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available at the end of the article framework of multilayer networks. In parallel, many aspects of real systems are
increasingly and routinely sensed, measured and described, resulting in many private,
but also open data sets. In many domains publicly available repositories of open data
sets constitute a great opportunity for domain experts to contextualise their privately
generated data compared to publicly available data in their domain. We propose in this
paper a methodology for multilayer network analysis in order to provide domain
experts with measures and methods to understand, evaluate and complete their private
data by comparing and/or combining them with open data when both are modelled
as multilayer networks. We illustrate our methodology through a biological application
where interactions between molecules are extracted from open databases and
modelled by a multilayer network and where private data are collected experimentally.
This methodology helps biologists to compare their private networks with the open
data, to assess the connectivity between the molecules across layers and to compute
the distribution of the identified molecules in the open network. In addition, the
shortest paths which are biologically meaningful are also analysed and classified.

Introduction
Network theory is an important tool for describing and analysing complex systems which
are represented as mathematical graphs. It has many applications in social, biological,
physical, information and engineering sciences (Fortunato 2010; Newman 2003; Gosak et
al. 2017; Seminar 2019; Pavlopoulos et al. 2011; Djemili et al. 2017). For example, it has
been used to capture interesting properties of many real networks, e.g. having a heavy-
tailed degree distribution, having the small-world property, the existence of nodes playing
central roles and/or the existence of modular structures (Newman 2003).

Recently, an increasing body of work investigates networks with multiple types of links,
as well as the so-called “networks of networks” Variants of such systems have been exam-

ined decades ago in disciplines such as sociology and engineering, but only recently have
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they been unified, along with other nomenclature, within the framework of multilayer
networks defined by Kivela et al. (2014).

In parallel many aspects of real systems are increasingly and routinely sensed, measured
and described, resulting in many private, but also open data sets. By private data we mean
data collected internally in a company or institution. Open data refers to the idea that
some data should be freely available to everyone to use and republish at will, without
restrictions from copyright, patents or other mechanisms of control.

In many domains publicly available repositories of open data sets constitute a great
opportunity for domain experts to contextualise their privately generated data compared
to publicly available data in their domain.

In this paper we propose a methodology for multilayer network analysis in order to pro-
vide domain experts with measures and methods to understand, evaluate and complete
their private data by comparing and/or combining them with open data when both are
modelled as multilayer networks.

Main contributions of this paper are:

1. We propose a new formalism for multilayer network that allows to carry out fine
analysis by considering two levels: the intra-layer level and the inter-layer one. We
show examples of how we can extend the definition of global and local measures as
density and centralities to the inter-layer level and the whole network.

2. We define the private multilayer network: the induced graph elaborated from the
private data is extracted in order to be analysed and compared to the whole
network.

3. We define the private egocentric network: the notion of egocentric network which
is defined around a given ego node (Marsden 2002; Djemili et al. 2017) is extended
to an egocentric network around private multilayer network.The private egocentric
network can be used to evaluate the connectivity strength between the different
layers of private data in comparison to the whole network. The private egocentric
network can also help to focus the study of the private network in the space of its
neighbours across the layers especially in the context of very large-scale open
networks.

4.  We define layer and inter-layer reachability metrics of a given sub-network: this
measure is based on the private egocentric network and help to appreciate the
connectivity strength of private data across layers.

We illustrate our methodology through a biological application. The open multi-
layer network is constructed from open databases where weighted interactions between
proteins-proteins, metabolites-metabolites and proteins-metabolites are given. The pri-
vate data is a set of proteins and metabolites collected experimentally and present a set of
nodes in the open multilayer network. We show how the private network is constructed,
analysed and compared to the whole (open) network. The private egocentric network
is analysed and the layers reachability metrics are computed and discussed. Pathways
between pairs of private proteins are then analysed and classified according to their loca-
tion in the open network (private, egocentric or extra-egocentric). The KEGG (Kyoto
Encyclopedia of Genes and Genomes) open data set (Kanehisa and Goto 2000) is also
used to describe pathways.
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By applying this methodology on the biological data we show how it can help biol-
ogist to complete, assess and interpret their private data by using the open network:
weighted interactions between private collected molecules are added by using the open
network. The connectivity between the molecules inter-layers and across layers are com-
puted and the distribution of the identified molecules in the open network are observed
and interpreted, Reachabilities across layer is computed in addition shortest paths which
are biologically meaningful are also analysed and classified.

The rest of this paper is organised as follow: we present in “Multilayer network anal-
ysis elements” section elements and notions we use for multilayer networks analysis.
Related work are presented in “Related work” section. We present in “Biological applica-
tion” section the biological application. We finally present conclusion and perspectives

in “Conclusion and perspectives” section.

Multilayer network analysis elements

We firstly present a new formalism of multilayer network as well as examples showing
how we update global and local measures to the context of multilayer networks. We give
then a formal definitions of multilayer egocentric network, of private multilayer network
and of private egocentric one. We show then how we can use these notions to define the

layer and inter-layer reachabilites of a given sub-network.

Notations, properties and metrics
We represent a multilayer network by a tuple that contains a set of vertices, a set of edges
intra-layers and a set of edges inter-layers.

Let N = (V, E, C) be a graph containing / layers (see Fig. 1)

1. V={V,.V;..Vj}is the set of vertices contained in the layers where [ is the number
of layers [ > 1, V; is the set vertices in the layer number i, V; = {v’i, ..vill,}, n=| Vi |

2.  E ={Ej,..E; ..Ej} is the set of edges intra-layer: E; is a set of edges in layer number
i, we denote | E; | by m;. E; = {(V;, vf() | V; eV, vf< e Vit

3. C={Cyj;,..Cij, | it # ji} is the set of inter-layer links , b is the number of
bipartite components. Cj; = {(v;'(, 1/,;,) | Vf( eV, 1/]'(, € Vj}, we denote | C;; | by cj.

This representation allows to propose an adaptation of global and local metrics taking
into account the intra-layers and the inter-layer links. We can then aggregate these met-
rics in order to propose a metric for the whole network. For example, we can propose the

following metric for the density:

e Intra-layer density for the layer i: D; =

#x0=D
¢ Inter-layer density for the bipartite component Cj;:
Dj= .

j = ni*n;j

ZCijeC CijFDteq.n M

ni*x(n;—1)
2 cyec Mi¥F ey~

e Multilayer density: D =

Likewise, the degree centrality can be generalised to the inter-layer level and to the
whole networks. The centrality degree and connectivities of a vertex v} belonging to the

layer V; are given by:

1 An edge is defined by (v, u) for directed graph respectively {v, u} for undirected graph
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Fig. 1 Example of a 2-layers network

deg;(v! AN
_ deqi(v)) where n; =| V; | where deg; (vl‘) is the degree

o Intra-layers degree: CD (V;) |
of v}'< in the layer i.
e Inter-layers connectivity: we define the connectivity of a vertex in the bipartite
, deor. (V! ,
component Cj; as CNy (v}) = eg(‘;;—’;(v") where ny =| Vi | and degc,, (vj() is the

degree of vﬁ( in Cy
e Multilayers connectivity: we propose to generalise the definition of the connectivity
degi(v)+Y_y CNy(v))
_ aegil; Dk KV | Cy € C,

of a node to the whole network: CN (Vll) S

Multilayer egocentric networks
Given a complex network (and more particularly an online social network), the egocentric

network is defined around an ego node u is a sub-network containing the ego u and the
alters (the neighbours) as well as the set of links of the ego-network. In the literature, two
cases of online personal networks are identified depending on the distance of the alters

from the ego: 1-level and k-level.
Let G = (V,E), and u a vertex, the 1-level egocentric network of u G* = (V¥ E¥) is

given by (see Fig. 2) :
o Vi={xeV|(uv) eE}U{u}
o Fr={(x,y)€E|lxeViArye V¥

We propose an extension of this definition to multilayer networks which aims to access
to the alters located in the same layer as well as the layers connected to the one of the ego

(see Fig. 3).
ueV, N =G(V* E%)

o Vi={xeVi|(ux) € E}U{u}Ur{y e Vi | (u,y) € Cy}
o El={xy) €L |lxeV Anye V" Ur{(uy) € Cyl}
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Fig.2 1-level and 2-level ego-networks

Private multilayer network and private egocentric network
As mentioned before the purpose of this study is to provide domain experts with mea-
sures and methods to understand, evaluate and complete their private data by comparing
and/or combining them with open data when both are modelled by multilayer networks.
In our case, private data is a subset of nodes that are identified in the open network. The
interactions between these private nodes are extracted for the open network We there-
fore propose to study the induced graph elaborated from the private data. This one has to
be constructed, analysed and compared to the whole (open) network (see Fig. 4).

Let N be a multilayer network (extracted form the open data) : N = (V, E, C) containing
[ layers. Let PV be a set of vertices PV = {PV1,..PV}} such that : PV; C V; (private data).
We define the private multilayer Network N[ PV] = (PV, PE, PC) where

Vj4 Vij5
Vj1 i
| '
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Vj2 i Vj9
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Vi8
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Fig. 3 Example of a 2-layers egocentric network
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Fig. 4 Multilayer network and private data: blue graph represents the open network, red nodes (on the left)
are private data. Red graph (on the right) represents the private network

1. PPE = {PE,,..PE;, ..PE}} is the set of intra-layers edges:
PE; is the set of edges in the layer number i given by:
PE; = {(pv},pvf{) € E;| pv; € PV,-,pv;; € PV,'}

2. PC={PCyj,.PCyj, | ix # jx} is the set of inter-layer links
PCj = [(pv;, V) € Gy | prl € PV, € Pv,}.
In Fig. 4, the blue graph represented the multilayer network N extracted from the
open data, red nodes represent the private data and the red graph illustrates the
private multilayer network N[ PV] .

We extend now the definition of egocentric network (which is defined around a given
ego node (Marsden 2002; Djemili et al. 2017)) to an egocentric network around private
multilayer network.

We define the private egocentric network as follow:

Let N[PV]= (PV,PE,PC) be the private mutilayer network. We define the private
egocentric network : N*V = G (VPV,EPV)

o VPV =U,epylx € Vil (x) € E Ut Uy € Vi | (w,y) € Cix | Ci € C}
o PV =, cpvixy) € Eilxe V¥ Ay e VUil y) € Cy | Cik € C}

In Fig. 5, red nodes represent the private data and the graph containing red and yellow
NPV

nodes and edges illustrates the private egocentric network

Layer and inter-layer reachability of a subnetwork

We define a graph reachability for a given layer as follow:
Let N = (V, E, C) be a multilayer network containing / layers, G = (V, E) a subgraph of

N and i a given layer.

e Reachability(G,i) is given by the subgraph G; = (V}, E}):
- v,.’:{v,’.ie VNV
- E = {(v;i,v;f) € EﬂEi}
In order to appreciate the connection strength between private nodes across layer, we
apply the reachability on the private egocentric network computed on a given layer i to

another layer j. Let N°Yi = G (VP Vi, EPVI ) be the private egocentric network computed
from the layer j, let the reachability Reachability (NP Vi, j) to another layer j be the graph
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Fig. 5 Multilayer complex network: private egocentric network is represented by red and yellow nodes and

edges

N]/.PV". Let V}./ be the set of nodes of N}Pw, we can now evaluate the ratio of reachable

private nodes on layer j by computing the precision and the recall as follow (see Figs. 6

and 7):
VN PV;

isionR(i, ) = j
precisionR(i, j) = | V;’/
V! NPV;

|

URG,j) = |-
recallR(i, j) = | PV,
precisionR(i, ) gives the ratio of private nodes belonging to layer j that are reachable

from layer i to all reachable nodes in the layer j.

L

Li

Vi3
Fig. 6 Reachability from layer i to layer j: red nodes are private ones, yellow and orange nodes are
egocentrics ones computed from layer i, green nodes are the egocentric ones that belong to the the private
network of the layer j, precisionR(ij)=1 and recallR(ij)=0.4: this means that all reachable nodes from layer i are

private ones but only 40% of private nodes of the layer j are reachable from layer i
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Fig. 7 Reachability from layer j to layer i: red nodes are private ones, yellow and orange nodes are
egocentrics ones computed from layer j, green nodes are the egocentric ones that belong to the the private
network of the layer i, precisionR(j,i)=0.5 and recallR(j,i)=1: this means that 50% of reachable nodes from layer
j are private ones but all private nodes of the layer i are reachable from layer j

recallR(i, }) is the ratio of private nodes of the layer j that are reachable from layer i to all
private nodes belonging to layer j.

We define also a graph inter-layer reachability for a given bipartite part as follow. Let
N = (V,E, C) be a multilayer network containing / layers, G = (V,E) a subgraph of N

and Cj; is a given bipartie part.

o InterReachability(G, Cy) is given by the subgraph G;; = (Vl.;, Elfj)

- Vi={evavijulevny)
- gy ={(vivl) eEncy)
Given a bipartite part C;, we can apply the InterReachability from the private induced
multilayer network or from the private egocentric one.

For example, let N[PV] be the multilayer
InterReachability(N[ PV], Cj) be the graph lej we can evaluate the reachable bipartite

e
edges by computing the ratio é where C;i =| lej | and ¢ =| Cj; |

private network, let

Related work

Recently, there have been increasingly intense efforts to investigate networks with multi-
ple types of connections as well as the so-called “networks of networks”. Variants of such
systems have been examined decades ago in disciplines such sociology and engineer-
ing, but only recently have they been unified, along with other nomenclature, within the
framework of multilayer networks defined by Kivel4 et al.

In Kiveld et al. (2014) a complete review of the field of multilayer network is presented,
the networks types, the characteristics of nodes and layers, the notion of aspect as well as
the nature of coupling between layers are detailed.

Many studies are currently addressing themes related to multilayer networks as struc-
ture and dynamics of multilayer networks (Boccaletti et al. 2014; Magnani and Rossi 2013;
Aleta and Moreno 2019), communities detection in multilayer networks (Liu et al. 2018)
and visualisation (Mcgee et al. 2019).

Many work show also that experts in multiple domains as digital humanities (McGee et
al. 2016), biology (Gosak et al. 2017), techno-anthropology etc. present their data using

Page 8 of 28
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the multilayer networks and are aware of the strong necessity of having tools that analyse
their data (Kiveli et al. 2019).

In this paper, we propose a methodology for multilayer network analysis in order to
provide domain experts with measures and methods to understand, evaluate and com-
plete their private data by comparing and/or combining them with open data when both
are modelled as multilayer networks.

This methodology uses a formalism based on a set of graphs some of them represent
layers (see “Notations, properties and metrics” section), others are biparties graphs rep-
resenting the inter-layers connections. This formalism allows us to clearly separate three
types of analysis: the intra-level one, the inter-level one and the global one that aggregate
both (intra and inter) levels.

In Kiveld et al. (2014), a general formalism of the most general type of multilayer
network was proposed, an underlying graph that represents this multilayer network is
defined, where a node is represented by a tuple containing three identifiers: the node one,
the layer one and the aspect one. In addition, two types of edges are proposed: intra-layer
edges and inter-layer ones.

Our formalism for multilayer network allows to carry out fine analysis by considering
two levels (see “Notations, properties and metrics” section) : the intra-layer level and the
inter-layer one. We showed above, examples of how we can extend the definition of global
and local measures as density and centralities to the inter-layer level. Measures for the
whole networks are then computed by aggregating both precedent measures.

In many other work (Battiston et al. 2014), a monoplex network is constructed by aggre-
gating data from the different layers of a multilayer network, the classical definition of
node degree is then applied to the resulting monoplex network. However, network aggre-
gation leads to a loss of information. In Some other work, the distinction of the layers
is maintained and the degree of node is represented by a vector. It is also possible to
define degree and neighbourhood in terms of a focal node and any subset of the layers
(Berlingerio et al. 2013).

On the other hand, we defined layer and inter-layer reachability metrics of a given
sub-network this measure is based on the private egocentric network and help to appre-
ciate the connectivity strength of private data across layers (see “Layer and inter-layer
reachability of a subnetwork” section) .

In Kivela et al. (2014) the mesure of node interdependence is defined as being the ratio
of shortest paths in which two or more layers are used to the total number of shortest
paths. It is a measure to quantify the value added by the multiplexicity to the reach-
ability of nodes. The interdependence of a multiplex is computed as the average node
interdependence.

Biological application

The aim of this application is to study several sets of biological data collected in exper-
imentally related samples (i.e. cannabis samples). Identified molecules (proteins and
metabolites) are measured form the biological collected data in different “omics” exper-
iments: transcriptomics, proteomics and metabolomics. In their experiments, biologist
measured at several time points, contigs: each one quantify genes, spots: each one quan-
tify one or more proteins, and metabolites. Each gene produce typically one protein but

sometimes more proteins.
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Fig. 8 The network construction from the open databases: Protein-protein interactions are extracted from
the STRING database. Metabolite-metabolite and metabolite-protein ones are extracted from the STITCH
database

At this point we only have nodes (but no edges), corresponding to molecules mea-
sured in the experiments. To get relationships biologist frequently used the open STRING
(Search Tool for the Retrieval of Interacting Genes/Proteins) database (Szklarczyk et al.
2019), which is the main protein-protein (and so also gene-gene) interactions database
as well as the STITCH (Search Tool for InTeractions of CHemicals) one. STITCH
(Szklarczyk et al. 2016) is a twin database including edges between metabolites and
metabolites, and also between proteins and metabolites (see Fig. 8). Each interac-
tion in both databases is based on the presence of experimental, coexpression (similar
behaviour across several public available experiment), text mining (appearing in the same
phrase),pathway (participating to the same known biological network). A combined score
aggregating all these types of interactions whose value is are between 0 and 1000 is added
to both databases (see Tables 1, 2 and 3).

The open multilayer network is constructed form the open STRING and STITCH
databases (see Fig. 8). Weighted interactions (edges) between proteins-proteins,
metabolites-metabolites and proteins-metabolites are created according to the value of

Table 1 Examples for proteins interactions extracted from the open STRING database used to
construct proteins layer

protein1 protein2 Coexpression  Experimental ~ Database  Textmining combined
_score

AT1G01010.1 AT1G02220.1 102 0 0 222 298

AT1G01010.1 AT1G02230.1 291 0 0 176 415

AT1G01010.1 AT1G02250.1 0 0 0 202 202
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Table 2 Examples for metabolites interactions extracted from the open STRING database: used to
construct metabolites layer

chemicall chemical2 Similarity  Experimental ~ Database  Textmining combined
_score
CIPm00024759 CIDs00024759 0 0 900 0 900
CIDs91758695 CIDs00107694 0 0 0 230 230
CIDs91758695 CIDs11013287 0 0 0 230 230

the combined score. The private data is the set of identified proteins and metabolites col-

lected experimentally in the laboratory by biologists as mentioned above and will present

a set of nodes in the whole open data as explained in Fig. 4.

Once the regulatory network has been sketched, it shall be analysed. The complexity

of the network shall be reduced, by selecting significant interactions. Biologists need to

identify key nodes (molecules) shortest paths, sort them via centrality measures between

given ends and track the path from a receptor to transcription factors and vice versa.

From a biological point of view we remind that:

1.

Biologists are often interested to find neighbours of molecules (and more
particularity proteins), hence the necessity to analyse the private egocentric
network.

Biologists need to extract and analyse signal transduction and metabolic pathways
from the network. Shortest path is biologically meaningful as energetically the most
favorable for detecting the signal transduction interactions as well as the metabolic
pathways.

Signal transduction represent a series of interactions between different bioentities
such as proteins, chemicals or macromolecules in order to investigate how signal
transmission is performed either from the outside to the inside of the cell, or within
the cell.

Likewise, metabolic pathways are related to a series of chemical reactions
occurring within a cell at different time points holding information about a series
of biochemical events and the way they are correlated we consider.

To analyse the biological network we proceed as follow:

1.

Analysis of each layer (proteins and metabolites layers)

(a)  The layer is constructed from the open data base (STRING and STITCH).
Private network is also constructed from the set of identified molecules
(proteins and metabolites) collected from the cannabis samples
experiment, where biological data are collected in different “omics”
experiments: transcriptomics, proteomics and metabolomics.

Table 3 Examples for metabolites interactions extracted from the open STRING database: used to
construct metabolites-proteins interactions

Chemical Protein Experimental  Prediction Database  Textmining combined
_score

CIDs91758425 AT1G09340.1 0 0 0 250 250

CIDs91758425 AT2G42600.1 0 0 0 300 300

CIDs91758423 AT1G04070.1 0 0 0 153 153
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(b)  Global and local measures are compared and discussed for open and
private networks, we apply the Louvain algorithm (Blondel et al. 2008) in
order to detect communities, private (identified from experiment)
molecules distribution is studied according to the detected communities.

2. Multi-layer network analysis:

(a)  The bipartite component containing the interactions proteins-metabolites
is constructed from the open STITCH data base. The whole multilayer
networks, the private multilayer network as well as the private egocentric
networks are also constructed.

(b)  Networks global and local measures are compared and discussed.

(c) Layer reachablities from metabolites to proteins and from proteins to
metabolites are computed and discussed.

(d)  Shortest paths between pairs of private proteins are then analysed and
classified according to their location in the open network (private,
egocentric or extra-egocentric). The KEGG open data set (Kanehisa and
Goto 2000) is also used to describe pathways.

Open biological databases are very big in relation to the average high throughput bio-
logical experiment. In our case the proteins in the experiment represent only form 0.58%
to 0.74% of the total number of proteins in the whole network. The metabolites in the
experiment represent less than 0.05% of the total number of metabolites in the whole
network.

Proteins layer analysis

Table 4 shows the distribution of the combined score values. Combined scores express

strength interactions between two proteins according to the open STRING database.
Figure 9 shows that the distribution of the values of the combined scores is similar to

scale free network behaviour.

1. Network construction We construct the proteins layer by considering the
combined score as threshold: if we take the minimum score (150) all the
interactions are considered otherwise a part of the network is considered according
the chosen percentile (see Fig. 10). When the combined core value is incremented
some nodes will be disconnected. These nodes are dropped from the network. The
private network is constructed also. (see Appendix A for more details)

Identified proteins in the experiment present only form 0.58% to 0.74% from the
total number of proteins in the open network (see Table 5).

Network densities do not vary a lot between the open and the private networks
which means that the identified proteins (in the experiment) are almost balanced
distributed in the whole protein layer.

We notice also that from the 75th percentile, certain identified proteins begin to be
missed (see Appendix A for more details).

Table 4 The distribution of the combined score according to the STRING data base
Min 1Qu Median Mean 3Qu Max
150.0 184.0 238.0 325.1 377.0 999.0




Malek et al. Applied Network Science (2020) 5:41
Histogram of pScore
>
o
c o
) + —
=] o)
o o
o
w ]
o
=)
& -
S | ! | I 1
200 400 600 800 1000
pScore
Fig. 9 The distribution of the combined score extracted from the open STRING data base
J. S
[ ]
o.p . ‘P ° o
o o o . ® | & o® © ® .
o ° e o O ° °
e - ® ® [ ) L] ®
& . @ e '. v ° e o
’ .Q’.. oe “‘o ® o/ o .Cf L.: ° °®
° SR ¥ °
P R °
®e LY 8 ° o? e °
° ¥ e ° o o e [ ]
o oM e A 74 \/ REAN %o o & /e
° L] 40,4 ? oo N\ ¢ e o o
ol B3 o re L4 ol ©
. J o/ /0% oo ° ° e © o.'
@ ° [ ]
®% . | " 4 o @ ° e o " %
o oo-® \ ? o o & - e o
e ° \ e . ° e ° e
2 < * ° o @ ¢ ° e ® ®e H ° .
- & L L] 3 % o
Fig. 10 Private proteins networks: the left one corresponds to the minimum combined score (150), the right
one corresponds score values greater than 500. Warm colours for nodes indicate hight degree centralities.
Warm colours for edges indicate hight weights

Table 5 Proteins layer analysis: summary of results for the minimum combing score

Open net. Identified Private net. Observations
proteins

Nodes# 24283 142 142 Identified proteins in the exper-
iment present only 0.58% from
the set of proteins

Density(ave) 00.018 0.019 The open and the private net-
works have almost the same
density

Degree(ave) 438.0 42360 26 Degree values of identified pro-
teins do not vary a lot in com-
parison to other proteins

Communities 8 communities precision € Identified proteins are almost

[0,48%;0, 77%)]

distributed in a balanced way
in communities.

Page 13 of 28
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Table 6 The distribution of the combined score according to the STITCH data base

Min 1Qu Median Mean 3Qu Max
20 175.0 2310 299.8 3540 999.0
2. Degree distribution:
Results show that the degrees centralities mean values of the identified proteins do
not vary a lot in comparison to the other proteins (see Appendix A for more
details). This is coherent with the observation on the networks densities that we
mention above (see Table 5).
3. Communities detection: We apply the Louvain algorithm to the protein layer?

(Blondel et al. 2008). Eight communities are detected for the minimum score. We
notice that the values of the precision in all communities are not varying a lot (see
Appendix A for more details). This means that the identified proteins are almost
distributed in a balanced way in communities.

Table 5 shows a summary of results and observations concerning the protein layer

analysis.

Metabolites layer analysis

Table 6 shows the distribution of combined scores values. Combined scores express the

strength of the interaction between two metabolites according to the STITCH data base.

Figure 11 shows that the distribution of the values of the combined sore is similar to

scale free network behaviour.

1.

Network construction As for proteins layer, we construct the metabolites layer by
considering the combined score as threshold, if we take the minimum score (2) the
whole network is constructed networks otherwise a part of the network is
considered according the chosen percentile (see Fig. 12).

We notice that the identified metabolites in the experiment present less than 0.05%
from the total number of metabolites in the whole network. However the private
metabolites networks extracted form the experiment present high density in
comparison with the open ones (see Appendix B for more details). This means that
the metabolites of the experiment are highly connected by pairs (see Table 7).
Degree distribution:

Results show that the identified metabolites have very high degree centralities (see
Appendix B for more details). This means they are strongly connected connected
by pairs according to the STITCH open data base (see Table 7).

Communities detection : We apply the Louvain algorithm to the metabolites
layer (Blondel et al. 2008), we obtain a modularity of is 0.46. 39 communities are
detected from the principal connected component for the minimum combined
score (see Appendix B):

e 22 have their cardinalities between 3 and 28
e 11 have their cardinalities between 1000 and 10000
® 6 have their cardinalities between 15000 and 30000

2

we consider the principal connected component of networks
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Fig. 11 The distribution of the combined score extracted from the open STITCH data base

We notice that a majority of the metabolites are present in only two communities.
This results is correlated with the high density value of the private metabolite
network and means that metabolites are strongly connected and forms mainly two

highly connected subnetworks.

Table 7 shows a summary of results and observations concerning the metabolites layer

analysis.

Proteins-metabolites network analysis
Figure 13 shows that the distribution of the values of the combined scores extracted from

the STITCH data base is similar to scale free network behaviour.

Fig. 12 Private metabolites networks: the left one corresponds to the minimum combined score (2), the
right one corresponds to score values greater than 500. Warm colours for nodes indicate hight degree
centralities. Warm colours for edges indicate hight weights
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Table 7 Metabolites layer analysis: summary of results for the minimum combing score

Open net. |dentified Private Observations
metabolites net.

Nodes# 205398 97 97 Identified metabolites in the experiment
present less than 0.05% from the set of
metanolites

Density(ave) 0.00023 0.26009 The private network have high density in
comparison with the open one.

Degree(ave) 47.06 776.8 2497 Identified metabolites have very high
degree centralities. This means they are
strongly connected to other metabo-
lites

Communities 39 communities  80% belong to 2 A majority of the Identified metabolites

communities are strongly connected and forms two
highly connected subnetworks.
1.  Networks construction: We construct the protein-metabolite bipartite part by

considering the combined score as threshold, if we take the minimum score the
whole network is constructed otherwise a part of the network is considered
according the chosen percentile. The 2-layer network is then constructed by
considering the proteins and the metabolites layers. The private 2-layers network
extracted from the experiment as well the private egocentric one are also
constructed.

Results (see Appendix C) show that:

e The ratio of identified molecules (proteins and metabolites) in the experiment
is 0.1% compared to the open 2-layers networks but decreases to [0.9%, 1.42%]
in the private egocentric network.

¢ the density of the private networks obtained from the experiment is 100 to
165 bigger that the one of the open network but it is only 1,65 bigger than the

one of egocentric network.

Proteins and metabolites reachabilities: Table 8 shows that private egocentric
metabolites networks reaches (see “Layer and inter-layer reachability of a
subnetwork” section) a set of proteins that contains 51% to 67% of the identified

proteins despite a very low precision.

Fig. 13 The distribution of the combined score extracted from the open STITCH data base
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Table 8 Identified proteins reachability from the private egocentric metabolites networks according
the combined score percentiles

Percentiles Precision Recall
min 0.0064 0.67
median 0.006 0.59
mean 0.006 0.51

Likewise, Table 9) shows that private egocentric proteins networks reaches

(see “Layer and inter-layer reachability of a subnetwork” section) a set of metabolites
that contains 53% to 84% of the identified metabolites despite a very low precision.

These results show that a majority of identified metabolites (in the experiment) are
reachable from all the identified proteins and vice-versa. This will help biologist to

classify molecules into neighbours ones and distant ones.

We present in next sections two methods for proteins pathway analysis: the first one is
based on analysing the shortest paths between pairs of private proteins and the second
one is based on using the affiliation network extracted from the open KEGG Database
(Kanehisa and Goto 2000).

Proteins pathways analysis using shortest paths
shortest path is biologically meaningful as energetically the most favorable. The private
protein networks is composed of 142 proteins (see Table 16, shortest paths are computed
between 20164 pairs of proteins. Table 10 shows the number and percentage of shortest
paths classified by theirs lengths

We can thus propose a classification of the obtained shortest paths into three classes
according to their location in the whole proteins networks :

1. Shortest paths whose lengths are less than or equal two: these pathways belong to
the private protein network.

2. Shortest paths whose lengths are less than or equal four: these ones can either
reach the egocentric networks or belong completely to the private one.

3. Shortest paths whose lengths are more than four: these ones can either reach the
open networks, or belong completely to the egocentric or the private one

We notice that the majority of found shortest paths belong to the egocentric network
(or the private one) so they are in the neighbours of the private network nodes. Only few
of them (3,37 %) can be outside the egocentric networks. These few long shortest paths
can be isolated and studied by biologists in order to understand the molecule interactions
into these paths. Table 11 shows two shortest paths pflength 6 composed of proteins and
metabolites: one have some nodes outside the egocentric network and the other one is
completely inside the egocentric network and the other one

Table 9 Identified metabolites reachability from the private egocentric proteins networks according
the combined score percentiles

Percentiles Precision Recall
min 0.0056 0.84,
median 0.007 0.71

mean 0.007 053
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Table 10 Numbers and lengths of shortest paths between pairs of private proteins

Pathway length 1 2 3 4 5 6
Number 142 374 13790 5178 664 16
Percentage 0.7 % 1,85 % 68,39% 25,78% 3,29 % 0,08 %

Proteins pathways analysis using the KEGG data base

KEGG (Kyoto Encyclopedia of Genes and Genomes) is an open database resource that
integrates genomic, chemical and systemic functional information. In particular, gene cat-
alogs from completely sequenced genomes are linked to higher-level systemic functions
of the cell, the organism and the ecosystem (Kanehisa and Goto 2000).

Major efforts have been undertaken to manually create a knowledge base for such
systemic functions by capturing and organising experimental knowledge in computable
forms; namely, in the forms of molecular networks called KEGG pathway maps, BRITE
functional hierarchies and KEGG modules.

From the KEGG data set we extract 4692 proteins which are associated to Pathway iden-
tifiers. Each identifier is also related to a pathway name that characterised the molecules
(see Tables 12 and 13). There are 238 pathways .

Our goal is to use this data set in order to characterise the set of private proteins
extracted from the experiment. We represent the affiliation of private proteins by an affil-
iation network extracted from the KEGG database and modelled by a bipartite graph
containing the set of private proteins connected to pathway identifiers (see Fig. 14). Bipar-
tite networks are a particular class of complex networks, whose nodes are divided into
two sets X and Y, and only connections between two nodes in different sets are allowed.
Bipartite networks can usually be compressed by one-mode projection. This means that
the ensuing network contains nodes of only either of the two sets, X (or, alternatively, Y)
nodes are connected only if when they have at least one common neighbouring Y (or,
alternatively, X) node (see Fig. 15).

We consider the pathway networks obtained by one-mode projection on the pathways
set. Table 14 shows the characteristics of this network.

In order to characterise the private proteins data set we proceed as follow: we firstly
apply the Louvain algorithm (Blondel et al. 2008) to the pathway on-mode projection
network in order to detect communities. Pathways that belong to the same community
are similar in the the sens that they are associated to some proteins in commun.

We then analyse the pathways of the private proteins set in comparison with each com-
munity. Let PathE be the set of pathways associated to the private proteins. Let PathC;

Table 11 Two shortest paths of length 6: the first one contain nodes that reach non-egocentric area
and the second one is completely inside the egocentric network

Pathway nodes Pathway 1 Pathway 2

1 "AT1G05450.2" "private” "AT1G05450.2" "private”
2 "AT1G17030.1" "ego” "AT1G17030.1" "ego”

3 CIDs70789281" "open" ""CIDs00119211" "ego”
4 AT4G12920.1" "ego” CIDs06435808" "ego”

5 "AT1G67290.1" "ego” "AT3G07450.1" "ego”

6 "AT1G04540.1" "private” "AT1G03390.1" "private”

Molecules whose names begin with "AT" are proteins and those whose names begin with "CIDs" are metabolites
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Table 12 Examples of pairs of pathways identifiers and proteins extracted from the KEGG database

KEGGPathway_ID TAIRNolso
1 KEGG:00190 AT1G01050
2 KEGG:04712 AT1G01060
3 KEGG:04712 AT1G01060

be the set of pathways included in the community number i. For each community i we
compute

PathCiNPathE .
PathC; :

proteins pathways among the pathways included in the community.

PathC;NPathE ,
PathE .

pathways among all the private proteins pathways.

PathC;NPathE
PathC;UPathC;

included in this community and that have an affiliation

1. The experiment precision given by measures the rate of private

2. The experiment recall given by measures the rate of private proteins

3. Thejaccard Index given by : measures the rate of private proteins

Table 15 shows results concerning the found communities, some of them correspond to
isolated pathways (of cardinality one) that do not have private proteins affiliation (exper-
iment precision is equal to 0) or that have isolated affiliation (experiment precision is
1).

Each community can be described by a set of pathway names (see Table 13). The
community 9 have the better Jaccard index with the set of private proteins. It has the

"o

following pathways description :["Oxidative phosphorylation”, "N-Glycan biosynthesis"

non

, "Porphyrin and chlorophyll metabolism" ,"Ribosome biogenesis in eukaryotes”, "RNA

"o« ” « ” «

transport” ,"RNA degradation” “Spliceosome”, “Ubiquitin mediated proteolysis’, “Protein
processing in endoplasmic reticulum’, “Circadian rhythm”]

We aim to study these pathways in order to show if the list of metabolites and pro-
teins found on the pathways are biologically significant. We aim also to compare them to

shortest paths and their relations to the private egocentric network.

Results discussion

We discuss in this section results obtained from the application of our methodology to
the above biological application. We present observations and results related to one layer
and those obtained for the whole network.

Observations and results obtained from one layer analysis
Our analysis methodology allows biologists to compare and assess identified molecules
and private networks with the open ones as described follows (see Tables 5 and 7):

e Firstly, the rate of the identified molecules is computed in relation to the open
network. This helps biologists to position the identified molecules in comparison
with the open data. In our case, open biological databases are very big in relation to
the average high throughput biological experiment. The proteins in the experiment

Table 13 Examples of pathways descriptions extracted from the KEGG database

KEGGPathway_ID PathwayName
1 KEGG:00010 Glycolysis / Gluconeogenesis
2 KEGG:00020 Citrate cycle (TCA cycle)

3 KEGG:00030 Pentose phosphate pathway
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KEGG Database

Fig. 14 The private affiliation network extracted from the KEGG database: private proteins connected to
pathway identifiers

represent only form 0.58% to 0.74% of the total number of proteins in the whole
network. The metabolites in the experiment represent less than 0.05% of the total
number of metabolites in the whole network.

e The open and private networks’ densities measures are computed and compared, this
gives an indication about the strengths of connections in the set of identified
molecules in comparison with the open data. In our case, we notice that the open and

¥s

Fig. 15 lllustration of the one-mode projection form a bipartite network
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Table 14 The pathway one-mode projection network obtained from the private affiliation network

Nodest Edgest Density

127

561 0.07

the private proteins networks have almost the same density, on the other hand, the
private metabolites network have high density in comparison with the open one.
The average degrees are computed for three set of nodes: the average degree of the
open network, the average degree of the private one and the one for the set of
identified molecules in the open one. Comparing these values helps biologists to
appreciate the strength of connections between the identified molecules and all the
other molecules in comparison with the strength of connection between all the
molecules. In our case, degree values of identified proteins do not vary a lot in
comparison to other proteins. On the other hand, identified metabolites have very
high degree centralities, this means they are strongly connected to other metabolites
(see Tables 5 and 7).

In order to have an idea about the distribution of the identified molecules in the
network, we apply the Louvain algorithm (Blondel et al. 2008) in order to detect
communities, private molecules (identified from experiment) distribution is studied
according to the detected communities. In our case, eight communities are detected
for the protein layer. The rate of distribution of identified proteins in these
communities is €[ 0,48%; 0, 77%], this means Identified proteins are almost
distributed in a balanced way in communities. Notice that theses rates is comparable
to the global rate of identified proteins in the one network. On the other hand, 39
communities are detected for the metabolite layer. 80% of the identified metabolites
belong only to 2 communities, this means that a majority of the Identified
metabolites are strongly connected and forms two highly connected subnetworks.
Biologists have confirmed these results by identifying two known categories of
metabolites (see Tables 5 and 7).

Table 15 Communities detection with the Louvain algorithm applied to the one mode projection
pathways network, Modularity is 0.57

CommunityNb Cardinality ExperimentPrecision ExpermientRecall jaccardind
1 1 1.00 0.04 0.04
2 14 0.21 0.1 0.08
3 1 1.00 0.04 0.04
4 1 1.00 0.04 0.04
5 17 0.29 0.18 0.12
6 1 0.00 0.00 0.00
7 17 0.18 0.11 0.07
8 1 0.00 0.00 0.00
9 18 0.56 0.36 0.28
10 30 0.13 0.14 0.07
11 4 0.00 0.00 0.00
12 1 0.00 0.00 0.00
13 1 0.00 0.00 0.00
14 16 0.00 0.00 0.00
15 1 0.00 0.00 0.00
16 1 0.00 0.00 0.00
17 1 0.00 0.00 0.00
18 1 0.00 0.00 0.00

Community number 9 has the highest Jaccard index with the set of private proteins
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Observations and results obtained from two layers analysis

e The computation of layer reachablities from metabolites to proteins and from
proteins to metabolites allow biologists to appreciate the ratio of immediate
interactions between private molecules (identified in their experience) in comparison
with the open data. Table 8 shows that private egocentric metabolites networks
reaches (see “Layer and inter-layer reachability of a subnetwork” section) a set of
proteins that contains 51% to 67% of the identified proteins despite a very low
precision (0.6% to 0.64%).

Likewise, Table 9) shows that private egocentric proteins networks reaches

(see “Layer and inter-layer reachability of a subnetwork” section) a set of metabolites
that contains 53% to 84% of the identified metabolites despite a very low precision
(0.56% to 0.7%).

¢ Analysing shortest paths which are biologically meaningful between pairs of private
proteins could be very helpful for biologists. We propose to classify them according
to their location in the open network (private, egocentric or extra-egocentric). In our
case, we notice that the majority of found shortest paths belong to the egocentric
network (or the private one) so they are in the neighbours of the private network
nodes. Only few of them (3,37 % ) can be outside the egocentric networks. These few
long shortest paths can be isolated and studied by biologists in order to understand
the molecule interactions into these paths.

e By using the KEGG database (Kanehisa and Goto 2000), we proposed to characterise
the set of private proteins identified from the experiment by pathways description
presented as a list of pathway names. We aim to study these pathways in order to
show if the list of metabolites and proteins found on the pathways are biologically
significant. We aim also to compare them to found shortest paths and their relations
to the private egocentric network.

Conclusion and perspectives

We presented in this paper a methodology including measures and methods which helps
domain experts to understand, evaluate and complete their private data by comparing
and/or combining them with open data, when both are modelled by multilayer networks.

We proposed a new formalism for multilayer network that allows to carry out fine
analysis by considering two levels: the intra-layer level and the inter-layer one.

We introduced the notions of private multilayer network and private egocentric net-
work which is defined around the private multilayer network. The private egocentric
network is used to evaluate the connectivity strength between the different layers of pri-
vate data in comparison to the open network. We showed how we can use these notions
to define the layer and inter-layer reachability metrics of a given sub-network.

We illustrated our methodology through a biological application where interactions
between molecules (proteins and metabolites) are extracted from open databases and
modelled by a multilayer network. The private data is a set of proteins and metabolites
collected experimentally and presented a set of nodes in the whole multilayer network.
Current experimental results are relevant from biologists point of view.

We showed that the application of this methodology allows biologists to compare and
assess identified molecules and private networks with the open one.
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Table 16 Global measures values of the proteins-proteins networks extracted from the STRING data
base and the private networks, according to combined score percentiles

Percentiles Score Graph Nodest# Edgest# Density
min 150 open 24283 5318676 0.018
min 150 private 142 187 0.019
10 165 open 24074 4810342 0.017
10 165 private 142 226 0.023
25 184 open 23797 4010817 0.014
25 184 private 142 155 0.015
50 238 open 23082 2680565 0.010
50 238 private 142 107 0.011
75 377 open 21552 1337321 0.006
75 377 private 141 41 0.004
90 642 open 18738 537577 0.003
90 642 private 138 28 0.003

Computing open and private networks mesures for the different layers and as densities
and degrees helps biologists to appreciate the strength of internal connections between
the identified molecules and to compare with the one of connections to other molecules
as well as to the global measures. Likewise, applying communities detection algorithms
in the different layers gives an idea about the distribution of the identified molecules in
the open network. Computing reachablities across layers (from metabolites to proteins
and from proteins to metabolites) helps to appreciate the ratio of immediate interactions
between private molecules as well as the set of open molecules reachable from the iden-
tified ones ; we remind that biologists are interested by finding neighbours of molecules
and to make the distinction between those private and open. In addition, shortest paths
which are biologically meaningful are also analysed and classified according to their loca-
tion in the whole network (private, egocentric or extra-egocentric ones). The KEGG open
data set (Kanehisa and Goto 2000) is also used to describe pathways.

We are currently working on communities detection (Fortunato 2010) across layer. We
use layers and inter-layers reachabilities metrics in order to propose algorithm(s) allowing
the comparisons and the mapping of communities across layers.

From a biological point of view, we aim to study which KEGG pathways are highlighted
in order to show if the molecules connecting private ones are biologically significant.
In such analysis we aim to compare: the list of metabolites and proteins found on the
pathway, with all first neighbours, with the geocentric networks as well as with shortest
paths.

Appendix A: Proteins layer analysis

1. Network construction Table 16 shows global measures values of the open and
experiment networks

2. Degree distribution: Figure 16 shows the violin plots that allow to compare the
degree distributions of the private protein networks.
Table 17 shows the degree distributions of the open network, of the identified
nodes in the experimentation and of the private protein networks.

3. Communities detection: Table 18 show the results of applying the Louvain
algorithm to the protein layer? (Blondel et al. 2008). Eight communities are

3we consider the principal connected component of networks
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Fig. 16 Degree distribution of the private proteins networks according to the chosen percentile

detected for the minimum score. We show the precision and recall values of the

identified proteins from the experience for each community. .

Appendix B: Metabolites layer analysis

1. Network constructionTable 19 shows global measures values of the open
networks as well as those of the private one.

2. Degree distribution: Figure 17 shows the violin plots that allow to compare the

degree distributions of the private metabolites networks.

Table 20 shows the degree distributions of the open network, the identified nodes

in the experimentation as well as the private networks. We notice that the

identified metabolites have very high degree centralities. This means they are

Table 17 Degree distributions of the open protein networks, the identified nodes in the
experimentation and the private networks according to combined score percentile

Percentiles Network Min Median Mean Max
min open 1.00 250.0 438.0 6386.0
min identified 1.0 280 423.60 2676.0
min private 0.00 20 26 10.0
median open 1.0 113.0 2325 4847.0
median identified 1.00 124.0 238.0 2149.0
median private 0.00 1.00 1.507 12.000
mean open 1.00 65.0 1513 3358.00
mean identified 1 186.0 1538 1007.0
mean private 0.00 1.0 1.191 8.000
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Table 18 Communities detection with the Louvain algorithm, Modularity is 0.38

Communites 1 2 3 4 5 9 7 8

Cardinalities 1481 1191 3848 5050 1820 5469 1637 3769
Identified Proteins precision (PVp%) 0.54 0.59 0.52 048 0.60 0.77 0.55 0.56
|dentified Proteins recall (%) 56 49 14.0 16.9 296 6.34 6.3 14.8

strongly connected connected by pairs according to the STITCH open data base.
Communities detection: We apply the Louvain algorithm to the metabolites layer
(Blondel et al. 2008), we obtain a modularity of is 0.46. 39 communities are detected
from the principal connected component for the minimum combined score:

® 22 have their cardinalities between 3 and 28
e 11 have their cardinalities between 1000 and 10000
® 6 have their cardinalities between 15000 and 30000

We show in Table 3 the distribution of the main identified metabolites.

Communities 21 30

Cardinalities 29693 8818
Identified Metabolites precision (%) 0.19 0.24
Identified Metabolites recall (%) 57 22.7

Appendix C: Proteins-metabolites network analysis

¢ Networks construction: Table 21 shows global measures values of the bipartite

component, the whole networks, the private one and the private egocentric network

according to combined score percentiles.

Table 19 Global measures values of the metabolites networks extracted from the STITCH database
and the private networks according to combined score percentiles

Percentiles Score Graph Nodest Edgest# Density
min 2 open 205398 4832923 0.00023
min 2 private 97 1211 0.26009
10 154 open 205009 4374639 0.00021
10 154 private 97 1146 0.24613
25 175 open 203813 3655324 0.00018
25 175 private 97 1044 0.22423
50 231 open 200983 2419008 0.00012
50 231 private 97 804 0.17268
75 354 open 193598 1213151 0.00006
75 354 private 97 538 0.11555
90 561 open 166690 484575 0.00003
90 561 private 97 325 0.06980
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Fig. 17 Degree distribution of the private metabolites networks according to the chosen percentile

Table 20 Degree distributions of the open metabolites networks, the identified nodes in the
experimentation and the private networks according to combined score percentiles

Percentiles Network Min Median Mean Max
min open 1.00 13.00 47.06 9427.00
min identified 20 477.0 776.8 4290.0
min private 0.00 22.00 24.97 63.00
median open 1.00 9.00 24.07 6973.00
median identified 20 202.0 3716 2309.0
median private 0.00 11.00 16.58 54.00
mean open 1.00 7.00 16.02 6119.00
mean identified 1 118 243 1525
mean private 0.00 8.00 12.74 47.00

Table 21 Global measures values of the proteins-metabolites networks according to the data base

STITCH and to combined score percentiles

Percentiles Graph Nodest Edges# Density
min bipartite 87125 4758541 0.0036
min open 229681 14910140 0.0006
min private 239 1801 0.06
min egocentric 27030 7346484 0.02
median bipartite 72720 2987609 0.003
median open 224065 8087182 0.0003
median private 239 1195 0.04
median egocentric 21056 3572317 0.02
mean bipartite 64334 2003002 0.0023
mean open 219194 5253222 0.0002
mean private 238 958 0.033
mean egocentric 16550 2103105 0.02
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