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Abstract
Swarm intelligence is the collective behavior emerging in systems with locally
interacting components. Because of their self-organization capabilities, swarm-based
systems show essential properties for handling real-world problems, such as
robustness, scalability, and flexibility. Yet, we fail to understand why swarm-based
algorithms work well, and neither can we compare the various approaches in the
literature. The absence of a common framework capable of characterizing these several
swarm-based algorithms, transcending their particularities, has led to a stream of
publications inspired by different aspects of nature without a systematic comparison
over existing approaches. Here we address this gap by introducing a network-based
framework—the swarm interaction network—to examine computational
swarm-based systems via the optics of the social dynamics. We investigate the structure
of social interaction in four swarm-based algorithms, showing that our approach
enables researchers to study distinct algorithms from a common viewpoint. We also
provide an in-depth case study of the Particle Swarm Optimization, revealing that
different communication schemes tune the social interaction in the swarm, controlling
the swarm search mode. With the swarm interaction network, researchers can study
swarm algorithms as systems, removing the algorithm particularities from the analyses
while focusing on the structure of the swarm social interaction.

Introduction
Swarm intelligence refers to the global order that emerges from simple social com-
ponents interacting among themselves (Bonabeau et al. 1999; Kaufmann 1993; Vicsek
2001; Kennedy and Eberhart 2001; Engelbrecht 2006). In the past three decades, swarm
intelligence has inspired many algorithmic models (i.e., computational swarm intelli-
gence), allowing us to understand social phenomena and to solve real-world problems
(Engelbrecht 2006). The field of computational intelligence has witnessed the develop-
ment of various swarm-based techniques that share the principle of social interaction
while having different natural inspirations such as ants (Dorigo and Di Caro 1999), fishes
(Bastos-Filho et al. 2008), fireflies (Yang 2009), birds (Kennedy and Eberhart 1995), cats
(Chu et al. 2006), to name a few. Though researchers have studied such techniques in
detail, the absence of general approaches for assessing these systems prevents us from
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uncovering what makes them intelligent and understanding the differences between
techniques beyond their inspirations.
Much research has been devoted to understanding and improving these bio-inspired

algorithms (Kennedy and Eberhart 2001; Engelbrecht 2006; 2007). In the literature,
researchers often examine the techniques from the perspective of their natural inspi-
rations. For instance, in some flocking models that mimic bird flocks, the velocities of
individuals are usually used to understand the system behavior (Engelbrecht 2007). In
these systems, both the lack or excess of spatial coordination among individuals gener-
ally leads to poor performance in solving problems. In the case of foraging-based models
inspired by ant colonies, many studies attempt to understand the performance of these
models by examining the pheromone that agents deposit on the environment (Dorigo and
Stützle 2004). This usual approach of analyzing models via their inspiration has helped to
improve algorithms by building new procedures (Sun et al. 2004; Dong and Zhou 2017).
These analyses, however, are confined to specific niches that have their metaphor (e.g.,

ants following pheromone, birds searching for food, fireflies trying to synchronize) and
jargon (e.g., pheromone, velocity, fish weight). The wide variety of natural inspirations
makes it challenging to find interchangeable concepts between swarm intelligence tech-
niques (Sörensen 2013). The absence of niche-free analyses restricts the findings of a
model to its own narrowed sub-field. Such myopia leads us to miss the underlying mech-
anisms driving a system to the undesired states that new techniques (or procedures)
endlessly try to avoid. In this scenario, we need agnostic quantitative approaches to ana-
lyze computational swarm intelligence in a general manner and thus provide the means
to understand and improve algorithms in whatever niche.
The field lacks general methodologies to analyze swarms because of the absence of a

generic framework to examine their main similarity: the social interaction (see Fig. 1).
Indeed, the concept of social interaction is fundamental in swarm intelligence; it refers to
the exchange of information through diverse mechanisms (Bonabeau et al. 1999; Kennedy
and Eberhart 2001). In this definition, social interaction is not only the mere exchange of
information between peers but also have the potential to change individuals (Kennedy and
Eberhart 2001). The sophisticated behavior emerging from social interaction enables the
system to adjust itself to solve problems (Kennedy and Eberhart 2001). In swarm intelli-
gence techniques, individuals process information and interact locally among themselves,
spreading knowledge within the swarm, which results in the emergent system ability. In
this sense, examining the social mechanisms is fundamental to understand intelligence
in these systems. This general perspective also helps us to assess swarms with different
natural inspirations. Instead of relying on the complete understanding of the micro-level

Fig. 1 The swarm social interaction at the meso level is still overlooked by researches who often devote
considerable efforts to understand how changing the simple rules at the micro level (e.g., procedures,
equations) directly affects the collective behavior of the system at the macro level. In fact, these micro-level
rules create the conditions to social interaction at themeso level which in turn enables the necessary swarm
dynamics to solve complex problems at the macro level



Oliveira et al. Applied Network Science            (2020) 5:24 Page 3 of 20

properties (e.g., velocity, pheromone, weight), we can assess the swarm via the structure
and dynamics of the social interaction (Bonabeau et al. 1999).
Notably, the field of Network Science has shown that every complex system can be rep-

resented as a network encoding the interactions between the components of the system
and that the understanding of the structure of this network is sine qua non for learn-
ing the behavior of the system itself (Barabási 2012). Network Science advocates that the
understanding of complex systems can be reached by observing the structure and dynam-
ics of their underlying networks (Strogatz 2001; Barabási 2012). Though the idea of using
networks as frameworks for understanding complex phenomena dates back to Moreno’s
use of sociograms in the 1940s (Moreno 1946), it has been popularized by two seminal
papers fromWatts and Strogatz (1998), and Barabási and Albert (1999) in the late 1990s.
Recent works in the field have demonstrated that even small variations in fundamental
structural properties, such as degree distribution, can significantly influence the behavior
of the system described by the network.
Here we propose a network-based framework—the swarm interaction network—for the

general assessment and comparison of swarm intelligence techniques. With this frame-
work, we study swarm algorithms as systems, removing the niche-specific particularities
from the analyses. The swarm interaction network differs from other more general net-
work science frameworks, such as temporal networks (Holme and Saramäki 2012), in the
focus on making swarm algorithms more transparent. In the following sections, we start
by describing the importance of understanding swarm-based algorithms, and by explain-
ing the definition of the interaction network. We show how the interaction network can
be defined for four well-known swarm-based algorithms from two distinct categories, as
proposed by Mamei et al. (2006), namely flocking and foraging. Then, we demonstrate a
complete case study using the concept of flocking and show the relationship between the
interaction network and the swarm search mode.

Understanding swarm systems
In the field of Computational Swarm Intelligence, scholars often analyze algorithms via
their performance on given problems. In many cases, innovation means the development
of novel algorithms that are capable of achieving improved results on a set of bench-
mark functions. These improvements, however, tend to arise without much explanation.
Researchers also often use jargon in both the justification for novel algorithms and the
description of their improvements (Sörensen 2013). This black-box approach not only
hinders the interpretability of results but also sidetracks us from the underlying mech-
anisms driving the swarm intelligence in these systems. The case occurs because of the
lack of a unifying view of swarm-based algorithms. Though some efforts have been made
to understand swarm systems from a general perspective, they tend to be qualitative in
nature.
The general perspective for swarm-based systems proposed by Mamei et al. is that of

a system processing information (Mamei et al. 2006). From this perspective, the way a
swarm handles information defines its underlying self-organization mechanism. We can
describe a system using three aspects of information: (i) the definition of information, (ii)
how individuals use information, and (iii) how information flows within the system (see
Fig. 2). This approach classifies swarm systems but fails to examine them quantitatively.
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Fig. 2 Three dimensions of information processing define the self-organized mechanism in a swarm system:
how information flows, how information is used, and the definition of information. The diffusion flow occurs
when individuals passively receive information that other individuals spread in the environment whereas
serendipitous flow occurs when individuals need to actively search for information left in the environment by
other individuals. When using information in a trigger-based system, individuals act in the environment by
performing specific, mostly one-off, actions, while in a follow-through, they are guided by what they find, and
the action can be more long-lasting. Themarker-based information is explicitly defined for interaction
purposes (e.g., pheromone), while individuals implicitly share sematectonic information as the current state of
the population (figure adapted from (Mamei et al. 2006))

In fact, the literature has various approaches to classify swarm systems (Parpinelli and
Lopes 2011; Duan and Luo 2015; Chu et al. 2018) and metaheuristics in general (Gen-
dreau and Potvin 2005; Fernandez-Marquez et al. 2012; Fong et al. 2015). These efforts
are essential to organize the field. They are the necessary initial steps to understand cur-
rent and new algorithms. Still, the absence of quantitative approaches prevents us from
characterizing the particularities of methods and quantifying their differences.
In some cases, researchers measure the swarm diversity to understand swarm-based

techniques (Chu et al. 2018). This diversity is often the diversity of the candidate solu-
tions when solving a given problem (Engelbrecht 2007; Dorigo and Stützle 2004; Krink
et al. 2002; Shi and Eberhart 2008; Olorunda and Engelbrecht 2008; Shi and Eberhart
2009).With such an approach, however, we focus on the outcome of the swarm dynamics,
neglecting the underlying mechanism leading to these dynamics. We lack a framework
enabling us to examine the system from an intermediate perspective.

The social interaction in swarm systems

The dynamics of swarm-based systems depend on social interaction. The system lacks
coordination without enough interaction among the individuals and loses adaptability
with the excess (Chaté and Muñoz 2014). In such systems, the local rules promote or
undermine the level of interaction within the swarm (Fig. 1). In this sense, the swarm
social interaction is halfway between the micro and macro behavior of the system. The
network emerging from these complex interactions is a natural universal meso-level
perspective of swarms.
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Previous research has used the network paradigm to examine emergent behavior in
social animals and their underlying mechanisms (Fewell 2003; Lusseau 2003; Strandburg-
Peshkin et al. 2013; Rosenthal et al. 2015). Many works have also shown that collective
behavior can emerge from simple rules (Fehr and Gächter 2000; Xia et al. 2012; Meloni et
al. 2017). In the computational intelligence field, some developments have taken advan-
tage of networks (Giacobini et al. 2006; Payne and Eppstein 2009; Godoy and von Zuben
2009; Dorronsoro and Bouvry 2012; Oliveira et al. 2013; Liu et al. 2014; Metlicka and Dav-
endra 2015). They have been used to understand swarm systems (Whitacre et al. 2008;
Huepe et al. 2011) and their respective collective behaviors such as flocking (Oliveira et al.
2013, 2014, 2015, 2016, 2017; Janostik et al. 2016; Pluhacek et al. 2016;Wen-Bo et al. 2016)
and foraging (Metlicka and Davendra 2015; Kromer et al. 2015). In this regard, Oliveira
et al. proposed one of the first approaches to examine interactions within the swarm in
the Particle Swarm Optimization (Oliveira et al. 2013). Yet, these preliminary efforts have
focused on specific techniques, missing the fact that social interaction is the characteristic
feature driving swarm intelligence.
In this work, we argue that the social dynamics in swarm-based algorithms should be

more analyzed and explored to provide insights into the network behind the rules and
inspirations, which may lead to a possible meta-classification of the systems—a meta-
classification based on the system dynamics instead of the natural inspiration of the
system. In the following section, we define the interaction network and use the cate-
gorization proposed by Mamei et al. to elaborate on the plausibility of describing and
employing the interaction network to assess models of swarm intelligence inspired by
different mechanisms of self-organization. Through various mechanisms, an interaction
network can be built to characterize the system over a shared space: the swarm interaction
space. In this space, the swarm interaction network becomes a general framework that
allows for the unified assessment of swarm intelligence models with distinct inspirations.

The network of social interaction
We propose to examine the social interaction within a swarm as a way to assess the behav-
ior of swarm intelligence systems. Here we develop the concept of swarm interaction
network to represent the interdependencies of the actions of the individuals. For a given
swarm system, the swarm interaction network I consists of nodes that represent its indi-
viduals and edges Iij that indicate the extent to which individual i influences the action of
the individual j. As the swarm social interaction is dynamic and so the swarm, we use I(t)
to describe the influence that individuals exert on each other at time t.
The interaction network is a representation of the swarm and the result of the rules that

define the swarm system. Though these rules are bio-inspired, the network I belongs to
the swarm interaction space I (see Fig. 3). This is an agnostic space exempt from the par-
ticularities of the swarm algorithm or problems being solved by the algorithm. Note that
both the algorithm (i.e., rules) and problemmodify the social dynamics within the system
and have an impact on I. Yet, when we look at algorithms from this general framework,
we have the potential to assess different algorithms that are, at their surface, completely
distinct (i.e., inspired by distinct natural phenomena).
The network structure—at both global- and individual-levels—enables us to ana-

lyze different aspects of the swarm and aspects across different swarm intelligence
approaches. For instance, Fig. 4 depicts a conceptual interaction network for swarm
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Fig. 3 Different viewpoints of swarm systems. We highlight that the interaction space is a general way of
viewing these systems. Models of swarm intelligence are commonly used to solve continuous (top) and
discrete (bottom) problems that can be represented in the problem space (left). Each model incorporates
metaphor-specific aspects such as velocities (first row) and pheromone (second row) in PSO and ACO,
respectively, that can be represented in themetaheuristic space (middle). However, regardless of the problem
and the metaphor, the actions of individuals are interdependent and depend on the social interaction. The
use of the interaction network allows us to represent the swarm social interaction in the interaction space
(right), enabling a unified assessment of metaheuristics

systems. At the individual level, the network positions occupied by individuals indicate
the types of interdependencies that were created by the swarm and the influence indi-
viduals may exert on one another. The individuals with a high degree centrality (e.g.,
individuals 1 and 12) typically exert stronger influence when compared to other indi-
viduals. Similarly, individuals that connect different groups (e.g., individual 9) act as
bridges between groups of individuals and control the cascade of influence between sub-
networks. Thus, some individuals in a swarm system can develop important roles as
bridges and hubs. Lastly, at the global level, the interaction network indicates the extent of
local and global exploration by providing the relationship between natural niches formed
by individuals (e.g., green and blue sub-networks).
To analyze a swarm using the interaction network, we need to learn the rules andmech-

anisms that allow individuals to influence the action of each other within the system. We
use the dimensions described in Fig. 2 to guide our understanding of algorithms and thus
to define their networks. For a given algorithm, we have to identify how an individual

Fig. 4 A general illustration of an interaction network for swarm systems where each node is an individual in
the population, and each link represents the direction and the extent of the individuals’ influence. Each color
depicts a distinct sub-network to which members are highly integrated and tightly connected when
compared to nodes outside the sub-network
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uses information after it received information from other individuals. We need first to
characterize what information is in the system then describe how information exchange
influences individuals. Table 1 describes how the interaction network can be constructed
for each category proposed by Mamei et al. (2006).
In the following subsection, we use the interaction network to compare four swarm-

based algorithms from two distinct categories, namely flocking and foraging. In this brief
analysis, we show that simple definitions of the interaction network enable us to recognize
differences and similarities among these algorithms. Then, we provide a more detailed
case study of PSO in which we study the dynamics of the swarm at the meso level of the
social interaction.

Modeling the swarm interaction network

With the swarm interaction network, we examine the social interaction in four bio-
inspired optimization algorithms: the Artificial Bee Colony (ABC) (Karaboga 2005),
the Ant Colony Optimization (ACO) (Dorigo and Stützle 2004), the Particle Swarm
Optimization (PSO) (Kennedy and Eberhart 1995), and the Fish School Search (FSS)
(Bastos-Filho et al. 2008). These algorithms have distinct inspirations and are from sepa-
rate categories, but they share the same concept of social interaction. In this section, we
avoid technicalities and save them to the next section, where we delve into a specific case
study. Instead, here we discuss these algorithms from a high-level perspective, focusing
on the social interaction. First, we describe how agents in the system influence each other;
then, we build a network based on this description.
The core of these algorithms is that successful individuals are more likely to influence

the population of the system. Though the definition of success depends on the algorithm,
it generally relates to the quality of a solution. The agents navigate through a metaheuris-
tic space relying on the information from other agents and the environment. We describe
the interdependency in the actions (e.g., swimming, flying) of the individuals using the
interaction network. For each algorithm, we build the network I(t) in that each link
represents this interdependency between two individuals (i.e., nodes) at iteration t.
In the case of the PSO algorithm, particles move towards the best particle (i.e., the

most successful one) in their neighborhoods at each iteration t. To describe this influence
with the interaction network I(t), we connect each agent i to its best neighbor j at each
iteration t. Note that particles move using information from only one individual in their
neighborhood.
Fishes in the FSS algorithm use information from all individuals in the fish school. Each

fish contributes to the movement of the fish school based on its current displacement
and its previous success. We describe this interdependency with a weighted network.
We build a network in which the weight represents the proportional contribution of the
individual i to the movement of the individual j at the iteration t.
Note that both PSO and FSS are deterministic with regards to the interaction among

individuals. The success of the agents determines their interaction with other agents. In
the case of the ABC algorithm, social interaction takes place only probabilistically.
In the ABC algorithm, bees fly using information from bees that are selected based on

a uniform distribution and a roulette wheel. The former enables an agent to influence any
other agent regardless of success, whereas the latter tends to drive agents to interact with
successful ones. We build the network I(t) based on this selection process. Precisely, we
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create an edge (or increment the weight) between the agent i to the agent j every time the
agent i considered the position of agent j to move at the iteration t.
In the algorithms described above, individuals can communicate directly with each

other. Notably, the Ant Colony Optimization algorithm uses the concept of stigmergy in
which the agents communicate only indirectly via pheromones. In ACO, each ant moves
across the environment (a graph) following higher concentrations of pheromone and
depositing pheromone at visited edges accordingly. In this case, we build a weighted inter-
action network by keeping track of the amount of pheromone deposited by each ant i at
each edge. The influence i exerts on j is the cumulative amount of pheromones left by i at
the edges visited by j.
With these network definitions, we run an implementation of each algorithm and

examine the social interaction in these systems. For each case, we analyze the swarm
accounting for the whole execution, so we sum up matrices over time as follows: I =
∑

t I(t). These matrices (Fig. 5a) and the node strength distributions (Fig. 5b) can help
us study the patterns of social interactions among these algorithms. The right skewness
in the node strength distribution, for instance, indicates how likely is the emergence of
highly influential individuals (i.e., hubs) which are more likely in the PSO and FSS algo-
rithms and less likely in the ABC algorithm. The likelihood of hubs in the interaction
network of these algorithms can regulate the extent of exploration and exploitation as the
presence of hubs within the swarm can boost the information sharing in the system that
accelerate its pace of convergence. The extent of exploration and exploitation, however,
depends on the problem. In unimodal problems, for instance, the presence of hubs can

Fig. 5 The interaction network provides us the means to examine swarm-based algorithms from a general
perspective. Here we use simple definitions of the interaction network for four different algorithms: the
Particle Swarm Optimization (PSO), the Fish School Search (FSS), the Artificial Bee Colony (ABC), and the Ant
Colony Optimization (ACO). Though they have different bio-inspirations (i.e., bees, ants, birds, and fishes), we
can analyze them in the same interaction space. For this, we build the interaction network I(t) for each of
them based on the social operators in the algorithm. We sum up each matrix over time to analyze
I = ∑

t I(t). (a) After 700 iterations, each algorithm shows distinct signatures. (b) The strength of a node (i.e.,∑
j Iij) tells us the influence of an individual on the population. Though PSO and FSS allow strong influencers

to exist, ABC and ACO exhibit a well-behaved distribution of spreaders
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be positive, and a faster convergence can quickly attract the swarm to optimal states. In
some multimodal problems, however, the presence of hubs can be negative, and a faster
convergence may attract the swarm to suboptimal states. Thus, the interaction network
provides us the means to study these peculiarities in swarm intelligence algorithms from
a general perspective—a necessary step towards understanding swarm intelligence. The
framework also creates an opportunity to study meso-level dynamics, as we show in the
next section.

In-depth case study: examining the particle swarm optimization algorithm
In this section, we present how to analyze the meso-level dynamics of a swarm-based
algorithm using the interaction network. We select the PSO algorithm because of its
simplicity and extensive use in several applications.
Particle Swarm Optimization (PSO) is a population-based optimization method that

relies on the interactions of individuals sharing the best positions they found during the
search process (Kennedy and Eberhart 1995). The method—inspired by the social behav-
ior in flocks of birds—consists of a population of simple reactive agents (particles) that
explore the search space by locally perceiving the environment and interacting among
themselves to improve their solutions.
In the standard definition of the PSO, each particle i consists of four vectors in a d-

dimensional search space: its current position �xi(t), its best position found so far �pi(t),
its velocity �vi(t), and the best position found by its neighbors �ni(t) (Bratton and Kennedy
2007). The position of each particle represents a candidate solution to a d-dimensional
continuous optimization problem, and the swarm moves through the problem search
space seeking better solutions. To enable this capability, all particles change their posi-
tions, at each iteration t, according to their velocities �vi(t) which are updated based on
the personal best position �pi(t) and the social best position �ni(t). Researchers use differ-
ent ways to update the position of the particles, but the update equation generally aims to
maintain the coherence of the particles through an inertia term and adjust the trajectory
using cognitive and social information. In our study, we use the so-called constricted PSO
(Clerc and Kennedy 2002).
The particles in the swarm only interact with a subset of the swarm. The swarm topol-

ogy defines the infrastructure through which particles communicate and thus enables the
particles to retrieve information from other particles (i.e., their neighbors). At each iter-
ation t, each particle i seeks for its best neighbor ni(t) in its neighborhood (i.e., the one
with the best solution so far). The topology influences the social interaction within the
swarm and has been shown to impact the swarm performance (Mendes 2004; Bratton
and Kennedy 2007). Clerc proposed a somewhat different definition of swarm topology—
the so-called graph of influence—which explicitly includes the social information and
presents directed edges (Clerc 2010). Regardless of definition, however, the swarm topol-
ogy only refers to the structure for the potential exchange of information and neglects
effective interaction among particles.
In the particle-swarm context, exploration and exploitation refer to the ability of indi-

viduals to broadly explore the whole search space or focus on a particular area (Kennedy
and Eberhart 2001). An exploration–exploitation imbalance often leads to a poorly
explored search space. To better understand this imbalance, researchers study the diver-
sity and the dynamics of the swarm. The literature often focuses on the spatial diversity
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(Shi and Eberhart 2008; Olorunda and Engelbrecht 2008; Shi and Eberhart 2009), analyz-
ing the outcomes of social interaction such as the positions or velocities of the particles in
the search space. These approaches have succeeded in developing novel mechanisms to
improve the performance of the algorithm. Yet, with these approaches, we fail to under-
stand the underlying social interaction driving the swarms to undesired states (e.g., lack
of diversity, premature convergence) that new mechanisms try to avoid.
Still, a few works have attempted to analyze the particles’ interactions in order to exam-

ine the swarm behavior. Some of these efforts analyzed the impact of the infrastructure of
the swarm communication on the swarm performance (Mendes et al. 2004; Mendes 2004;
Wen-Bo et al. 2016). Though these studies neglected the actual interactions between
particles, they showed that bounding social interaction influences the swarm behavior.
Oliveira et al. proposed to examine the actual interactions among particles in order to
assess the swarm (Oliveira et al. 2013). They proposed the analysis of the swarm using a
network in which the nodes (particles) are connected if they share information in a given
iteration and later extended the concept to capture historical information (Oliveira et al.
2014, 2015, 2017). Later on, Pluhacek et al. provided visualizations of the interactions in
the swarm (Pluhacek et al. 2016).
In the next subsections, we define the interaction network I to assess the swarm using

the methods developed by Oliveira et al. (2016). With this definition, we can uncover the
interplay of swarm dynamics, swarm performance, and social interaction.

A network for the particle swarm optimization

To examine a swarm system from the meso-level perspective of the swarm social inter-
action, we need to build the network to capture the structure and dynamics of the social
influence exerted among individuals. In the case of the PSO algorithm, social interaction
occurs when a particle i updates its position based on the position of a particle j. This
happens when j is the best neighbor of i at a given iteration; that is, ni(t) = j.
Here we use a simple (yet powerful) definition of interaction network I(t) in which the

weight of an edge (i, j) is the number of times the particle i was the best neighbor of the
particle j or vice-versa until the iteration t (Oliveira et al. 2014). We use a time window
tw to control the recency of the analysis, thus the interaction network at iteration t with
window tw is defined as the following:

Iij(t) =
t∑

t′=t−tw+1

[
δi,nj(t′) + δj,ni(t′)

]
, (1)

with t ≥ tw ≥ 1 and where δi,j is Kronecker delta. In this definition, nodes (i.e., parti-
cles) are connected by an edge with weight equals to the number of times two particles
shared information in at most tw iterations before the iteration t (Oliveira et al. 2014).
The time window tw tunes the frequency–recency balance in the analysis. High tw makes
the network dominated by most frequent interactions; low tw only includes most recent
interactions, and when tw = 1 we have instantaneous interactions.
Note that the definition of an interaction network for a swarm system depends on the

rules that promote social interaction in the system. Here we pinpointed that, in PSO,
social interaction between i and j occurs when the particle i updates its velocity �vi using
the position of a particle j. This definition of I is a simple one that includes only the occur-
rence of social interaction between particles. More complex definitions may include edge
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direction or other aspects of the algorithm, such as the social constant c2 or the realiza-
tions of random numbers. Nevertheless, with this simple definition, we can already better
understand the swarm (Oliveira et al. 2013; 2014; 2015; Oliveira et al. 2016; Oliveira et
al. 2017). Other swarm systems, however, have different rules and distinct forms of social
interaction.

Examining the social interaction with I

The formation of structures in the interaction network arises from the way information
flows within the swarm, which, in turn, alters the dynamics of the swarm. The exis-
tence of well-connected nodes in I indicates frequent information flows in the swarm.
The constant interaction among specific individuals leads to their respective nodes in the
interaction network to be clustered. To capture these clusters, we can gradually remove
the edges of I according to their weight; the components that emerge during this network
destruction represent the information flows within the swarm (see Fig. 6).
Note that the pace at which these components appear relates to the swarm dynamics.

A slow increase suggests an exploration search mode in which individuals share infor-
mation among distinct groups and thus create social interaction with various levels of tie
strength. A rapid growth suggests, however, an exploitation search mode in which indi-
viduals interact with a few same sources and thus create a center of information with
similar levels of tie strength.
With the definition in Eq. (1), we can now examine the search mode in the PSO algo-

rithm. For instance, we analyze I of swarms using different topology parameters—that
are known to lead the swarm to behave differently—while solving the same problem. As
shown in Fig. 7a, with the global topology, the particle swarm presents exploitation behav-
ior, whereas the ring topology leads the system to explore different information sources.
Note that this analysis differs from the typical analysis of the relationship between fitness
and topology structure (Mendes et al. 2004; Mendes 2004; Engelbrecht 2013). Here we
focus on the way particles interact during the swarm search when using different struc-
tures: the communication topology affects the diversity of the social interaction in the
swarm.

Fig. 6 The pace at which components emerge while edges are gradually removed from I is associated with
the search mode of the swarm. An exploration mode is characterized by a slow increase in the number of
components due to the different information flows present in the swarm. The network, however, is rapidly
destroyed in a swarm that depends only on a small set of individuals, a behavior related to an exploitation
search mode. In PSO, the weighted interaction network of a run with the swarm using a von Neumann
topology has edges removed based on their weight: below 20% of the highest possible weight, 25% and
30%. The colors represent components with more than one node. In this process, edges with the lowest
weights are removed first
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Fig. 7 The impact of the removal of the edges on the growth of the number of components depends on the
structure of the swarm topology. (a) The rapidly increasing in the number of components of the global
topology leads to a type of behavior related to the exploitation search mode. In the ring topology, the
number of components increases slowly, indicating the existence of sub-swarms searching more
independently through the search space (Oliveira et al. 2014). The different colors/markers in the plot
represent the time window tw . The normalized weight is the weight value divided by 2tw , which is the
highest possible weight in the network. In all cases, the swarm consists of 100 individuals. (b) Each topology
leads to distinct interaction diversity that can be described by the number of components emerging (color
intensity) as edges are removed (y-axis) of the interaction network with different time windows (x-axis)

To investigate the swarm ability to maintain different frequent information flows, we
can analyze the network destruction while varying tw to include frequency and recency
in the analysis of the flows. Figure 7b depicts the number of components that emerge
when edges are removed from I with increasing time windows. The interaction network
of a particle swarm with global topology seems to be destroyed at the same pace in both
perspectives of frequency (i.e., high tw) and recency (i.e., low tw). The interactions of the
particles within this topology promote a lack of diversity in the information flows in short
and long terms.
This diversity regards to the ability of the swarm to have a diverse flow of information—

a perspective different from spatial diversity in which d-dimensional properties of
particles are compared to particular definitions of swarm center (Shi and Eberhart 2008).
Note that the lack of diversity in the information flow can decrease the spatial diver-
sity in a swarm. The absence of multiple information flows leads to particles retrieving
information from a few sources and drives particles to move towards the same region of
the search space; lack of interaction diversity pushes individuals to the same direction.
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To quantify interaction diversity, we measure the destruction pace of interaction net-
works with different time windows. For a given time window tw, the area under the
destruction curve Atw can be seen as a measure of diversity in the information flow. High
values of Atw indicate fast destruction, whereas low values imply slow destruction. Hence,
we can define the interaction diversity ID (previously called communication diversity
(Oliveira et al. 2016)) as the mean diversity over a set of time windows T, as the following:

ID(t) = 1 − 1
|S||T |

∑

t′w∈T
Atw=t′w(t), (2)

where |S| is the number of particles in the swarm. Thus, swarms exhibiting high ID
(i.e., low values for Atw ) have the ability to have diverse information flows, while low val-
ues for ID imply swarms with only few information flows (i.e., high value for Atw ). The
ideal set T would be one taking into account all time windows (i.e., from tw = 1 until
tw = t). This procedure, however, can be computationally expensive because of the vast
number of possible time windows; instead, we use a subset of time windows.

Experimental design

To investigate the extent to which the interaction diversity assesses the swarm at each
iteration, we systematically examined the swarm using different topologies that lead the
swarm to behave differently. In this study, we use k-regular networks (i.e., graphs in which
nodes have k links) as the swarm topologies. The k-regular is a simple networkmodel that
enable us to create topologies with intermediate connectivity between ring (k = 2) and
global (k = N), the twomost used swarm topologies. To create a diverse set of topologies,
we employ different connected k-regular graphs as the swarm communication topology
with k ranging from 2 to 100. Here we consider a distinct group of four benchmark func-
tions F2, F6, F14, and F19 from the CEC’2010 (Tang et al. 2010) which require different
balances of exploration/exploitation (Oliveira et al. 2017). In all experiments, the number
of dimensions to 1000 and, when applicable, the degree of non-separabilitym to 50; also,
we set the swarm size to 100 particles.
We analyze the relationship between ID and fitness improvement over time; thus we

define fitness improvement f�(t) at iteration t as the speed at which the fitness fg(t)
of the swarm changes between the two immediate iterations t and t − 1 as follows:
f�(t) = fg (t)−fg (t−1)

fg (t−1) , where fg(t) is the global best fitness of the swarm at iteration t. To
compare the social interaction in similar scenarios in the simulations, we set as stopping
criterion either a maximum number of iterations tmax = 10, 000 is reached or the swarm
has converged at iteration ts. We define that a swarm converged at iteration ts if the global
best fitness does not improve, that is, if f�(t) < 10−5, until iteration ts+δ with δ = 500. In
this sense, we ensure that the swarm either converged or reached the maximum number
of 10,000 iterations. For each considered swarm topology, we run a PSO implementation
30 times while measuring ID and f� at each iteration in each execution.

Results

We analyze the impact of the infrastructure of communication (i.e., topology) on the
diversity of the information flows within a swarm. We found that k-regular topologies
promote higher diversity as k decreases when solving the same problem (Fig. 8a). With
less connected topologies, swarms exhibit greater interaction diversity than with more
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Fig. 8 The interaction diversity, fitness improvement, final fitness, and k-topologies are associated in a
non-trivial manner. (a) Some benchmark functions appear to consistently present higher interaction diversity
when compared to other regardless of the underlying communication topology. In the results for F6
function, (b) although the correlation of −0.79 indicates a strong negative linear relationship between the
average interaction diversity and the mean fitness improvement, one can easily see that they are associated
in a non-monotonic way. (c) Similarly, the final quality of the fitness found by the swarm also presents a
non-monotonic behavior regarding k-regular topologies and consequently, interaction diversity

connected ones. Given previous studies, this is an expected result: short topological dis-
tances lead to fast information flow, which decreases the diversity (Bratton and Kennedy
2007). Our results revealed that the interaction diversity in the swarm depends on the
problem; the same topology leads to distinct levels of diversity when optimizing differ-
ent functions. Though the topology bounds the interactions among particles, the swarm
organizes the information flows to optimize a function.
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Indeed, swarm intelligence systems have the capability to self-organize during the
optimization process. To assess the relationship between swarm search and interaction
diversity, we examine the pace of f� at which a swarm improves and the interaction diver-
sity at each iteration. We find that ID exhibits a non-trivial relationship with f�, as seen
in Fig. 8b for the function F2. The average f� increases with the average ID until reaches
a maximum pace after which f� decreases with ID. The increase of diversity in the social
interaction of the swarm leads to faster swarm pace only until a certain level of diver-
sity; then the swarm starts to slow down—swarm dynamics that impact the overall swarm
performance, as seen in Fig. 8c. We also find a non-trivial association between k-regular
topologies and the best fitness found at the end of the optimization process. From global
to 30-regular topologies, the fitness decreases from 8.06 × 103 and improves down to
6.77 × 103, then deteriorates up to 1.01 × 104.

Discussion

Our results demonstrate the capability of interaction diversity, ID, to explain the behavior
of the swarm during the optimization process in the Particle Swarm Optimization tech-
nique. ID enables us to identify changes in the way information flows within the swarm
regardless of the type of problem and perhaps even variations of PSO (e.g., with our with-
out local search). The leverage capability of the proposed approach brings the possibility
to identify imbalances during the search process and to understand the flow of informa-
tion within the swarm. For example, more than using this approach to select which is
the best topology for a particular problem (Engelbrecht 2013), one can propose adaptive
mechanisms to adjust the search mode during the search process. Furthermore, note that
the Interaction Diversity is a general measure to assess swarm-based systems because
it does not consider peculiarities associated with the swarm metaphor. The approach is
defined over the structure of the network—the interaction space—which is entirely based
on the swarm social interaction. This approach can also help researchers to perform para-
metric analyses; due to the lack of analytic tools, parametric studies tend to consider
simplified versions of the algorithm (Clerc and Kennedy 2002).

Conclusions
Bees, ants, birds, bats, and many other animals have inspired several swarm-based
algorithms, but the literature still fails to explain their differences and their complex
behavior—a situation that potentially prevents us from understanding and improving
such algorithms. In the field, we often describe the differences between the techniques
or their versions via the performance achieved when solving distinct problems. This
black-box approach has enabled the area to grow over the years and to develop excellent
general-use tools. This approach, however, lacks interpretability or explainability. How
to interpret, for instance, that including a diversity procedure improves the performance
of a swarm algorithm? Is this modification the same as using a different algorithm? With
this opaque approach, we miss the opportunity to understand swarm intelligence.
The main barrier to understanding the swarm complex behavior is the discontinuity

between themicro-level actions of individuals and themacro-level behavior of the swarm.
In our work, we argue that the swarm interaction network is at a meso level that can help
to explain and understand these systems. With this approach, we can examine a system
via an intermediary structure that emerges from the social interaction within the swarm.
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We can now analyze the patterns of these self-organized interactions. The interaction
network also grants an agnostic representation of swarm systems in the swarm interaction
space, which provides us with a more general perspective of swarm-based algorithms.
To verify the plausibility of this network-based approach, we considered four differ-

ent swarm-based algorithms with distinct natural inspirations, and then we focused on
one of the most popular optimization techniques, namely, the Particle Swarm Optimiza-
tion. We also discussed the social interaction in other self-organization mechanisms to
guide definitions of their interaction network. In the analysis of the four algorithms, we
showed that the interaction network provides us the means to study them from a general
perspective. In the in-depth analysis of the PSO algorithm, we found that the interac-
tion network helps us to disentangle complex features of swarm systems. We analyzed
its interplay with the quality and improvement of the fitness, and we found that some
characteristics of the interaction network can be used to explain parametric settings in
the algorithm. Specifically, we studied the diversity in the network (i.e., the Interaction
Diversity). Our results revealed that different communication topologies lead the swarm
to distinct search modes that also depend on the problem landscape.
The network-based perspective of swarms unfolds a pathway to researchers to

study these systems comprehensively. This perspective creates opportunities on two
fronts. First, it brings the required general viewpoint to build an objective classi-
fication of swarm-based algorithms. This classification guides the algorithm selec-
tion for problem-solving and the development of novel or hybrid methods. Second,
the network empowers scholars to examine swarms from an intermediate level that
is important to understand the complex behavior of these systems. At this meso
level, we expose the effects of the swarm rules, which are hidden in the swarm
behavior.
From a practical angle, the swarm interaction network bringsmore transparency to how

swarm algorithms work via the perspective of the swarm social interaction. The frame-
work can help in the design of novel algorithms, and it can be used to observe the behavior
of an algorithm or a set of algorithms in a specific problem by detecting unexpected
situations that can lead to premature converge.
In our research, we have developed a general concept for the interaction network. This

definition has limitations that might illuminate research directions. For instance, we lack
a procedure to identify the most appropriate description for a given algorithm. Also, we
use a static network definition (i.e., a constant number of nodes) that might be inadequate
to model some swarm algorithms, especially the ones with evolutionary operators such
as selection. In this study, we limited our analyses to optimization algorithms and only
performed numerical analyses on the PSO algorithm. Further efforts are needed to inves-
tigate the application of the framework on different types of swarm-based algorithms and
to identify their fundamental structural characteristics (e.g., motifs, graphlets). Nonethe-
less, here we proposed a general approach that makes it possible to perform parametric
analyses, quantify differences between methods, balance techniques with hybrid or adap-
tive versions, and build meso-level mechanisms. These are also directions for future
research.
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