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Abstract

Networks of portfolio holdings exemplify how interdependence both between the
agents and their assets can be a source of systemic vulnerability. We study a real-world
holdings network and compare it with various alternative scenarios from
randomization and rebalancing of the original investments. Scenarios generation relies
on algorithms that satisfy the global constraints imposed by the numbers of
outstanding shares in the market. We consider fixed-diversification models and
diversification-maximizing replicas too. We extensively analyze the interplay between
portfolio diversification and differentiation, and how the outreach of exogenous shocks
depends on these factors as well as on the type of shock and the size of the network
with respect to the market. We find that real portfolios are poorly diversified but highly
similar, that portfolio similarity correlates with systemic fragility and that rebalancing
can come with an increased similarity depending on the initial network configuration.
We show that a large diversification gain is achieved through rebalancing but,
noteworthy, that makes the network vulnerable in front of unselective shocks. Also,
while the network is riskier in the presence of targeted shocks, it is safer than its
random counterparts when it is stressed by widespread price downturns.

Keywords: Systemic risk, Network models, Dynamics on networks

Introduction
When we consider large institutional investors like mutual funds, interconnections arise
because of managerial sharing (Augustiani et al. 2015), herding behavior (especially dur-
ing crises), or simply similarity of investment strategies. Asset-overlap at the global scale
exists because of the activity of global and international funds that invest in foreign assets
around the world. The effects on systemic riskiness of such interdependence have been
emphasized by the Global Financial Crisis 2007–2008. A very active area of research deals
with the problem of making quantitative statements about the fragility of financial sys-
tems with respect to the propagation of distress. The latter can be negative downturns in
asset values or insolvency of financial institutions depending on cases. Network science
has provided insights into this topic and, in particular, the role of network topology char-
acterizing mutual ties and exposures has been investigated (Hurd and Rohwedder 2010;
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Battiston et al. 2012b; 2012a; Huang et al. 2013; Delpini et al. 2013; Galbiati et al. 2013;
Caccioli et al. 2014; Acemoglu et al. 2015; Elliott et al. 2014).
A cornerstone of portfolio management is diversification (Statman 1987; Agnew et al.

2003; Domian et al. 2007; Hu et al. 2014), a well-understood strategy to cut down port-
folio risk from idiosyncratic shocks to asset prices. A reduction of individual risk can be
achieved by reducing portfolio concentration (Domian et al. 2003; 2007; Statman 2004)
but the evidences collected from the crisis suggest that the efficacy of diversification
strategies can depend strongly on market conditions. More generally, the systemic impli-
cations of diversification and its relationship with the notion of differentiation between
the holdings of different market players are uncertain. In Delpini et al. (2019) the network
of mutual funds portfolios in the United States has been studied across the crisis. It has
been found that diversification has increased and, less predictably, investment similarities
have decreased. Simulations show that the observed similarities between portfolios are
more likely than one can expect by chance and finite-size effects, even when controlling
for strongly connected assets, and finally there exist groups of highly similar portfolios.
This makes the network riskier with respect to random counterparts to parity of portfolio
diversification. Accordingly, the analysis in Fricke (2019) suggests that, while diversifica-
tion may reduce risk for an individual portfolio, the structure of the similarities across
mutual funds could be key in determining systemic risk.
In this paper we study bipartite networks of portfolio holdings (Delpini et al. 2019;

Lin and Guo 2019; Braverman and Minca 2018; Guo et al. 2016). We model a hold-
ings network as sub-system of the embedding financial market wherein the numbers of
outstanding shares of each stock are treated as constants and provide global market con-
straints.We aim at analyzing how the outreach of financial shocks in the holdings network
depends on network topology, portfolio diversification and differentiation, as well as on
the type of shock applied and the relative size of the network. In particular, we want to test
if more diversified portfolios can actually reduce risk at the systemic level as one might
expect. In order to generate random scenarios for comparisons, we take advantage of
algorithms that are required to satisfy the global constraints at any time. Such algorithms
mimic the actual process of increasing, reducing or replacing asset positions through
buy/sell orders to the market. In particular, we consider explicitly scenarios where holders
reallocate their wealth to either the original or randomly chosen assets in a way to achieve
the most diversified portfolio compatible with the constraints in force. We develop the
analysis in a computational setting, exploiting a snapshot of the USmutual funds holdings
network as a test case. We extensively compare the original network with the simulated
scenarios and try to better characterize the interplay between portfolio diversification
and differentiation. We then simulate the process of propagation of exogenous shocks
to asset prices, based on a dominating flow-induced trading dynamics wherein negative
fund performances are followed by asset fire-sales (Greenwood et al. 2015; Fricke 2019).
We do that for both targeted and unselective shocks and compare the systemic damages
registered for each scenario.
In “Model of bipartite network of holdings” section we formalize the notion of a

holdings network within the market and its representation as a bipartite graph. In
“Market model of flow-induced trading” section we describe the dynamics of shock prop-
agation that will be used in the simulations. “Algorithms” section describes the basic
concepts underlying the algorithms for generating rebalanced portfolios or performing
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holdings reshuffle. The statistical properties of the generated scenarios, their compari-
son in terms of diversification, differentiation and riskiness in front of different kinds of
shocks are presented in “Results” section. We draw conclusions afterwards.

Materials andmethods
Dataset

As a case study for our analysis, we employ a snapshot of the bipartite network of US
mutual fund holdings corresponding to the third quarter of 2012. The network was
inferred from data in the Survivor-Bias-Free US Mutual Funds database provided by the
Center for Research in Security Prices, The University of Chicago Booth School of Busi-
ness. We only considered equity funds with a reported Total Net Assets (TNA) greater
than or equal to one million US dollars (USD) and, in addition, we discarded funds that
are classified as International and Global. We parsed the data for just the holdings that
correspond to stocks with a valid ticker. Assets with coupon or maturity information and
derivatives were not considered. This filtered network has 3497 different funds investing
in 9015 different assets. The number of holdings is 550,554 for a total asset value of 2.61
trillion USD. In the following, we will use the generic term “holders” to refer, in particu-
lar, to US mutual funds and their asset managers, and “holdings” to indicate the different
stocks in the funds’ investment portfolios.

Model of bipartite network of holdings

We model a network of holdings with m portfolios and an investment universe of n dif-
ferent stocks as a bipartite graph (Caldarelli 2007; Newman 2010). We first introduce the
network’s incidence matrix B = (bij), where bij = 1 if portfolio i invests in stock j and
bij = 0 otherwise. The number of holdings is the number of the non-zero elements of B
and we will indicate it as nh = |E|, where E = {(i, j)} stands for the set of the holdings and
|E| for its cardinality. Let nij be the number of shares of stock j in the portfolio and sj the
stock price. The share matrixN = (nij) can be assumed as the weighted incidence matrix.
The TNA of portfolio i is pi = ∑n

j=1 nij sj = (Ns)i where s = (s1, s2, . . . , sn) is the vector
of stock prices. By introducing the value matrix V = (vij) whose elements vij = nij sj are
the holding values, the TNA can be written equivalently as pi = (V1n)i where 1n is the
vector with all n components being one. In the following we will also refer to the portfolio
weight wij = vij/pi of each position, representing the relative weight of an individual
position into a stock with respect to the portfolio’s TNA.
Such network is a subsystem of the whole “market”. The number Nj of outstanding

shares of each stock j = 1, . . . , n is assumed to be constant in the market. We do not take
into account share splitting or new issues. This implies that holders’ portfolios can not
hold more shares at any time t than those outstanding:

∑

i
nij(t) ≤ Nj , j = 1, . . . ,m . (1)

The above inequalities represent global constraints. These need to be satisfied during
all stages of the execution of the randomization algorithms and at any time during the
propagation of exogenous shocks through the portfolio network.
The exact values of Nj can not be retrieved easily. However, if we think of the hold-

ings network as a small-scale representation of the market, we can introduce a scaling
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parameter c and imagine that the total value of each stock in holders’ portfolios initially
is a fraction 1/c of its value in the whole market. In this spirit, and for the purposes of
simulations, we make the following choice for the outstanding shares:

Nj = c
∑

i
nij(0) . (2)

Parameter c captures the size of the network, in total assets terms, relative to the market:
the larger c the more the holdings network is to be considered small with respect to its
embedding market. Considering the total assets value of our test network (see “Dataset”
section), and that the New York Stock Exchange had a market capitalization of 30.1 tril-
lion USD as of February 2018, c = 10 can be considered a sensible choice. We will also
compare the results for this value to those for c = 2 and c = 100, to also account for
scenarios where the holdings network represents a large or small fraction of the market
respectively.

Market model of flow-induced trading

We are interested in studying how the aggregate fragility of the network is dependent
on the overlap of portfolios and in testing interaction between portfolio diversification
and overlap. We consider a case where market-wide negative events can determine mass
investor outflows from funds. In such events, a fund will be forced to liquidate part of
its asset positions in order to repay leaving investors. This trading activity will a have a
(negative) impact on stock prices and this will cause funds that were not hit by the original
event to experience losses afterwards.
Usually funds do not retain cash: a flow of investors into a fund is followed by an expan-

sion of asset positions while an outflow is associated to a shrinkage of positions. Outflow
corresponds to fund investors asking for redemption of their shares and to fundmanagers
liquidating some assets to meet requests. Such trading activity by funds is referred to as
flow-induced trading.We are interested in studying the network’s reaction to idiosyncratic
shocks on a small time scale, when portfolio managers fire-sale assets with the effect of
amplifying the shocks and triggering new ones. In particular we aim at measuring how
fast the total value of the network is eroded and to what extent network fragility depends
on asset commonality between portfolios. Accordingly, we consider a model where port-
folio managers can only liquidate assets and we make the working assumption that the
market outside the network is large and liquid enough to absorb such offer.
Consider the dynamics of a portfolio along a generic trading period. Let p(t − 1) be

the end-of-period TNA for period t − 1 and assume that this value includes the fund’s
flow along the period. If the portfolio’s composition was not altered, its return r(t) along
period t would depend only on market price variations and the amount p(t − 1) would
grow at rate r(t) into the amount [1 + r(t)] p(t). We define fund flow along period t the
difference between the closing TNA and the accrued value:

f (t) = p(t)−[ 1 + r(t)] p(t − 1) .

Because flow-induced trading is needed to repay leaving investors, we assume that it
comes with no modifications to the portfolios’ investment strategies, by which we mean
that the stocks in the portfolios will remain the same. This implies that portfolio managers
liquidate every asset in the same proportion (proportional selling). Let ηi(t) be the fraction
of TNA that is liquidated along period t
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∑

j
nij(t) sj(t − 1) = pi(t − 1) [1 + ηi(t)] .

Then proportional selling corresponds to solution nij(t) = [1 + ηi(t)] nij(t − 1) to the
previous equation, with ηi(t) < 0.
Flow-induced trading has an impact on the prices of the securities being traded. The

price impact Ij(x) of trading x shares of a stock is defined as the corresponding relative
price variation. In the literature it is often assumed that a linear relationship exists (Kyle
1985) of the form Ij(x) = x/λj. The stock-specific parameter λj is called the stock’smarket
depth: the larger λj the more liquid the stock and the smaller the price impact of trading it.
We assume that the market depth of a stock can be approximated by the total number of
shares that have been issued and purchased by all participants in the market (outstanding
shares). We take λj = Nj and such parameter accounts for heterogeneity in the liquidity
characteristics of stocks. The price impact on stock j along period t will be

Ij(t) = �sj(t)
sj(t − 1)

=
∑

i �nij(t)
λj

=
∑

i ηi(t)nij(t − 1)
Nj

< 0 . (3)

Note that λj = Nj and the scaling relationship (2) imply that the larger is c the smaller is
the price impact of asset liquidations.
Taking into account both the price variations and asset liquidations, the portfolio TNA

at end-of-period will be

pi(t) =[ 1 + ηi(t)]
∑

j

[
1 + Ij(t)

]
nij(t − 1) sj(t − 1) .

We can motivate a simple choice for the amount of assets liquidated. Consider an indi-
vidual investor soon after a negative return ri(t − 1) has occurred to her fund’s portfolio.
The larger is ri, the higher is the chance that the investor will ask for redemption of one of
her fund shares. Because 0 ≤ |ri| ≤ 1 we can interpret the absolute value of the portfolio
(negative) return as a proxy of such probability. If we consider homogeneous investors and
a uniform redemption probability across the fund’s shares, the average fraction of redemp-
tions will be |ri(t − 1)|. Thus, as a basic approximation and discarding fluctuations, we
also take ηi(t) = ri(t − 1).
To summarize, we consider a dynamics of shock propagation that proceeds as follows:

1 A negative shock to stock prices δ(t) = (δ1(t), . . . , δn(t)) hits the market, with
δj = �sj/sj ∈[−1, 0];

2 This determines negative portfolio returns ri(t) for those portfolios that invest in
the stocks hit;

3 Negative returns determines an outflow from funds and a corresponding
reallocation of portfolio positions nij(t) → nij(t + 1) =[ 1 + ηi(t + 1)] nij(t) where
ηi(t + 1) = ri(t).

4 Flow-induced asset selling has a negative price impact δ(t + 1) = I(t + 1) as given
by Eq. (3) and then the process starts again from step 1:

δ(t) −→ r(t) −→ �nij(t + 1) −→ I(t + 1) = δ(t + 1) .

For our purposes we assume that the first shock δ(1) is exogenous: no outflow occurs dur-
ing the first trading period and the first variation of the TNAs is completely determined
by the negative returns.
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Systemic damage

The dynamics described above implies that the value of every portfolio reduces by the end
of the trading period, or it stays the same if the portfolio is not investing in the stocks that
went through a price downturn. In the same spirit of Delpini et al. (2019), we consider the
relative reduction in the total value of the portfolios D(t) = |∑i pi(t)/

∑
i pi(t − 1) − 1|

as an indicator of network fragility. Comparison of the real network and its counterparts
from random allocation scenarios will provide indication of what configuration is more
robust in the light of global market constraints as well as insight into diversification–
riskiness and differentiation–riskiness correlations.
A comprehensive measure of the fragility of the holding network would require to mea-

sure D with respect to all possible combinations of one or multiple shocks δj(1). This
is impractical due to computational time constraints and sensible choices are needed to
select appropriate values for δ(1). A shock to a single random stock, albeit large, is unlikely
to produce large-scale effects in few trading periods. On the other hand a combination
of very large shocks to many assets will produce a too fast and unrealistic degradation of
portfolio values. A possible strategy is to consider worst case scenarios where a subset of
targets is selected according to some criterion of asset network “centrality”. This was done
in Delpini et al. (2019) where stress tests are performed applying a uniform shock to the
most popular assets. There, the degree centrality k of a stock in the bipartite network was
chosen to select the targets. Let us indicate this choice as the “k-targets” scheme. We will
compare it with the following alternative choices.
Indeed it may not be obvious which measure of centrality is most appropriate. In prin-

ciple, there could be assets that are very popular but account for a small fraction of the
network’s value or, on the contrary, assets that are owned by few large holders with large
portfolio weights. In order to take into account the actual monetary weight that stocks
have in portfolios as well their popularity, we propose to alternatively select targets by
maximizing the following indicator:

hj =
[ m∑

i=1

( vij
sj Nj

)2
]−1

=
[ m∑

i=1

(nij
Nj

)2
]−1

.

If holders owned all outstanding shares in the market, hj would account for the number
of funds that own the largest portions of the stock’s market value, or simply the number
of leading holders of stock j. Taking into account relationship (2), such a number actually
gets multiplied by a uniform factor c2. Nevertheless we continue to think of it as a number
of effective holders and, following this interpretation, we will say that the stocks with the
highest hj are the “most owned” in the network. In this sense, hj is a rescaled version of the
Herfindahl–Hirschman index, computed for stock j in terms of the ratios of the numbers
of shares in each portfolio to the total number of outstanding shares. Let us indicate a
scenario where target stocks are selectedmaximizing hj as the “h-targets” scheme. In both
this scheme and the “k-targets” schemewe apply a uniform random shock δj ∈[ δmin, δmax)

to the ntarget stocks with the largest values of kj and hj respectively. We take ntarget =
0.1×n and arbitrarily set δmin = 1% in order to produce an appreciable systemic damage.
Crises can come with negative returns that are widespread across a lot of stocks. In

order to account for that, we also consider an “all-targets” scheme where a uniform shock
δj ∈[ 0, δmax) is applied to all stocks. This choice also free us from the need of arbitrarily
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selecting a subset of targets. In this case we allow stock prices to eventually be unchanged,
that is δmin = 0%.
Trading of a given stock on a stock exchange is suspended if the price relative loss

exceeds a stopping threshold. This is dependent of the exchange regulation and usually
less than 10%. We therefore set δmax = 10% for all cases.
For every scheme and different underlying holding network, we perform nmc = 100

Monte Carlo runs of shock propagation over T = 10 trading periods. Systemic damage is
computed as the average value of D over the runs.

Portfolio diversification and similarity

Wemeasure diversification by the portfolio’s Herfindahl–Hirschman index

hi =
⎡

⎣
n∑

j=1

(vij
pi

)2
⎤

⎦

−1

=
⎡

⎣
n∑

j=1
w2
ij

⎤

⎦

−1

,

which is interpreted as the number leading holdings in a portfolio.
Similarity between two portfolios can be quantified by their cosine similarity:

sii′ =
∑

j vij vi′j
‖�vi‖ ‖�vi′ ‖ =

∑
j wij wi′j

‖�wi‖ ‖�wi′ ‖ ,

where �vi = (vi 1, vi 2, . . . ) is the vector of holdings of portfolio i and �wi = (wi 1,wi 2, . . . ) is
the corresponding vector of portfolio weights. It is worth noticing that both indicators hi
and sii′ are independent of the portfolio’s TNA and can be equivalently expressed in terms
of either the holding values or the portfolio weights. Throughout the paper, we refer to
the subsidiary notion of differentiation between two portfolios. In symbols, we define it
as the complementary quantity of similarity, or 1 − sii′ , and both quantities take values in
[ 0, 1]. The less two portfolios are similar, the more they are different.
Consider two portfolios of degree ki and ki′ that invest in a perfectly balanced way, with

uniform positions vij = pi/ki and vi′j = pi′/ki′ if stock j is in the portfolio, and 0 otherwise.
Their similarity will be sii′ = kii′/

√
ki ki′ where kii′ is the number of common assets. For a

given degree sequence k1, k2, . . . , km the average similarity across the network is

s̄ = 2
m (m − 1)

m∑

i=1

m∑

i′=i+1
sii′ = 2

m (m − 1)

m∑

i=1

m∑

i′=i+1

kii′
√
ki ki′

.

Consider also a network where every portfolio invests selecting uniformly at random
the same number of stocks it owns in the real network. Since stocks are treated indiffer-
ently, it is natural to expect that such idealized investor would invest the same amount
of wealth in every stock. We will refer to such limit scenario as an “unconstrained
random holdings” network (URH). Because of the balanced positions, in this network
investors maximize diversification conditionally on ki, achieving hi = 1/

∑
j(vij/pi)2 =

1/
∑

j′(1/ki)2 = ki, where the second summation is limited to the stocks j′ that are actually
present in the portfolio.
If we consider many realizations of a network like that, the expected value of the num-

ber of common assets will be 〈kii′ 〉 ≈ ki ki′
n , where the approximation holds as long as

the probability of choosing the same stock multiple times can be neglected. Under this
approximation, the expected value of the average network similarity reads:
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s0 = 〈s̄〉 ≈ 2
m (m − 1)

m∑

i=1

√
ki

⎛

⎝
m∑

i′=i+1

√
ki′

⎞

⎠ , (4)

and this can be considered a benchmark value with respect to which we evaluate devi-
ations from randomness. As for the diversification, since in the URH case the degree
sequence is constrained and each portfolio achieves the maximum diversification hi = ki,
we see that the average network diversification is identically equal to the average degree
h0 = h̄ = ∑

i hi/m. In the following it will be useful to compare different scenarios in
terms of the network’s average diversification and similarity relative to the benchmarks
h0 and s0.

Portfolio rebalancing

In a perfectly balanced portfolio every stock has the weight w = p/k. Conditionally on k,
such a portfolio has maximum diversification h = k. If a holder, starting with an unbal-
anced portfolio, wants to increase her diversification without opening positions in new
stocks, or conditionally on k, she can try to rebalance her positions in the original assets
steering them toward the optimal level w = p/k. At first, some positions are larger than
w, some are smaller and possibly some are just at the threshold. The portfolio’s TNA can
be decomposed in the following way

p =
∑

j
vj =

∑

j∈J+
vj +

∑

k∈J−
vk +

∑

l∈J0
vl

=
∑

j∈J+
(w + �vj) +

∑

k∈J−
(w − �vk) +

∑

l∈J0
w

= k w +
∑

j∈J+
�vj −

∑

k∈J−
�vl

= p +
∑

j∈J+
�vk −

∑

k∈J−
�vk ,

where J+, J− and J0 are the sets of stocks corresponding to redundant, deficient or bal-
anced positions, while �vj is the difference between the actual position on stock j and the
balanced position w. From the previous relationship it follows that

∑

j∈J+
�vj =

∑

k∈J−
�vk ,

which simply states that the total excess equals the total defect. A holder can liquidate
redundant positions and use the liquidity to buy more shares and balance defective posi-
tions. In the absence of limits on the number of shares that can be bought or sold, the
holder will achieve perfect diversification. Otherwise, she will end with a suboptimal
portfolio but the value of h will have increased anyway.

Algorithms

Portfolios can be similar with respect to how many stocks they invest in, what stocks and
how much money is invested in each one. We introduce two synthetic models where the
original holdings are randomized with different strategies. We will refer to them by the
symbols H1 and H2 respectively, distinguishing them from the original holdings network
Hor. In both of them we assume portfolio TNAs and portfolio degree sequences as given.
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In other words, we focus on how stocks are chosen, conditionally on the number of stocks
ki and the portfolio wealth pi.
In model H1, each holder goes through a process of replacement of its original stocks

with new ones chosen uniformly at random. We refer to this as a “shuffling of hold-
ings”. The degree sequence of stocks is not preserved and the degree of each stock is
approximately a binomial random variable with mean |E|/n. As discussed in Delpini
et al. (2019), the degree distribution of the real assets decays slowly and there exist
very popular assets owned by thousands of portfolios. In order to account for the role
of these hubs, we also consider model H2. It differs from H1 in that stock replace-
ment is performed by means of a double-edge swap strategy that preserves the degree
sequence of stocks as well as that of holders. The number of swaps to be performed
is fixed upfront and expressed as a fraction f of the number of holdings, that is
nswap = f × nh.
In both models the ideal investor uses no information during stock selection and treats

stocks as being equivalent, if it was not for the number of available shares that is hetero-
geneous and subject to changes during the allocation process. For both scenarios H1 and
H2 we consider two variants. In the first one holders tries to re-allocate exactly the same
amount of money of each original position. This case will allow us to compare scenarios
for equal portfolio concentrations and will be referred to as an “unbalanced scenario”. In
the second one funds try to achieve the highest degree of diversification possible by going
through the rebalancing process discussed in the previous section. In a way, this is also
coherent with the idea of a random allocation: since stocks are treated equivalently, an
investors will have no reason to make unbalanced positions, provided that enough shares
are available from the market to buy. Rebalancing is performed after randomization: first
a random network is generated where portfolio positions are exactly the same as the orig-
inal ones, be it H1 or H2, and positions are rebalanced afterwards1. We will consider a
rebalanced network for the original topology as well and we will indicate the three bal-
anced cases as Hor,b, H1,b and H2,b respectively to distinguish them from their original or
unbalanced counterparts.
The algorithms for rebalancing and randomization that we use are required to enforce

the global constraints (1) at each stage of their execution. They ensure that when hold-
ers open new positions no more shares can be bought of a stock than actually available
on the market at that very moment. This aspect represents a major contribution of
our work. Indeed, the simple randomization algorithms in Delpini et al. (2019) pre-
served portfolio TNAs and degrees, but they were otherwise unconstrained. Because
no constraints were imposed on the numbers of shares, the total value of every asset
in the network of portfolios was allowed to change. Those routines were instrumental
in comparing the actual network topology with its random counterparts but the cor-
responding network models are to be considered approximations valid in the limit of
infinite numbers of shares. On the contrary, the n global constraints (1) are required
to be satisfied at any time here. In particular, they limit the maximum diversification
holders can reach without altering their degree and this can be critical for systemic risk
assessment.

1The algorithms may be adapted to perform random allocation and rebalancing simultaneously. This increases
algorithmic complexity and execution times and more importantly makes it difficult to guarantee a diversification
increase upfront.
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Both in scenario H1 and H2, one holding at a time is replaced. When position vij is
to be re-allocated, vij/sj shares are sold of stock j and vij′/sj′ shares need to be bough
of stock j′ from the market. Since the number of outstanding shares is limited, the ran-
dom re-allocation of an individual portfolio can fail. It can happen that the shares of j
that are available on the market to buy at a given time are not sufficient to re-allocate the
desired position. It can also be the case, in scenario H2, that the stock that was sampled
as a replacement can not be swapped with the original one without either violating the
global constraints or changing the stocks’ degree sequence. In such cases, a failure is reg-
istered and a new stock is randomly sampled for replacement. When a limit number of
consecutive failures is reached during the allocation of a given portfolios, the whole ran-
domization process is reset and restarted from the very beginning after a reshuffle of all
stocks and holders. This is done to stochastically escape configurations that would not
allow full re-allocation of all portfolios and to find possible solutions that may be reached
through a different sequence of holding replacements.

Results
We first provide a comprehensive summary of the statistical features of the original
network and the balanced and/or random scenarios, in terms of portfolio diversifi-
cation and similarity. We also compare them with the unconstrained random bench-
mark URH introduced previously and provide a nice model representation in a two-
dimensional parameter space. Then we show the results of shock propagation across
the different topologies and draw conclusions about the relationship between sys-
temic risk, the selective or unselective nature of the shocks, the degree of diversifica-
tion and similarity of the portfolios and also the relative size of the network to the
market.
All routines used to generate random scenarios suffer from round-off errors to some

extent. This means that even though the algorithms are guaranteed to preserve portfolio
TNAs and total network value exactly, numerically they do not. In the case of unbal-
anced scenarios, the h index of portfolios is not preserved exactly either. We checked
numerical accuracy by looking at the following quantities. As for the total network
value and the TNAs, we considered the absolute differences Merr = |∑ij vij − Mor| and
perr = max

i=1,...,m
|∑j nij sj − pi,or|. For the diversification index, we computed the relative

error herr = max
i=1,...,m

|hi/hi,or − 1| instead. These errors turn out to be negligible with
respect to the order of magnitude of the corresponding quantities involved in the analy-
sis, see Table 1. We also include in the table the average relative increase of diversification
and the fraction of edges that are different from the original network. These quantities
are defined as hincr = ∑

i[ (hi − hi,or)/hi,or] /m and Ediff = |E ∩ Eor|/|Eor| respectively.
Rebalancing guarantees a large increase of diversification in all cases. On average, it allows
portfolios to more than double their initial value of h. The larger c, the larger the diver-
sification gain, as expected because a large c increases the probability for a holder to
attain perfect rebalancing of her positions. As for modelH2, changing f from 1 to 10 does
not provide a significant diversification gain. The value of Ediff measures how much the
topology of the network has been altered by the randomization procedure. We register
a turnover of holdings between 68% and 89%. For given c, model H2 has a slightly lower
turnover because the random selection of new holdings is limited by the requirement of
preserving the stocks’ degree sequence. Increasing f to 10 allows to reduce the turnover
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Table 1 Numerical errors affecting the relevant quantities in the balanced and random scenarios

Network c f hincr Ediff Merr (USD) perr (USD) herr

Hor,b 2 1.13 0 0 4.6·10−4

Hor,b 10 1.34 0 4.9·10−4 6.8·10−4

Hor,b 100 1.36 0 4.9·10−4 6.4·10−4

H1 2 0.83 4.9·10−4 6.1·10−5 7.3·10−15

H1 10 0.86 0 1.5·10−4 1.1·10−14

H1 100 0.89 0 1.5·10−4 7.5·10−15

H1,b 2 0.72 0.83 0 2.1·10−4

H1,b 10 1.05 0.86 0 4.3·10−4

H1,b 100 1.22 0.89 4.9·10−4 6.3·10−4

H2 2 1 0.68 0 1.1·10−4 7.9·10−15

H2 2 10 0.74 0 1.2·10−4 7.2·10−15

H2,b 2 1 1.15 0.68 0 5.0·10−4

H2,b 2 10 1.18 0.74 4.9·10−4 3.3·10−4

H2 10 1 0.69 0 7.6·10−5 7.5·10−15

H2 10 10 0.74 0 4.6·10−5 9.4·10−15

H2,b 10 1 1.33 0.69 0 7.9·10−4

H2,b 10 10 1.34 0.74 0 6.6·10−4

H2 100 1 0.69 0 1.5·10−4 8.0·10−15

H2 100 10 0.74 4.9·10−4 1.2·10−4 1.1·10−14

H2,b 100 1 1.36 0.69 0 1.0·10−3

H2,b 100 10 1.36 0.74 0 6.2·10−4

difference with respect to model H1 and will be assumed as the default in the following
discussion of the results.
In Table 2 we provide a 5-number summary of the statistical distribution of h, plus its

interquartile range and mean value h. The first, second and third quartiles, and the 9th
and 91st percentiles are reported.
The distribution broadens after rebalancing and themeanmore than doubles. Most evi-

dently the distribution’s right tail grows fatter and the upper percentile q (0.91) can even
increase threefold depending on the randomization model and parameters. In Table 3 the
same summary is provided for the distribution of the portfolio similarity. We omit the
lower percentile and the first quantile because they are zero for all cases.

Table 2 Summary statistics of the portfolio diversification in the real network and its counterparts in
the balanced allocation scenarios

Network c f qh(0.09) Qh,1 Qh,2 Qh,3 qh(0.91) IQRh h̄

Hor 5.9 16.4 37.3 68.1 134.3 51.7 64.0

Hor,b 2 9.0 27.7 58.0 112.5 405.9 84.9 138.5

Hor,b 10 10.0 29.0 60.0 118.0 442.4 89.0 155.6

Hor,b 100 10.0 29.0 60.0 118.0 442.4 89.0 157.2

H1,b 2 8.0 24.8 51.7 99.9 310.8 75.1 111.9

H1,b 10 9.0 27.5 56.6 109.7 377.0 82.2 134.2

H1,b 100 9.5 28.2 58.8 114.5 412.8 86.3 147.1

H2,b 2 1 9.1 27.9 58.0 113.5 406.1 85.6 141.1

H2,b 2 10 9.1 28.0 58.3 114.1 411.4 86.1 144.1

H2,b 10 1 10.0 29.0 60.0 117.8 438.0 88.8 154.7

H2,b 10 10 10.0 29.0 60.0 117.7 438.5 88.7 155.5

H2,b 100 1 10.0 29.0 60.0 118.0 442.2 89.0 157.2

H2,b 100 10 10.0 29.0 60.0 118.0 442.4 89.0 157.3



Delpini et al. Applied Network Science            (2020) 5:37 Page 12 of 20

Table 3 Summary statistics of the portfolio similarity in the real network and its counterparts in the
random and balanced allocation scenarios

Network c f Qs,2 Qs,3 qs(0.91) IQRs s̄

Hor 0 4.0·10−2 2.3·10−1 4.0·10−2 5.9·10−2

Hor,b 2 0 6.5·10−2 1.9·10−1 6.5·10−2 5.2·10−2

Hor,b 10 0 6.2·10−2 1.8·10−1 6.2·10−2 5.0·10−2

Hor,b 100 0 6.2·10−2 1.8·10−1 6.2·10−2 5.0·10−2

H1,b 2 1.2·10−2 3.7·10−2 6.4·10−2 3.7·10−2 2.3·10−2

H1,b 10 3.9·10−3 2.8·10−2 4.9·10−2 2.8·10−2 1.7·10−2

H1,b 100 0 2.2·10−2 3.9·10−2 2.2·10−2 1.3·10−2

H1 2 3.2·10−3 2.0·10−2 4.3·10−2 2.0·10−2 1.3·10−2

H1 10 3.4·10−4 1.2·10−2 3.0·10−2 1.2·10−2 9.0·10−3

H1 100 0 7.9·10−3 2.3·10−2 7.9·10−3 6.5·10−3

H2,b 2 1 4.5·10−2 8.1·10−2 1.2·10−1 8.1·10−2 5.4·10−2

H2,b 2 10 4.6·10−2 8.1·10−2 1.2·10−1 8.1·10−2 5.4·10−2

H2,b 10 1 4.2·10−2 7.5·10−2 1.2·10−1 7.5·10−2 5.1·10−2

H2,b 10 10 4.2·10−2 7.5·10−2 1.2·10−1 7.5·10−2 5.1·10−2

H2,b 100 1 4.1·10−2 7.4·10−2 1.1·10−1 7.4·10−2 5.0·10−2

H2,b 100 10 4.1·10−2 7.4·10−2 1.1·10−1 7.4·10−2 5.0·10−2

H2 2 1 2.0·10−2 5.0·10−2 8.8·10−2 5.0·10−2 3.4·10−2

H2 2 10 1.8·10−2 4.4·10−2 7.6·10−2 4.4·10−2 2.8·10−2

H2 10 1 1.8·10−2 4.7·10−2 8.2·10−2 4.7·10−2 3.1·10−2

H2 10 10 1.6·10−2 4.0·10−2 7.0·10−2 4.0·10−2 2.6·10−2

H2 100 1 1.8·10−2 4.6·10−2 8.0·10−2 4.6·10−2 3.0·10−2

H2 100 10 1.6·10−2 4.0·10−2 6.9·10−2 4.0·10−2 2.5·10−2

Indeed, many portfolios do not overlap at all with many others and the correspond-
ing similarity matrix is sparse. If we discard zeros, we obtain the conditioned similarity
distribution that is summarized in Table 4.
Shuffling of holdings suppresses average similarity the most. However, portfolio overlap

is sensibly reduced in model H2 too. Portfolio rebalancing has mixed effects: it reduces
the average similarity in the real network and increases it if performed after randomiza-
tion of the holdings. We also note that a larger c typically results in a lower similarity
because it corresponds to more outstanding shares and weaker constraints on random
stock selection. Moreover, performing more swaps by increasing f in model H2 further
reduces s̄ in the unbalanced case, but its effects are nearly undetectable after a portfolio
rebalance. In Fig. 1 we summarize part of the previous information for the diversification
and the conditioned similarity by means of boxplots limited to scenario c = f = 10.
These plots convey the information that portfolio rebalancing stretches the diversi-

fication distribution towards larger values, and that the real network topology and its
balanced version are characterized by large similarities compared to models H1 and H2.
It also shows that all distributions are skewed.
It is useful to represent all models in a parameter space that is specific for the network at

hand. Its coordinates are the average values of the diversification index and of the portfolio
similarity across the network. We take as a benchmark for these quantities their expected
values for a URH network with the same fund degree sequence of Hor, see Eq. (4) and
the discussion about the perfectly balanced random holdings network model. For our
case network such values are h0 = 157.4 and s0 = 0.011 respectively. The first is an
exact value because it is completely determined by the funds’ degree sequence, while the
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Fig. 1 Boxplots of the diversification and similarity distributions in the case c = f = 10. As for the similarity,
the conditional distribution for sij 
= 0 is represented. The ends of the whiskers correspond to the 9th and
91st percentiles

second value was obtained as a sample mean of the average network similarity for 100
Monte Carlo realizations of model URH.We then consider rescaled coordinates h̄/h0 and
s̄/s0 for all scenarios under investigation. These are useful to see at a glance how much
actual values deviate from a completely random case. The original network, the balanced
and randomized counterparts are then represented as in Fig. 2, where the marker size is
increasing with the value of the scaling factor c.
The plot supports the previous considerations about the statistical distributions of the

h and s and provides some more insight. In the original network and the randomized

Fig. 2 Representation of the holdings network Hor and its random and balanced counterparts. The
coordinates of the parameter space are the normalized values of the network average diversification and
similarity. Marker size reflects increasing values of the scaling factor c from c = 2 to c = 100. Here Hor is
associated to the value of c = 1 just the purpose of representation. The points aligned vertically correspond
to the real network and its randomized versions H1 and H2, while the points on the right correspond to the
balanced scenarios Hor,b, H1,b and H2,b
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scenarios without a rebalancing, the average diversification is considerably smaller than
for a URH network. The balanced models get a higher diversification that converges to
the benchmark h0 for increasing c. The real network exhibits an average similarity that
is more than five times larger than s0, in agreement with the findings of Delpini et al.
(2019). Model H2 preserves the strongly connected stocks but still the average similar-
ity is reduced noticeably. Model H1 has similarity close to s0. Rebalancing increases s̄ for
both H1 and H2 and the similarity gain is decreasing with c. Noteworthy, it has a slightly
suppressive effect for the original network, as noted earlier. This indicates that holders
correlate with respect to both the choice of which stocks to buy and their proportions,
and that unselective rebalancing of all positions mitigate such correlation. We also notice
that for large c, scenariosHor,b andH2,b tend to converge to the same region of the param-
eter space. Overall, this plot shows that it is difficult to steer the real network toward
benchmark values of both diversification and similarity: the holding reshuffling brings the
average similarity closer to h0 but the rebalancing needed to raise h̄ comes with a new
similarity gain.
A major goal of this analysis is the study of systemic fragility in the light of the global

market constraints and the different diversification and similarity profiles of the con-
sidered scenarios. To this end we performed simulations of the flow-induced trading
dynamics of shock propagation. This was done for three kinds of exogenous shocks
corresponding to the schemes “k-targets”, “h-targets” and “all-targets” introduced in
“Systemic damage” section. In Fig. 3 the damage curves of the original network and the
random unbalanced scenarios are compared for varying c.
The actual fragility crucially depends on how the exogenous shock is applied and the

relative market size of the network. When the most popular stocks get hit and c = 10,Hor
and H2 are the most risky scenarios and undergo similar damages. The shuffled network
H1 is significantly safer. As H2 preserves strongly connected stocks while shuffling avoids
them, we guess that in this case the effects of hubs dominate. When the shock affects the
most owned stocks (those with the highest h), the systemic damage reduces, especially in
scenarios H1 and H2, while the real network is the most risky. Under scheme “h-targets”,
weights play a crucial role and the gap between Hor and H2 is most evident. However,
when all stocks in the market receive a shock (“all-targets” case), we observe a reversal of
the damage curves, with Hor becoming the safest configuration and H1 the most fragile.
This is a major point, because market crashes can come with negative returns that are
widespread across stocks. The figure also shows that the systemic damage becomes sat-
urated after just few periods, which supports consideration of our framework for stress
testing holdings networks over short time horizons. Similar trends are observed when
c = 100 but with a reduced damage, as expected since stocks have larger market depths.
When c = 2, the network accounts for half the market and Hor still provides the most
robust scenario in front of a shock that interests all the stocks. Unexpectedly, in this case
it is also the most robust under the “k-targets” stress test.
What are the systemic effects of making portfolios less concentrated? Figure 4 shows

the damage ratio for each balanced scenario to its unbalanced counterpart and provides
an answer.
Again, it depends on the network topology and portfolio weights distribution, as well

as strongly on how we stress the system. For targeted shocks, rebalancing real portfolios
is beneficial as long as the network is relatively small, while for c = 2 a more diversified
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Fig. 3 Systemic damage provoked by three types of random shocks for increasing values of the scaling
parameter c

network with the real topology eventually becomes more risky. In front of a widespread
shock, rebalancing is always detrimental toHor after a while. The systemic loss is between
few points and 30% larger than it was for the original network, depending on c, and such
negative systemic effect persists over time. Turning to random model H1, rebalancing
has slightly positive effects under unselective shocks. Under targeted shocks, increasing
diversification results in a more risky network, with the exception of c = 10 where H1,b
turns safer after a transient. Model H2 behaves qualitatively like Hor in the “k-targets”
stress test, while the effects of rebalancing for this model are more similar to H1 in the
other cases. Noteworthy, when we target the most owned stocks, the negative effects of
rebalancing for H2 are severe and persistent over time for all values of c. It also worth
noting that in some circumstances, the effect of rebalancing depends critically on the
number of periods elapsed. It can start positive and become negative after a transient, or
the other way round.
We can abridge the most of these findings in the representations of Figs. 5 and 6.
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Fig. 4 Ratio of the systemic damage in each balanced scenario to the damage in the corresponding
unbalanced configuration, with respect to the three kinds of random shocks and for increasing values of the
scaling parameter c

In the first figure the systemic loss after half the trading periods is shown against the
normalized network diversification. No evident correlation can be detected in this case
and, to parity of diversification, fragility is strongly mediated by the type of shock applied
and the relative size of the network. In Fig. 6 a comparison of the systemic loss and the
corresponding normalized network similarity is performed.

Fig. 5 Systemic damage versus the normalized average diversification of the corresponding network at
T = 5 for c = 10
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Fig. 6 Systemic damage versus the normalized average similarity of the corresponding network at T = 5 for
c = 10

We still have a strong interplay between fragility, network size and shock type. However,
a positive correlation between the systemic damage and the average similarity is observed
under targeted shocks, with a Pearson correlation coefficient of ρk = 0.3 and ρh = 0.6
respectively. Such correlation becomes negative under unselective shocks, corresponding
to ρall = −0.3. This figure delivers useful insight on the effects of investment similarities
and we believe that the previous findings represent a major contribution of this work.

Conclusions
Nowadays, it is of the utmost importance to quantify riskiness in financial systems, espe-
cially when investments in foreign assets can provide a global outreach to the propagation
of financial distress. Depending on market conditions and the simultaneous activity of
investors, a systemic risk component may emerge if diversification strategies are similar.
Such effect was suggested in Delpini et al. (2019), and supported by simulations of distress
propagation in the holdings network of USmutual funds. The randommodels behind that
analysis were admittedly simple. It was assumed that funds can reallocate their positions
freely, without any constraints on the amount of shares available from the market. Also,
that analysis did not take into consideration the possibility for asset managers to increase
diversification by balancing positions without modifying the network’s topology.
In this paper, we improved and extended the previous study of a bipartite network of

portfolio holdings. We adopted a more general point of view and modeled the network as
a subsystem of the whole market. We explicitly took into account the global constraints
posed by the limited numbers of shares in the market. Such number changes from stock
to stock and accounts for heterogeneity in stock liquidity characteristics. We exploited
more sophisticated algorithms that are required to satisfy such global constraints at any
time of their execution. By their means, we could generate synthetic scenarios of both
balanced and unbalanced portfolios and perform an extensive computational analysis of
how such scenarios react to different types of exogenous shocks.We considered a dynam-
ics of distress propagation where the numbers of shares determine the sensitivity of each
stock’s price. Such parameters are the same for the original network and its random coun-
terparts, which now allows to perform a more consistent comparison. For every scenario
we also simulated its balanced counterpart, representing a case where asset managers try
to rebalance all their positions in the quest for a higher degree of diversification.
We found that randomization of the original holdings for fixed portfolio diversification

has a strong suppressive effect on similarity even under the global constraints. This effect
becomes stronger as the relative market value of the network decreases. We showed that
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a large increase of the average diversification can be achieved by portfolio rebalancing,
even for a moderate number of outstanding shares. We also provided a convenient rep-
resentation of scenarios in a diversification–similarity space of coordinates relative to an
unconstrained randommodel of balanced investments. With respect to such benchmark,
the real holdings network has small average diversification but strong average portfolio
similarity, and a significant increase in both differentiation and diversification can not be
achieved trivially.
We then performed an extensive comparison of the different scenarios in terms of

the systemic damage from an exogenous shock applied to the corresponding network.
We considered both the case of targeted shocks to the most popular or most owned
stocks, as well as a widespread random shock to the prices of all stocks. Results show
that there is an interplay between diversification and investment differentiation, which
varies across the different network topologies. Network’s fragility can depend to a large
extent both on the way shocks are applied and on the relative size of the network, and
results can be unexpected to a degree. Overall, a correlation is found between systemic
risk and portfolio similarity. Such correlation is positive under targeted shocks and neg-
ative under unselective ones. A rebalancing of the real portfolios makes the network less
prone to large damages in front of targeted shocks, provided that the network can be
considered small with respect to the market. Remarkably, that also makes it riskier under
widespread shocks. This means that increasing diversification may possibly be detrimen-
tal in systemic terms depending on market conditions. An initial transient of time where
rebalancing changes from beneficial to detrimental, or the opposite, can be observed.
Additionally, our results show that holdings reshuffling do not automatically results in
a safer network. In particular, in a scenario where all stocks may undergo a negative
downturn, the real network provides a safer environment regardless of its relative size.
We believe that our findings can be of major interest when it comes to assessing sys-

temic risk properly and for informing effective policy actions. As a further perspective, the
effects of diversification-increasing strategies that change the holders’ degree sequence
could be investigated. Also, a higher-statistics Monte Carlo study of each random sce-
nario for a fine-grained grid of model parameters would provide a better coverage and
broader insight.
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