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Abstract
A long-standing question for urban and regional planners pertains to the ability to
describe urban patterns quantitatively. Cities’ transport infrastructure, particularly street
networks, provides an invaluable source of information about the urban patterns
generated by peoples’ movements and their interactions. With the increasing
availability of street network datasets and the advancements in deep learning
methods, we are presented with an unprecedented opportunity to push the frontiers
of urban modelling towards more data-driven and accurate models of urban forms.
In this study, we present our initial work on applying deep generative models to urban
street network data to create spatially explicit urban models. We based our work on
Variational Autoencoders (VAEs) which are deep generative models that have recently
gained their popularity due to the ability to generate realistic images. Initial results
show that VAEs are capable of capturing key high-level urban network metrics using
low-dimensional vectors and generating new urban forms of complexity matching the
cities captured in the street network data.
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Introduction
Temporal and spatial patterns of human interactions shape our cities making them
unique, but, at the same time, create universal processes that make urban structures com-
parable to each other. A long-standing effort of urban studies focuses on the creation
of quantitative models of the spatial forms of cities that would capture their essential
characteristics and enable data-driven comparisons. There have been several attempts at
studying urban forms using quantitative methods, typically based on complexity theory
or network science (Arcaute et al. 2016; Barthélemy and Flammini 2008; Murcio et al.
2015; Buhl et al. 2006; Cardillo et al. 2006; Masucci et al. 2009; Strano et al. 2013). The
approaches create an abstract representation of an urban form to derive its key quanti-
tative characteristics. Although theoretically robust, the abstractions might often be too
simplistic to capture the full breadth and complexity of existing urban structures.
With the increasing availability of urban street network data and the advancements in

deep learning methods, we are presented with an unprecedented opportunity to push
the frontiers of urban modelling towards more data-driven and accurate urban models.
Street networks are a ubiquitous element at every urban area and a robust proxy for pop-
ulation density, jobs and housing accessibility and environmental features (Zhao et al.
2016; Levinson 2012; Boeing 2018; Peponis et al. 2007). Also, street networks are often
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part of a superimposed pattern developed by local and regional governments. In that
sense, this paper could provide urban planners with the capabilities of creating not one,
but thousands of street configurations, where different actors can test a variety of urban
scenarios.
In this study, we present our initial work on applying deep generative models to urban

street network data to create spatially explicit models of urban networks. We based our
work on Variational Autoencoders (VAEs) trained on images of street networks. VAEs are
deep generativemodels that have recently gained their popularity due to the ability to gen-
erate realistic images. VAEs have two fundamental qualities that make them particularly
suitable for urbanmodelling. Firstly, they can condense high dimensional images of urban
street networks to a low-dimensional representation which enables quantitative compar-
isons between urban forms without any prior assumptions. Secondly, VAEs can generate
new realistic urban forms that capture the diversity of existing cities. In this work, we use
image representation of street networks since images encode both topological and spatial
network information. Street network images could be parsed to graphs, if desired, using
road parsing algorithms (Li et al. 2018; Chu et al. 2019; Máttyus et al. 2017).
In the following sections, we show our experiments based on urban street networks

from Open Street Map (OSM). The results indicate that VAE trained on the OSM data is
capable of capturing critical high-level urban metrics using low-dimensional vectors. The
model can also generate new urban forms of structure matching the cities captured in the
OSM dataset. All code and experiments for this study are available at https://github.com/
kirakowalska/vae-urban-network.

Methodology and dataset
Variational autoencoder

Variational Autoencoders (VAEs) have emerged as one of the most popular deep learn-
ing techniques for unsupervised learning of complicated data distributions. VAEs are
particularly appealing because they compress data into a lower-dimensional representa-
tion which can be used for quantitative comparisons and new data generation. VAEs are
built on top of standard function approximators (neural networks) efficiently trained with
stochastic gradient descent (Kingma and Welling 2014). VAEs have already been used to
generatemany kinds of complex data, including handwritten digits, faces, house numbers,
and predicting the future from static images. In this work, we apply VAEs to street net-
work images to learn low-dimensional representations of street networks. We use the
representations to make quantitative comparisons between urban forms without making
any prior assumptions and to generate new realistic urban forms (Fig. 1).
A variational autoencoder consists of an encoder, a decoder, and a loss function. The

encoder is a neural network. Its input is a datapoint x, its output is a hidden representation

Fig. 1 Variational Autoencoder takes as input an image of the street network (left), condenses the image to a
lower-dimensional encoding (middle) and finally reconstructs the image given the encoding (right)
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z, and it has weights and biases θ . The goal of the encoder is to ’encode’ the data into a
latent (hidden) representation space z, which has much fewer dimensions that the data.
This is typically referred to as a ’bottleneck’ because the encoder must learn an efficient
compression of the data into this lower-dimensional space. The encoder is denoted by
qφ(z|x).
The decoder is another neural network. Its input is the representation z, it outputs

a data point x, and has weights and biases φ. The decoder is denoted by pφ(x|z).
The decoder ’decodes’ the low-dimensional latent representation z into the datapoint x.
Information is lost in the process because the decoder translates from a smaller to a larger
dimensionality. How much information is lost? The information loss is measured using
the reconstruction log-likelihood log pφ(x|z). The measure indicates how effectively the
decoder has learned to reconstruct an input image x given its latent representation z.
The loss function of the variational autoencoder is the sum of the reconstruction loss,

given by the negative log-likelihood, and a regularizer. The total loss is the sum of losses
∑N

i=1 li for N datapoints, where the loss function li for datapoint xi is:

li(θ ,φ) = −Ez∼qθ (z|xi)[ log pφ(xi|z)]+KL(qθ (z|xi)||p(z)) (1)

The first term is the reconstruction loss or expected negative log-likelihood of the
i-th data point. This term encourages the decoder to learn to reconstruct the data. Poor
reconstruction of the data x from its latent representation z will incur a large cost in this
loss term. The second term is a regularizer that we introduce to ensure that the distri-
bution of the latent values z approaches the prior distribution p(z) specified as a Normal
distribution with mean zero and variance one. The regularizer is the Kullback-Leibler
divergence between the encoder’s distribution qθ (z|x) and p(z). It measures how close q is
to p. The regularizer ensures that the representations z of each data point are sufficiently
diverse and distributed approximately according to a normal distribution, from which we
can easily sample.
The variational autoencoder is trained using gradient descent to optimize the loss with

respect to the parameters of the encoder and decoder θ and φ.
In our work, we selected Convolutional Neural Networks (CNNs) (Fukushima 1980;

LeCun et al. 1990) as the encoder and decoder architectures. CNNs are deep learning
architectures that are particularly well-suited to image data (LeCun et al. 1995; Krizhevsky
et al. 2014) as they consider the two-dimensional structure of images and scale well to
high-dimensional images. We tested several CNN architectures and finally chose a net-
work architecture in Fig. 2 with the encoder and the decoder architectures consisting of
four convolutional blocks, each with a convolutional and a rectified linear unit (ReLU)
layer (which introduces non-linearity to the network). The architecture takes as input an
image of size 64 × 64 pixels, convolves the image through the encoder network and then
condenses it to a 32-dimensional latent representation. The decoder then reconstructs the
original image from the condensed latent representation.We implemented the variational
autoencoder using PyTorch library for Python.

Street network data

The street networks used for model training and testing were obtained from
OpenStreetMap (Haklay and Weber 2008) by ranking world cities by 2015 population
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Fig. 2 Variational autoencoder architecture. Yellow blocks represent convolutional blocks (convolutional
layer followed by ReLU layer) with dimensions corresponding to their output dimensions. The purple block is
the learnt embedding z

from the Global Human Settlement database1. We saved the street networks as images
and, as the Variational autoencoders required images to have a fixed spatial scale, we
extracted a 3 × 3km sample from the centre of each city image and resized it to a 64 × 64
pixels binary image. The final dataset contained 12,479 binary images of 64 × 64 pixels,
which we split into 80% training and 20% testing datasets. During model training, we aug-
mented the training dataset by randomly cropping and flipping the images horizontally.
Figure 3 shows images for randomly selected cities.

Results
Reconstruction quality

The variational autoencoder was trained to minimise the loss function defined in (1). The
training is equivalent tominimising the image reconstruction loss, subject to a regularizer.
We can inspect the training quality by visually comparing reconstructed images to their
original counterparts. Figure 4 shows several examples of reconstructed images of urban
street networks. As observed in the examples, the trained autoencoder performs well at
reconstructing the overall shape of road networks and their main roads. The quality of
the reconstruction drops for very dense road networks when only the overall network
shape is captured by the autoencoder (see the leftmost image in Fig. 4). The observation
suggests that variational autoencoders are better suited for reconstructing images with
wide patches of pixels with similar properties rather than narrow stretches such as roads.

Urban networks comparison

The trained autoencoder learnt mapping from the space of street network images
(64 × 64 or 4,096 dimensions) to a lower dimensional latent space (32 dimensions). The
latent representation stores all the information required to reconstruct the original image
of the street network, so it is effectively a condensed representation of the street network
that preserves all its connectivity and spatial information. In the lack of well-defined simi-
larity metrics of urban networks, this paper uses the condensed representations as vectors
of street network features. Hereafter, we call the vectors urban network vectors. Urban

1https://ghsl.jrc.ec.europa.eu/datasets.php (accessed March 2019)

https://ghsl.jrc.ec.europa.eu/datasets.php
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Fig. 3 Example images of the street network in randomly selected cities, shown as a square window of 3 ×
3km centered on the city centre

network vectors can be used to measure the similarity between different street network
forms and to perform further similarity analysis, such as clustering.

Similarity analysis Firstly, we demonstrated the use of urban network vectors for mea-
suring similarity between urban street forms. We measured the similarity between pairs
of vectors as the Euclidean distance. Given two urban network vectors p = (p1, p2, ..., pn)
and q = (q1, q2, ..., qn), where n = 32 is the size of the latent space z, the Euclidean
distance between p and q is defined as:

d(p, q) = d(q, p) =
√

(q1 − p1)2 + (q2 − p2)2 + ... + (qn − pn)2. (2)

Figure 5 shows randomly chosen street networks (top row) and their most similar net-
works based on the Euclidean distance between their urban street networks. As shown
in the figure, the proposed methodology enables finding street networks with matching
properties, such as network density, spatial structure and orientation without explicitly
including any of the properties in the similarity computation.

Clustering Secondly, we used the urban network vectors to detect clusters of similar
urban street forms. We used the K-means clustering algorithm (Witten et al. 2016). It is
a popular clustering approach that assigns data points to K clusters based on distances
to cluster centroids. The algorithm requires specifying the number of clusters K a priori.
We identified K = 3 as the optimal number of clusters for the street image data using the

Fig. 4 Street network reconstructed (bottom) from the original images (top) using the trained autoencoder
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Fig. 5 Street network images (top row) with most similar street networks (rows below) based on the
Euclidean distance between their urban network vectors. The latent representations, obtained using the
trained encoder, seem to capture well network properties such as density, orientation or road shape

elbowmethod (Dangeti 2017). As shown in Fig. 6a, the obtained clusters seem to separate
street networks based on their street density. We found further cluster characteristics by
calculating their network metrics in Table 1. The results in Table 1 show that the clusters
can be clearly distinguished using network metrics such as node degree or average edge
length. For example, the red cluster is composed of street networks withmany short street
segments, whereas the blue cluster contains street networks with much fewer but longer
streets. The preliminary results suggest that the urban network vectors used for clustering
street images are capable of capturing key street network properties, hence they could be
used to generate a diverse range of realistic urban forms.
When we increased the number of clusters to K = 6 in Fig. 6b, we could differentiate

road networks based on more subtle network characteristics, such as disconnectedness
of roads in the first cluster (top-left in Fig. 6b) or large gaps in road provision in the sec-
ond cluster (top-centre in Fig. 6b). We visualised both cluster assignments in Fig. 6 (right)
by projecting the thirty-two-dimensional urban network vectors to a two-dimensional
grid using T-SNE algorithm (Maaten and Hinton 2008) for dimensionality reduction.
The visualisations show that street networks cluster well into three groups that were
detected by the K-means algorithm since the groups are well balanced in size and non-
overlapping. The three clusters are further mapped to investigate spatial patterns in urban
form variation (Fig. 7).

Urban networks generation

In “Urban networks comparison” section, we used the autoencoder to compress real
street images to low-dimensional vectors which we then used to make quantitative
comparisons. This employed one strength of variational autoencoders: the ability to
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Fig. 6 a Three or b six clusters of urban street forms obtained by applying K-means algorithm to the
condensed urban network vectors. Subfigures show example street networks in each cluster (top left), street
network density in each cluster (bottom left) approximated using pixel intensity of street images, and a
two-dimensional visualisation of all urban vectors with colour-coded cluster membership

encode high-dimensional observations as meaningful low-dimensional representations.
The second strength pertains to the ability to generate realistic urban street forms that
match the complexity of urban forms across the globe. The ability could potentially
advance the current state-of-the-art in simulations of urban forms and socio-economic
processes taking place on urban networks.
To generate a synthetic urban network, we firstly sample an embedding value z from

the prior distribution p(z) specified as a standard Gaussian (see “Variational autoencoder”

Table 1 Average network metrics of urban street networks in the three clusters in Fig. 6a

Network metric
Cluster

Red Black Blue

Number of nodes 2488.5 1271.6 358.7

Number of edges 6671.1 3261.3 913.6

Average node degree 5.4 5.2 4.8

Total edge length 328975.6 207221.9 76841.7

Average edge length 101.8 154.4 447.6
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Fig. 7 Distribution of urban street forms across the globe. Each dot represents a city and is colour-coded
according to cluster memberships in Figure 6a. Despite limited data size, spatial trends start to emerge, such
as the concentration of high-density urban networks in California, USA (red cluster) and low-density urban
networks in south-eastern Asia (black cluster)

section) and then pass the value through the decoder network to obtain a correspond-
ing image. Images corresponding to several embedding samples are shown in Fig. 8. As
shown in the figure, the generated images lack the detail of real street images in Fig. 3.
Although the samples follow the general structure of road networks with major roads and
areas of mixed-density minor roads, the decoder fails to reconstruct details of dense road
segments and instead represents them blurred. The problem must be accredited to too
few images used in the study. Although the proposed model is flexible enough to model
urban street networks, which is confirmed by high-quality reconstructions of real images
in Fig. 4, it does not see enough images to learn to interpolate between them to sample
new forms of street networks to sufficient detail.

Fig. 8 Examples of synthetic urban street forms generated by passing a randomly sampled latent code z
through the decoder network
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Discussion and conclusions
This study is an early exploration of how modern generative machine learning mod-
els such as variational autoencoders could augment our ability to model urban forms.
With the ability to extract key urban features from high-dimensional urban imagery, vari-
ational autoencoders open new avenues to integrating high-dimensional data streams
in urban modelling. The study considered images of street networks, but the proposed
methodology could be equally applied to other image data, such as urban satellite imagery.
Variational autoencoders were selected among deep generative models (Moosavi 2017;

Albert et al. 2018) due to their two capabilities: firstly to condense images to low-
dimensional representations, secondly to generate new previously unseen images that
match the complexity of observed images. The first capability enabled us to extract key
urban metrics from street network images, the second gave us the power to generate
realistic images of previously unseen urban networks.
Our results, based on 12,479 city images across the globe, showed that VAEs suc-

cessfully condensed urban images into low-dimensional urban network vectors. This
enabled quantitative similarity analysis between urban forms, such as clustering. What is
more, VAEs managed to generate new urban forms with complexity matching that of the
observed data. Unfortunately, the resolution of the generated images was low which was
accredited to the small size of the dataset. Future work will repeat model training on a
much larger corpus of images to improve the generative quality. Moreover, further work
will fine tune the generative quality by investigating the impact of the size of the latent
space (currently fixed to 32 dimensions) and the training objective used (e.g. Wasserstein
distance instead of KL divergence).
Despite the promising results, the study opens essential questions for future work. The

first question pertains to the black-box nature of deep learning models that lack com-
prehensive human interpretability. This limitation is already receiving much attention in
the deep learning literature (Ribeiro et al. 2016; Shrikumar et al. 2017; Lundberg and
Lee 2017). In this study, the limitation manifests itself in our lack of understanding of
how latent space representations of urban networks relate to established network met-
rics (Newman 2010). A related question refers to the ability to evaluate the quality of
model outputs, i.e. latent representations and synthetic images. Again, quality assessment
of deep generative models is a hot topic in the broader deep learning research commu-
nity (see for example Wu et al. (2017)).Future work could address the problem from the
perspective of urban network science. Finally, before this type of generative models could
be part of any urban planning cycle, we need to reflect how we might develop these
tools further through designing a structured set of experiments that include, for example,
population densities or environmental features.

Acknowledgments
The authors would like to thank Szymon Zareba and Adam Gonczarek (Alphamoon Ltd) for advice on deep generative
models during the course of the project.

Authors’ contributions
KK designed and implemented the methodology, executed the computer runs, and wrote the initial version of the article.
RM prepared street network data and extensively revised the article. Both authors read and approved the final manuscript.

Authors’ information
KK is a lecturer in geospatial machine learning at the Bartlett’s Centre for Advanced Spatial Analysis, University College
London, UK and a machine learning researcher at Alphamoon, PL. She develops machine learning algorithms for urban
modelling and sensor data mining. Her research interests include geospatial data mining, sensor data fusion and
machine learning for sensor networks.



Kempinska and Murcio Applied Network Science           (2019) 4:114 Page 10 of 11

RM is a senior research fellow at the Bartlett’s Centre for Advanced Spatial Analysis, University College London, UK. His
academic interests include urban complex networks, information transfer in social systems, spatial interaction models
and pedestrian flows. One of his main research topics is the application of multifractal measures to different urban
aspects, such as street networks and social inequality.

Funding
There is no specific funding received for the study.

Availability of data andmaterials
All data and program source code described in this article is available to any interested parties. The source code and
experiments are available at GitHub at the following URL: https://github.com/kirakowalska/vae-urban-network. The raw
data and datasets generated during this study are available upon request.

Competing interests
The authors declare that they have no competing interests.

Received: 30 April 2019 Accepted: 13 November 2019

References
Albert A, Strano E, Kaur J, González M (2018) Modeling urbanization patterns with generative adversarial networks. In:

IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE. pp 2095–2098
Arcaute E, Molinero C, Hatna E, Murcio R, Vargas-Ruiz C, Masucci AP, Batty M (2016) Cities and regions in britain through

hierarchical percolation. R Soc Open Sci 3(4):150691. https://doi.org/10.1098/rsos.150691
Barthélemy M, Flammini A (2008) Modeling urban street patterns. Phys Rev Lett 100(13):138702
Boeing G (2018) A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow

neighborhood. Environment and Planning B: Urban Analytics and City Science:2399808318784595
Buhl J, Gautrais J, Reeves N, Solé R, Valverde S, Kuntz P, Theraulaz G (2006) Topological patterns in street networks of

self-organized urban settlements. Eur Phys J B-Condens Matter Complex Syst 49(4):513–522
Cardillo A, Scellato S, Latora V, Porta S (2006) Structural properties of planar graphs of urban street patterns. Phys Rev E

73(6):066107
Chu H, Li D, Acuna D, Kar A, Shugrina M, Wei X, Liu M-Y, Torralba A, Fidler S (2019) Neural turtle graphics for modeling city

road layouts. In: Proceedings of the IEEE International Conference on Computer Vision. pp 4522–4530
Dangeti P (2017) Statistics for Machine Learning. Packt Publishing Ltd, Birmingham
Fukushima K (1980) Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition

unaffected by shift in position. Biol Cybern 36(4):193–202
Haklay M, Weber P (2008) Openstreetmap: User-generated street maps. IEEE Pervasive Comput 7(4):12–18
Kingma DP, Welling M (2014) Auto-encoding variational bayes
Krizhevsky A, Sutskever I, Hinton GE (2014) Imagenet classification with deep convolutional neural networks. In: Neural

Information Processing Systems. pp 1097–1105
LeCun Y, Bengio Y, et al. (1995) Convolutional networks for images, speech, and time series. Handb Brain Theory Neural

Netw 3361(10):1995
LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with

a back-propagation network. In: Adv Neural Inf Process Syst. NIPS. pp 396–404
Levinson D (2012) Network structure and city size. PloS ONE 7(1):29721
Li Z, Wegner JD, Lucchi A (2018) Polymapper: Extracting city maps using polygons. arXiv preprint arXiv:1812.01497
Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Advances in Neural Information

Processing Systems, NIPS. pp 4765–4774
Maaten Lvd, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579–2605
Masucci AP, Smith D, Crooks A, Batty M (2009) Random planar graphs and the london street network. Eur Phys J B

71(2):259–271
Máttyus G, Luo W, Urtasun R (2017) Deeproadmapper: Extracting road topology from aerial images. In: Proceedings of

the IEEE International Conference on Computer Vision. IEEE. pp 3438–3446
Moosavi V (2017) Urban morphology meets deep learning: Exploring urban forms in one million cities, town and villages

across the planet. arXiv preprint arXiv:1709.02939
Murcio R, Massuci AP, Arcaute E, Batty M (2015) Multifractal to monofractal evolution of the london street network. Phys

Rev E 92(6):2130. https://doi.org/10.1103/PhysRevE.92.062130
Newman M (2010) Networks: an Introduction. Oxford university press, Oxford
Peponis J, Allen D, French S, Scoppa M, Brown J (2007) Street connectivity and urban density. In: 6th International Space

Syntax Symposium. Citeseer, Istanbul. pp 1–12
Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the predictions of any classifier. In:

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016

Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In:
Proceedings of the 34th International Conference on Machine Learning

Strano E, Viana M, da Fontoura Costa L, Cardillo A, Porta S, Latora V (2013) Urban street networks, a comparative analysis
of ten european cities. Environ Plan B Plan Des 40(6):1071–1086

Witten IH, Frank E, Hall MA, Pal CJ (2016) Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, Burlington

Wu Y, Burda Y, Salakhutdinov R, Grosse R (2017) On the quantitative analysis of decoder-based generative models

https://github.com/kirakowalska/vae-urban-network
https://doi.org/10.1098/rsos.150691
https://doi.org/10.1103/PhysRevE.92.062130


Kempinska and Murcio Applied Network Science           (2019) 4:114 Page 11 of 11

Zhao F, Sun H, Wu J, Gao Z, Liu R (2016) Analysis of road network pattern considering population distribution and central
business district. PloS ONE 11(3):0151676

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Abstract
	Keywords

	Introduction
	Methodology and dataset
	Variational autoencoder
	Street network data

	Results
	Reconstruction quality
	Urban networks comparison
	Similarity analysis
	Clustering


	Urban networks generation

	Discussion and conclusions
	Acknowledgments
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

