worldwide. They main disadvantage of
MEDLINE is that it has a lower journal and discipline coverage.
We are aware that reconstructing career trajectories using bibliographic data is not

without issues. First, the disambiguation of authors is never perfect. However, we rely on
two high quality and widely used datasets to address this issue (Sinha et al. 2015; Torvik
2015; Torvik and Smalheiser 2009). Second, publications are a delayed signal of presence
and not a live signal, as the submission and publication date are different. This means that
the affiliation associated with a scientist in a given year might not be her current place of
employment. At the same time, for the present study, we care primarily about the order of
affiliations and not their precise timing. Third, we can only talk about scientists’mobility
and not aboutmigration, which would require us to know the nationality of the scientists,
which we do not have. We do have information on the country of first publication, which
might coincide but is not guaranteed to be correct.

Analyzing scientists’ mobility as a network
To study the career trajectories of scientists, we adopt a network perspective. We rep-
resent universities as nodes and scientists’ movements between universities as links. By
aggregating the career trajectories, we reconstruct the mobility network that we show
in Fig. 2. From this figure, we see that all universities belong to the same connected
component. This fact implies that there exists a (network) path connecting any pair of
universities. Moreover, the network diameter is six, and the average shortest path is about
2. Hence, it appears that a scientist from any university could potentially reach any other
university within a small number of steps. In reality, however, both prestige and geography
constrain scientists’ career trajectories (Clauset et al. 2015; Verginer and Riccaboni 2018)
and thus rule out various potential trajectories. There is a “paradox” between the topo-
logical finding of a short average path and the realized possibilities of such short paths
which motivates our more in-depth investigation.

Fig. 2 The inter-institution mobility network generated from the 10% most common paths. Nodes represent
universities and links scientists moving between them. The links are directed and they have to be followed
clockwise
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We start our investigation by looking at the temporal correlations in scientists’ career
trajectories. Recent studies have shown that mobility patterns with temporal correla-
tions cannot be captured using standard network models (Rosvall et al. 2014; Scholtes
et al. 2014; Scholtes 2017; Xu et al. 2016). For example, these studies have shown that
random walk models on networks do not capture travel data of passengers well, due to
temporal correlations. Indeed, most passengers flying from one airport to another take
return flights or pass through specific hubs, and hence, the sequences of airports visited
exhibit temporal correlations. To deal with temporal correlations in sequence data, sev-
eral authors have proposed a new class of network models called higher-order networks
(Rosvall et al. 2014; Scholtes et al. 2014; Xu et al. 2016).
Higher-order networks are mathematical objects which retain temporal information

normally discarded in standard network models. For example, we see in Fig. 3a four dif-
ferent career trajectories p1 = p2 = {A,C,D} and p3 = p4 = {B,C,E}. If we were to
represent these as a simple first-order network (see Fig. 3b), we would imply that the tran-
sitions A → D and A → E are equally likely. However, by doing so, we have discarded
the (temporal) information that no trajectories are connecting A → E. To preserve this
information, we represent the trajectories {p1, p2, p3, p4} in a second-order network (see
Fig. 3c). In this network, we have four nodes (A − C), (C − D), (B − C) and (C − E) and
two links (A − C) → (C − D) and (B − C) → (C − E). With this second-order network,
we now respect the (temporal) order implicit in the data. Similar to standard networks, a
second-order network may be represented using a transition matrix T(2). In this matrix
an element

(
T(2))

ee′ is the probability of observing the transition e′ (e.g., C → D) after
observing the transition e (e.g., A → C).
In Fig. 4, we represent scientists’ career trajectories as a second-order network. From

this visualization, we immediately note two features. First, we note the halo of points that
are many disconnected components of size two. These represent career trajectories that
connect only pairs of universities, i.e., trajectories of the type (A − B) → (BA). Second,
the largest connected component contains only 23% of the nodes (i.e., university pairs)
and it has a diameter of 24. These two key statistics indicate that the empirical career

Fig. 3 From Temporal sequences to Network representations. In panel a we have a set of trajectories
between the location A, B, C and D. Given these trajectories, we can extract several networks. The simplest
network representation is illustrated in panel b, where nodes represent locations and links correspond to the
observed moves between these locations. In panel c, the same trajectories are encoded in a second order
network where each node is an observed sequence of two locations
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Fig. 4 The inter-institution mobility network generated from the 10% most common career trajectories.
Note that in the second-order network a node represents a first-order edge (e.g., MIT→UCLA) and an edge a
link between edges (e.g., (MIT-UCLA)→(UCLA-ETH)). The higher-order network represents the actual 10%
most common career trajectories

trajectories do not connect all university pairs, suggesting the existence of constraints in
academic mobility.
We argue that the above finding is caused by the time ordering of universities in

career trajectories. To show this, we depict the second-order network reconstructed
using a “Markovian” temporal network in Fig. 5. This network is constructed from
a maximum entropy second-order transition matrix, T̃(2) (Scholtes et al. 2014). An
element

(
T̃(2)

)

(A−C),(C−E)
= (

T(1))
A,C × (

T(1))
C,E where

(
T(1))

A,C is the observed
relative frequency of the transition A → C. By this, we obtain a transition matrix
that does not preserve the empirical time ordering of career trajectories. In Fig. 5, the
network links correspond to all the non-zero entries of the second-order transition
matrix of the Markovian temporal network T̃(2). From this network visualization, one
would deduce that all universities are connected through career trajectories, and scien-
tists move freely from one university to another. Indeed, the Markovian second-order
network has a diameter of six, and every node belongs to the giant connected com-
ponent. The differences between the second-order networks reconstructed using the
empirical data and T(1) hint at the presence of temporal correlation in scientists’ career
trajectories.
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Fig. 5 The inter-institution mobility network generated from the 10%most common career trajectories. Note
that in the second-order network a node represents a first-order edge (e.g., MIT→UCLA) and an edge a link
between edges (e.g., (MIT-UCLA)→(UCLA-ETH)). The second-order network representation implied by the
network shown in Fig. 2

Quantifying temporal correlations
A second-order network captures the temporal correlations of scientists trajectories of
length two without loss of information. In general, trajectories can have different lengths,
and hence, can be represented by higher-order networks of different orders. Then, if we
have a sample of career trajectories of different lengths, how do we choose the correct
order to model all these trajectories at the same time? To address this problem, we use
the multi-order graphical (MOG) models, and the statistical test developed by (Scholtes
2017). A MOG-model is a combination of higher-order networks up to order k.
For a MOG-model, it is possible to compute its likelihood given its complexity (i.e.,

degrees of freedom) and the observed trajectories. Then, by using a likelihood ratio
test between MOG-models with increasing k, we choose the model with the optimal
order kopt. The MOG-model with a kopt retains statically significant temporal correlation
present in the data without over-fitting. For details about MOG-model and the test see
Scholtes (2017).
Note that kopt = 1 would imply that a first-order network well represents the data,

and hence, the trajectories are not significantly influenced by temporal correlations. In
practice, this would mean that the next movement of a scientist depends only on his/her
current location. kopt > 1, on the other hand, would imply that the next location visited
by a scientist depends not only his/her current location but also on the previous ones. To
estimate the kopt, We use Pathpy, the open-source path analysis library (Scholtes 2019).
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When applying the statistical test of Scholtes (2017) to scientists’ career trajectories, we
find kopt = 2. That means kopt > 1, therefore we have statistical evidence that scientists’
mobility exhibits temporal correlations. Precisely, we find that the next university in a
career trajectory depends on a scientist’s current and previous universities.
To better understand the source of the identified temporal correlation, we study the

temporal motifs of length two. A temporal motif of length two is a sub-path of length
two in a career trajectory, and it can have the following forms: X → Y → X (type I)
and X → Y → Z (type II). Type I motifs represent pieces of career trajectories where
a scientist first changes his/her university (X → Y ) and then, goes back to the previous
working place (Y → X). Type II motifs, instead, represent career trajectories of scientists
that after changing university (X → Y ), do not go back (Y → Z). For each type of motif,
we can compare its empirical probability distribution P(emp) to the one expected from
a first-order P(1) and a second-order P(2) network model. For more details on how these
distributions are computed, see Additional file 1. If we find that the P(emp) of both motif
types are similar to P(2), but not P(1), we can conclude that the temporal correlations stem
from both motif types. If, on the other hand, only the P(emp) of type I (type II) motifs is
similar to P(2), we can conclude that the temporal correlations stem from type I (type II)
motifs.
We start by analyzing the motives of type I, i.e., of the form X → Y → X. To compare

the P(emp), P(1), and P(2) of these motifs, we use the Kullback–Leibler (KL) divergence
(Kullback and Leibler 1951). This measure is commonly used to describe the similarity
between probability distributions of discrete and unordered variables, and hence, it suits
our situation well.
For the motifs of type I, the KL-divergence between P(emp) and P(1) is 0.826, while the

P(emp) and P(2) is 0.038. The ratio between these two KL-divergences is ∼ 21.7 and we
name it RI . Hence, the KL-divergence between P(emp) and P(2) is more than 20 times
smaller compared to the divergence between P(emp) and P(1). This means that the fre-
quency of scientists that go back to their previous working institution is better captured
by a second-order network.
For the motifs of type II, the KL-divergence between P(emp) and P(1) is 0.798, while the

P(emp) and P(2) is 0.183. The ratio between these two KL-divergences is ∼ 4.4 and we
name it RII. Hence, the KL-divergence between P(emp) and P(2) is about 4 times smaller
compared to the divergence between P(emp) and P(1).We find again that the second-order
model captures motives of type II better.
By comparing RI and RII , we also find RI is about five times larger than RII . This result

indicates that the temporal correlations in the second-order model are mostly useful to
capture motifs of type I. In the last section of the paper, we discuss and interpret this
result.

Career trajectories andmixing
In this section, we analyze the effect that temporal correlations have on mixing and
diffusion processes unfolding on the scientist mobility network. We split the analysis
of scientist trajectories in a qualitative and quantitative part. For the former, we com-
pare the alluvial diagrams (Lambiotte et al. 2019) of career trajectories created using the
first- and second-order network models, while for the latter, we compute their entropy
growth (Scholtes et al. 2014). Note that both the alluvial diagrams and the entropy growth
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describe and quantify the diffusion process unfolding on a temporal network. Specifically,
for the case of academic mobility, one might think of a diffusion process in which sci-
entists carry knowledge. Then the question arises, how fast and how far this knowledge
would propagate in the network through mobility alone. If this happens fast and many
institutions are reached, then this corresponds to strong mixing. If on the other hand, few
institutions are reached, then we have weak mixing.
In Fig. 6, we show two alluvial diagrams describing the career trajectories originat-

ing from the “University of Cambridge”. In Fig. 6b, we show the alluvial diagram for
the Markovian diffusion. Starting from the University of Cambridge at t0, scientists are
expected to move to many institutions with similar probabilities, illustrated by the simi-
lar thickens of edges from t0 to t1. The universities reached at t1 are many, suggesting the
existence of strong mixing, and from step t1 to t2, the mixing is amplified.
In Fig. 6a, we show the alluvial diagram for the empirical diffusion of career trajectories

originating from the University of Cambridge. In this panel (a), we see that from t0 to t1
many institutions are reached, again suggesting the existence of strong mixing. However,
moving from t1 to t2 this trend is reversed, since most paths originating at the University
of Cambridge go back there. This is visually shown as the blue edges from t1 to t2. The
preferred destination reduces the probability to reachmany other locations at t2, implying
weak mixing.
Note that the segment from t0 to t1 is identical, albeit ordered differently, for both Fig. 6a

and b, since both representations capture the first transitions correctly. The differences in
the diffusion process emerge in the second step from t1 to t2, when it matters whether a
network is kopt = 1 or kopt > 1. As the comparison of Fig. 6a and b demonstrates, disre-
garding temporal correlations in the Markovian model leads us to overestimate mixing.

Fig. 6 The possible diffusion processes following the career trajectories originating from the University of
Cambridge. The thickness of an edge represents the probability to observe that move. The color of an edge is
blue when it represents a move going back to the source node, i.e., the University of Cambridge, otherwise
the color is orange. The diffusion process describes the probability to find a scientists in a given location after
tmoves starting from the source node. On the left side of the plot a, the empirical diffusion (i.e., actual
moves) is shown. On the right side of the plot b, the Markovian diffusion is shown, i.e., the diffusion we would
expect if career trajectories had no temporal correlations. For visualization purposes, the 50% most common
career trajectories have been used for this figure
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Precisely, in Fig. 6a the returning rate is high and low in Fig. 6b. This qualitative result is in
line with the KL analysis, highlighting the importance of motives of type I, (X → Y → X).
To quantify the expected mixing of the two models given the observed data, we use

the entropy growth ratio introduced by (Scholtes et al. 2014). The interpretation of this
measure is as follows. Given an observed transition e = A → B, we compute the cor-
responding entropy from the second-order transition matrix, i.e., the probabilities to
transition to the next nodes e′:

he
(
T(2)

)
= −

∑

e′∈E

(
T(2)

)

ee′
log

(
T(2)

)

ee′
(1)

where E is the set of edges, i.e., possible career moves from one university to another.
The entropy he

(
T(2)) quantifies to what extent the next transition in a trajectory is

determined by the previous transition e. For example, if a row
(
T(2))

e,· has only one ele-
ment equal to 1, then the transition is deterministic, and hence, he

(
T(2)) = 0 implying

weak mixing. While if all elements of a row are equal, then the next transitions happen
uniformly at random, and hence, he

(
T(2)) is high, implying strong mixing.

To compute the expected overall mixing, one could argue that the total entropy of the
model is the sum of all the transition entropies, i.e.,

∑
e∈E he

(
T(2)). However, this would

be only partially correct as some transitions are observed more often, and hence, should
have a higher weight. To account for this, we weight each he by the relative frequency of
e. In formula, we have:

H
(
T(2)

)
=

∑

e∈E
πehe

(
T(2)

)
= −

∑

e∈E
πe

∑

e′∈E

(
T(2)

)

ee′
log

(
T(2)

)

ee′
(2)

where πe is the relative frequency of the transition e, that is given by:

πe = |{p : p = e ∧ p ∈ S}|
|S| (3)

where S is the multi-set of paths and sub-paths constructed using the empirical data.
With the above definition, we can compute the entropy growth ratio between the first-
and the second order models:

�H
(
T(2)

)
= H

(
T̃(2)

)
/H

(
T(2)

)
(4)

Note that for�H
(
T(2)) > 1 the diffusion process computed using the first-order network

would over-estimate the level of mixing. If �H
(
T(2)) < 0, the opposite is true. We obtain

a �H
(
T(2)) ∼ 3.4 > 1. This means that the growth of entropy coming from the first-

order model is 3 times larger than expected from the second-order model. Hence, the
mixing would be overestimated by using a first-order model. This result is in line with the
qualitative findings from Fig. 6.

City and country level
We now move our analysis from the top 100 universities to the city and country level. For
this analysis, we aggregate trajectories traversing institutions located in the same cities
or countries. By not limiting the analysis to specific set of universities, we increase the
number of observed trajectories and scientists. Hence, we should expect a more reliable
statistics. At the same time, we should be aware that aggregating and projecting sequential
data can distort its temporal properties as discussed previously, see also Scholtes et al.
(2014).
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We restrict our attention to 3 740 187 individual scientist trajectories across 215 coun-
tries between 1990 and 2009 with papers listed in MEDLINE. 89% of the trajectories are
of length 0, meaning that most scientists do not change country. However, this statistic
also means that longer career trajectories are rare but still numerous (411 137). The most
frequent trajectories of length one are between the UK and USA, Japan and the USA, and
the USA and the UK. The presence of the US in these paths stems from the fact that the
US has the largest scientist population in the dataset.
When considering trajectories of length two, the most frequent ones are between

(Japan, USA, Japan), (USA, UK, USA), and (UK, USA, UK). If we consider only those
trajectories that do not go through the USA, we find that the most frequent trajecto-
ries of length two are across (UK, Australia, UK), (France, UK, France) and (Germany,
UK, Germany). All these types of trajectories are reminiscent of the motifs of type I, i.e.
X → Y → X, found at the institution level. When looking at trajectories at the city level,
we find a similar pattern (see Additional file 1). Therefore, we test for the existence of
temporal correlations as we have done at the institution level.
By applying the multi-order modelling framework of Scholtes (2017), we identify kopt =

2, implying that a second-order network best represents the data at the country level.
When applying the same framework at city level, we identify kopt = 1. Hence, we do not
find evidence of temporal correlations at city, but at country level. This result has several
implications. First, even though we observe a large number of trajectories of type I at a
both city and country level, these trajectories are still to be expected from a first-order
network model at city, but not at country level. Second, temporal correlations have been
detected at the affiliation and country, but not at city level. Therefore, we find that the
concerns raised by Butts (2009); Scholtes (2017); Zweig (2011) about the naive application
of network-analytic models apply to research on academic mobility.

Discussion
Scientific knowledge is shared not only through artefacts, e.g., publications, but also
through scientists carrying out their research. Thus, their mobility is thought to facilitate
knowledge exchange. “Mobility as a vehicle of knowledge exchange” implicitly assumes
that academic careers can span the globe and universities. In this work, we have addressed
this implicit assumption by testing for the existence of temporal correlations in scientific
careers. The existence of such correlations would imply the existence of constraints in
academic mobility.
To perform our analysis we have reconstructed, from two large bibliographic datasets,

MAG (Sinha et al. 2015) and MEDLINE (Torvik and Smalheiser 2009; Torvik 2015), the
career trajectories across the 100 top universities and across cities and countries, respec-
tively. We do not find evidence that temporal correlations influence career trajectories at
city level. However, we do find evidence that mobility, especially among elite institutions,
is influenced by temporal correlations.
At the university level, we find that the mobility of scientists is affected by temporal

correlations. In particular, a large part of these correlations is determined by career tra-
jectories of type I, i.e., scientists return to their original university after two career steps.
Indeed, the KL-divergence ratio RI for thesemotifs is five times larger than RII. This result
has a direct impact on the knowledge exchange as proxied by scientists mobility. Specif-
ically, the implied mixing of knowledge through mobility is a lot lower than one would
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expect, by using a standard networks model. To quantify this statement, we have com-
puted the entropy growth ratio �H

(
T(2)), that captures how much a standard network

model overestimates the trajectory mixing. We find that �H
(
T(2)) ∼ 3.4, showing that

a simple network model would overestimate the mixing by a factor of 3. A possible but
rather pessimistic explanation is that a simple mental short-cut employed by hiring com-
mittees to favour “known origins” reinforces the path dependency and possibly hampers
knowledge exchange.
At the city and country level, we find a large number of career trajectories of type I.

However, at city level, we do not find statistically significant temporal correlations. This
result indicates that type I trajectories or returnees (Agrawal et al. 2006, 2011; Saxenian
2005) are still to be expected from a standard network model. Additionally, the use of a
standard network perspective is justified when studying academic mobility at city, but not
at country level.
Overall from the results presented in this work, a picture emerges that scientific careers

are a lot less diverse than one would expect. The existence of temporal correlations sug-
gests that although among the 100 most prestigious institutions, there is substantial and
continued exchange, the actual career trajectories are far more limited. Our results are
relevant bothmethodologically and empirically, for research on high-skill labourmobility,
in general, and the analysis of scientists’ career trajectories, in particular.
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