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Abstract
The goal of this study is to demonstrate how network science and graph theory tools
and concepts can be effectively used for exploring and comparing semantic spaces of
word embeddings and lexical databases. Specifically, we construct semantic networks
based on word2vec representation of words, which is “learnt” from large text corpora
(Google news, Amazon reviews), and “human built” word networks derived from the
well-known lexical databases: WordNet and Moby Thesaurus. We compare “global”
(e.g., degrees, distances, clustering coefficients) and “local” (e.g., most central nodes
and community-type dense clusters) characteristics of considered networks. Our
observations suggest that human built networks possess more intuitive global
connectivity patterns, whereas local characteristics (in particular, dense clusters) of the
machine built networks provide much richer information on the contextual usage and
perceived meanings of words, which reveals interesting structural differences between
human built and machine built semantic networks. To our knowledge, this is the first
study that uses graph theory and network science in the considered context; therefore,
we also provide interesting examples and discuss potential research directions that
may motivate further research on the synthesis of lexicographic and machine learning
based tools and lead to new insights in this area.

Keywords: Semantic spaces, Graph theory, Word2vec similarity networks, Cohesive
clusters, Cliques, Clique relaxations

Introduction
The amount of text data generated in various domains has exploded exponentially over
the past few years, and it is estimated that about 80% of all data is unstructured text-heavy
data (Schneider 2016; Sumathy and Chidambaram 2013). Therefore, it is increasingly
important to develop effective tools and methodologies for handling and analyzing text
data. The field of text analytics contains a set of techniques for extracting valuable
knowledge from the text, such as the use of natural language processing tools to con-
vert unstructured text-rich data into structured machine-understandable form of data.
Typical text analytics applications include finding/extracting relevant information from
the text, text categorization, document summarization, text clustering, sentiment analy-
sis, concept extraction, and others (Gandomi and Haider 2015). Many of these tasks are
addressed using various machine learning techniques.
Text data is one of the most underused sources of data (Bengfort et al. 2018; Kasch

2014). A significant challenge for text analytics is understanding language organization
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principles, rules, and definitions, which, contrary to formal languages (i.e., programming
languages), are often determined by a context of use and encompass current human
knowledge and experience (produced by people to be understood by people). In gen-
eral, natural languages are not domain specific but rather universal in the sense that the
same words and organizing principles are used in various domains. Moreover, natural
languages are redundant, ambiguous, and quickly evolving as they constantly adapt the
inclusion of new symbols (e.g., emoji symbols), definitions, contexts, and usages (Bengfort
et al. 2018).
Network representations provide intuitive and useful ways to uncover complex struc-

tures of natural languages. In particular, a human lexicon, which is a set of words or
meanings and their semantic relationships can be naturally modelled by networks. The
global organization and dynamics of such networks, which are referred to as seman-
tic networks, have been investigated by a number of studies (Sigman and Cecchi 2002;
Steyvers and Tenenbaum 2005; Bales and Johnson 2006; Borge-Holthoefer and Arenas
2010; Choudhury and Mukherjee 2009; Fukś H and Krzemiński 2009; de Jesus et al.
2004; Motter et al. 2002). The majority of this previous work is focused on the analysis
of semantic networks constructed using some dictionaries or lexical databases, such as
WordNet (Miller 1995; Fellbaum 1998) and Moby Thesaurus (Ward 2002). The existence
of semantic relations between words in such networks is judged by lexicographers, which
may lead to significant differences among the structures of the corresponding networks
(Gaillard et al. 2011). Thus, such “human built” networks may not necessarily reflect the
true semantic structure and diversity of the corresponding language.
Another way of constructing semantic networks is based on word embedding, which

is a popular method of representing words as vectors in a multi-dimensional space. It
is capable of capturing the context of a word in a document, semantic and syntactic
similarity, relations with other words, etc. Recent years have seen rapid development of
word embedding methods, the most popular of which are word2vec embeddings (Mikolov
et al. 2013a, b). Word embedding models map words (or word phrases) in large cor-
pora of text into a multidimensional vector space, where each word is represented by
a vector in this space, and semantically similar words are located closer to each other.
Word embeddings are created using self-supervised machine learning algorithms. The
benefit of semantic spaces generated by word embedding algorithms is that they can
be trained on very large text corpora (e.g., texts with 100 billion words from Google
News (Google Open Source Project 2013)) and may better reflect the context of use,
diversity and dynamics of human languages than dictionaries and lexical databases
compiled by lexicographers, and, hence, help to improve these human built databases.
Nowadays, word embeddings are a key instrument in many natural language process-
ing and machine learning applications. Understanding the structure and organization
principles of such semantic spaces is very important for measuring the performance
and limitations of word embeddings, which can be done using network representations.
An edge between two words in such networks means that their corresponding vec-
tors are similar to each other in the sense that the respective words are used in similar
contexts.
In this paper, we compare and analyze two “human built” semantic networks con-

structed using lexical databases (WordNet (Miller 1995; Fellbaum 1998),Moby Thesaurus
(Ward 2002)) and two “machine built” semantic networks constructed using word
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embeddings based on Google News (Google Open Source Project 2013) and Amazon
Reviews (2017) datasets. The WordNet lexicon groups words into sets of synonyms,
which we use to construct a network of synonyms (connect each pair of words in every
group of synonyms by edges). On the contrary, Moby Thesaurus contains a set of words
(root words) followed by the list of synonyms and other related conceptually similar
words; in its network representation we connect each root word with every word in its
corresponding list. As Moby Thesaurus has a broader definition of a synonym, the result-
ing network is denser than the WordNet network and can be viewed as more relaxed
synonyms network, which is useful for comparison reasons with word embedding-based
networks. Since there are a number of ways to generate and obtain word embeddings, the
first one we selected is already trained on very large text corpora publicly available and
used as a benchmark in machine learning applications: a pre-trained word2vec embed-
ding of Google News (Google Open Source Project 2013). The second one is word2vec
embedding of Amazon Reviews dataset (Amazon Reviews dataset 2017) containing more
than 400K customer reviews (text size is roughly equal to 100 typical hardcover books).
To generate the corresponding word embedding (which is shown to be able to capture
semantic similarity among words for sentiment analysis (Bansal and Srivastava 2018))
we use Gensim (Řehůřek and Sojka 2010) module. Thus, two selected word embedding
datasets represent somewhat different styles of language (a more formal language of news
written by trained journalists versus a more casual language of reviews written by cus-
tomers who might use slang, acronyms, words from other languages, emojis, etc.) and
their network representations may reveal some interesting insights about the contextual
use of words in these domains. Moreover, our findings indicate that although the global
characteristics of word embedding-based networks are somewhat similar (all networks
exhibit small-world properties), there are significant differences in the nodes (words)
which occupy more central network positions. Specifically, the most central words in the
networks built on lexical databases tend to be more frequently used in the English lan-
guage, whereas most central words in the networks based on word embeddings are those
that are rarely used.
In addition, we identify dense clusters (subsets of words with a relatively high number

of edges among them) in the constructed semantic networks. Naturally, dense clusters
of nodes in semantic networks should represent groups of words that are very close to
each other in the semantic space and share similar meanings. In particular, we first use
the concept of a clique (subset of nodes in which each pair of nodes is connected by
an edge), which is employed in a number of application areas due to its elegance and
inherent ability to logically represent cohesive (well-connected) subgroups of elements in
complex systems modeled as graph (Bomze et al. 1999). However, the requirement that
every possible edge is present within a clique is very strict and may limit the flexibility of
this concept. One way to overcome this issue is to relax a certain clique-defining prop-
erty and find network clusters satisfying this relaxed property (Pattillo et al. 2013b). In
this work we consider a widely used concept of a quasi-clique (Abello et al. 1999), which
ensures that the considered cluster is dense enough (the percentage of edges in a clus-
ter is above a certain threshold). The problem of finding large dense clusters has been
addressed in a number of applications from various domains, including telecommuni-
cations (Abello et al. 1999), biology (Hartwell et al. 1999; Spirin and Mirny 2003; Bader
and Hogue 2003; Bu et al. 2003; Hu et al. 2005), social network analysis (Crenson 1978;
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Wasserman and Faust 1994), finance (Boginski et al. 2005; Boginski et al. 2014; Huang
et al. 2009; Sim et al. 2006) and data mining (Tsourakakis et al. 2013; Angel et al. 2012).
We implement our recently developed mixed integer programming-based methodologies
(Pastukhov et al. 2018; Veremyev et al. 2016) for identifying cliques and quasi-cliques
to graph representations of semantic spaces. We note that even though the under-
lying problems are NP-hard in general, it is still realistic to find exact solutions of
these problems due to the size and sparsity of the considered networks, as well as
due to significant performance improvements of integer programming solvers over the
past decade.
We demonstrate the usefulness of dense cluster analysis in local (ego) networks of

semantic spaces, that is, subgraphs induced by the words connected to any given word of
interest. Intuitively, in word embedding-based networks, these clusters should be able to
capture semantically relevant groups of words according to their meanings and contex-
tual use within the text corpora which the word embedding is trained on. It may allow
one not only to measure the quality of word embeddings, but also to improve the existing
lexical databases by broadening and refining sets of synonyms currently available in those
databases. Moreover, as the language quickly evolves, we find that dense clusters are able
to identify semantically similar groups for new, unusual (e.g., acronyms, emojis) or mis-
spelled words in the corresponding word embeddings, which, for example, may help to
uncover the perceived meanings of emojis across platforms as it is not well understood
how people interpret them (Miller et al. 2016). In addition, we show how information
about cliques extracted from semantic networks constructed based on word embeddings
can be incorporated into machine leaning algorithms, e.g., sentiment analysis of Amazon
Reviews.
As a final remark of this section, we note that network science concepts and

approaches have been used in psychological linguistics and cognitive science to
gain more insights and deeper understanding of human cognition. For example,
they help to address one of the most fundamental questions of how seman-
tic knowledge is absorbed, represented, organized and searched in our brains
(Vitevitch 2008; Vitevitch and Goldstein 2014; Vitevitch et al. 2014; Abbott et al. 2015;
Ke and Yao 2008), as well as investigate other aspects of language complexity and struc-
ture (Siew 2013, 2018; Jia et al. 2018; Cong and Liu 2018). For a comprehensive recent
survey on this topic that overviews various studies and applications of networks in cog-
nitive science we refer the reader to Siew et al. (2018). In addition, network-based text
representations and algorithms have been successfully applied to information retrieval,
keyword extraction, text summarization, document classification, and other problems
(Vazirgiannis et al. 2018; Altuncu et al. 2019). Therefore, we believe that network-based
approaches are promising in the considered domain, and this study takes a further
step towards demonstrating the potential value of network science in the analysis of
text data.

Notations and definitions
This section introduces graph-theoretic notations and definitions. Note that although the
entries in lexical databases and word embeddings may contain both single words and
short phrases (e.g., ‘quite a little’, ‘too bad’), we refer to these entries as words or nodes in
the corresponding networks and use these terms interchangeably.
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Network characteristics

Let G = (V ,E) be a simple undirected graph with the sets of n nodes (vertices) and m
edges denoted by V and E, respectively. Denote by N(i) the set of all neighbors of i ∈ V ,
where j ∈ V is a neighbor of i ∈ V if (i, j) ∈ E, i.e., N(i) = {j ∈ V : (i, j) ∈ E}. Then
the degree of i in G is defined as deg(i) = |N(i)|. Two distinct nodes i and j are connected
if G contains a path between them. A path between i and j in G is the shortest path if it
contains the least number of edges among all paths between i and j in G. The length (i.e.,
number of edges) of a shortest path between i and j in G is referred to as the distance
between i and j in G and denoted by dij. The maximum distance between any two nodes
in G is referred to as the diameter of G, i.e., diam(G) = max{dij : i, j ∈ V }. The average
distance is simply the arithmetic mean of distances between all pairs of nodes in graph
G. For any subset S ⊆ V , G[ S]= (S,

(S
2
) ∩ E) defines the subgraph induced by S in G. A

connected component of G is an induced subgraph in which each node has a path to every
other node in the component, but not to any node outside the component.
The global clustering coefficient for graphG is the ratio of the number of closed triplets,

to the number of all triplets in the graph. The local clustering coefficient of a node i in
graph G is the ratio of the number of connections among its neighbors to its maximum
possible value. The average clustering coefficient of a graph is the average of all local
clustering coefficients calculated for every node i. The degree assortativity is the Pear-
son correlation coefficient between degrees of linked pairs of nodes. For more details
and discussion on these standard structural graph characteristics we refer the reader to
Newman (2003, 2018).
In addition, to identify the most important or central nodes in semantic networks we

use the concept of node centrality. Specifically, we consider four classical centrality mea-
sures (degree, closeness, betweenness, and PageRank), which capture the complimentary
aspects of node importance (position) in a network. Their definitions, historical back-
ground, as well as intuition behind each type of centrality measure can be found in, e.g.,
(Boldi and Vigna 2014; Borgatti and Everett 2006; Jackson 2010).

Dense clusters

In order to formally define and analyze community-type dense clusters in the considered
networks, we use the graph-theoretic concepts of a clique and a γ -quasi-clique.
A graph G is complete if it has all possible edges, i.e., (i, j) ∈ E for any i, j ∈ V (i �= j). A

clique C is a subset of V such that G[C] is a complete graph (Luce and Perry 1949). The
maximum clique problem is to find a clique of maximum cardinality in G (Bomze et al.
1999). This problem is known to be NP-hard (Garey and Johnson 1979).
A γ -quasi-clique is an edge density based clique relaxation defined as a subset S ⊆ V

such that the subgraph G[ S] induced by S in G has the edge density of at least γ , that
is, ρ(G[ S] ) = |(S2

) ∩ E|/(|S|
2
) ≥ γ , where γ ∈ (0, 1] is a fixed constant parameter

(Abello et al. 2002). Clearly, γ = 1 corresponds to a clique. The problem of finding a
maximum γ -quasi-clique is known to be NP-hard for any fixed γ ∈ (0, 1] (Pattillo et al.
2013a; Holzapfel et al. 2006). Cliques and γ -quasi-cliques will be used in the context of
dense cluster analysis in the considered networks. As mentioned further in the paper,
despite the NP-hardness of the optimization problems related to cliques and γ -quasi-
cliques, we have been able to solve such problems to optimality in the constructed
networks.
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Methods
This section describes methods used for building word embeddings and their network
representations, as well as tools and methodologies applied to analyze the constructed
networks.

Word embeddings (word2vec) similarity network construction

LetV be a set of unique words (tokens) in the considered text corpora (a text document or
a collection of text documents), i.e., V is a vocabulary, and let |V | = n denote the number
of words in it. For each word w ∈ V , the word w embedding is a vector pw = (pw1 , . . . , p

w
K )

in a K-dimensional (semantic) space, where each pwk (k = 1, . . . ,K) is a real number. A
mapping function φ : V → RK maps any word in the considered text corpora to a vector
in a K-dimensional space. The goal of a mapping function is to construct a semantic space
such that semantically similar words are mapped to similar vectors in the corresponding
space. Word2vec models (Mikolov et al. 2013a, b) appear to be appropriate for this task:
these are essentially neural networks that are trained to reconstruct linguistic contexts of
words based on large corpora of text as an input.
The similarity score between a pair of words i, j ∈ V is computed as cosine similarity

between the corresponding vectors pi and pj, which is equal to

sim(i, j) =

K∑

k=1
pikp

j
k

√
K∑

k=1

(
pik

)2
√

K∑

k=1

(
pjk

)2

The network representation of a semantic space corresponding to given text corpora is
a simple undirected graph G = (V ,E) with a set of n vertices (nodes, words) V and a set
of edges E such that two nodes i and j have an edge between them if sim(i, j) ≥ δ, where
δ is a predefined threshold (referred to as the slicing cutoff, which we generally set to be
greater than 0.5 in the context of cosine similarity).

Network analysis and dense clusters identification

Network analysis and visualization presented in this paper is handled using iGraph
(Csardi et al. 2006) and NetworkX (Hagberg et al. 2008) libraries in Python 3.7. The struc-
tural network characteristics (diameter, average distance, clustering coefficients, node
centralities) are computed using iGraph library as it is much faster than NetworkX. The
visualization is also done using iGraph tools since it generally produces nicer layout (see
Zinoviev (2018) for more details on comparison of network analysis tools in Python).
All other graph manipulations, as well as calling a linear integer programming solver for
finding dense clusters, is done using NetworkX library.
The largest cliques in the considered graphs are identified using a linear integer pro-

gramming formulation γ -QC (Pastukhov et al. 2018) for γ = 1 and some pre-processing
techniques (if necessary) that are described in the same reference. The formulation con-
tains n binary variables and n constraints, which allowed us to solve the maximum clique
problem in any considered network in a reasonable time. The maximum density-based
γ -quasi-cliques (subgraphs with guaranteed edge density γ ) are identified using a linear
mixed-integer programming (MIP) formulation F3 from (Veremyev et al. 2016). All MIP
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formulations are solved using Gurobi Optimizer 8.1 (Gurobi Optimization LLC 2019)
using Python interface.

Results and discussion
In this section, we present the results on global and local characteristics of the con-
sidered human built and machine built (learnt) networks. Specifically, we describe the
characteristics of WordNet and Moby Thesaurus networks, as well as the word2vec sim-
ilarity networks constructed using Google News and Amazon Reviews datasets. Further,
we compare dense clusters in ego networks and show that such clusters obtained in the
word2vec similarity networks appear to produce consistent and meaningful results.

Structural characteristics of human built semantic networks

WordNet network characteristics

WordNet is a large lexical database of English terms (words) developed by George Miller
and colleagues (Miller 1995; Fellbaum 1998) in which words are grouped into sets of
cognitive synonyms (synsets), each representing a distinct concept. The dataset that we
analyze was accessed using NLTK (natural language toolkit) module (Bird et al. 2009)
in Python 3.7; it contains approximately 117K synsets and 148K words. Although this
database includes various semantic relations among words and concepts (e.g., hyponym,
meronym, entailment), we construct and analyze network based on the main relation
among words in WordNet, which is synonymy. In this case, two words are connected by
an edge if they share the same meaning or concept and interchangeable in many contexts.
The constructed network has approximately 35K isolated nodes, i.e., words without

synonyms (e.g., ‘abacus’, ‘abbreviation’, ‘absorber’, ‘dine’). The remaining 113K nodes form
29K connected components, in which the largest one contains 32611 words and the
second largest one contains only 43 words. Hence, the network includes the connected
component that spans about 22% words, roughly 23% of the words are isolated nodes,
and the remaining half of the words form very small components of sizes not greater than
several dozen nodes.
Table 1 reports the basic structural characteristics of the largest connected component

of the constructed WordNet synonyms network and Fig. 1 illustrates its degree distri-
bution. Since there are two common ways of representing degree distributions in the

Table 1 Basic characteristics of the largest connected component of WordNet synonyms and Moby
Thesaurus networks

WordNet Moby Thesaurus

Number of nodes 32611 103306

Number of edges 119463 1783357

Average degree 7.32 34.52

Largest degree 152 1486

Diameter 23 9

Average distance 6.89 3.81

Global clustering coefficient 0.36 0.19

Average local clustering coefficient 0.62 0.66

Degree assortativity 0.26 0.03

Largest clique size 34 68
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Fig. 1 Degree distributions of largest connected component in WordNet synonyms and Moby Thesaurus
networks

literature, we provide two respective figures. In the first one the nodes are ranked accord-
ing to their degree and are plotted on the corresponding rank-degree curve. In the second
one, for each degree value we plot the number of words (frequency) with that degree in
the network. The global network characteristics are somewhat similar to the ones calcu-
lated for other real-life networks in various domains (Newman 2003) and indicate that
this network is small-world (Watts and Strogatz 1998) (that is, it has a high clustering
coefficient, small diameter, and small average distance).
Moreover, we have identified the largest clique in this network which contains 34 words

(Table 2). The synset with the largest number of words, however, contains 28 synonyms.
By definition, all words in one synset form a clique in the constructed synonym network.
Hence, although all pairs of nodes (words) in a clique are synonyms, they may correspond
to different meanings (concepts).
We have also identified the most important or central nodes in these networks. Specif-

ically, since in the English language (and many other languages as well) some words

Table 2 Largest cliques in WordNet and Moby Thesaurus networks, as well as in word2vec Google
News and Amazon Reviews networks containing words from WordNet

Network Size Words

WordNet 34 batch deal flock good_deal great_deal hatful heap heaps lot
lots mass mess mickle mint mountain muckle passel peck pile
piles plenty pot quite_a_little raft rafts sight slew slews spate
stack stacks tidy_sum wad wads

Moby Thesaurus 68 abominable arrant atrocious awful base beastly
beneath_contempt blameworthy brutal contemptible
deplorable despicable detestable dire disgusting dreadful
egregious enormous fetid filthy flagrant foul fulsome grievous
gross hateful heinous horrible horrid infamous lamentable
loathsome lousy monstrous nasty nefarious noisome noto-
rious obnoxious odious offensive outrageous pitiable pitiful
rank regrettable reprehensible repulsive rotten sad scandalous
schlock scurvy shabby shameful shocking shoddy sordid
squalid terrible too_bad unclean vile villainous woeful worst
worthless wretched

Google News (threshold 0.7) 14 Amelanchier Clethra Euonymus Eupatorium cotoneaster
deciduous_holly flowering_quince marsh_marigold monarda
scabiosa silky_dogwood snowberry trumpet_honeysuckle
winterberry

Amazon Reviews (threshold 0.8) 13 ante dinero embargo ese falla haber hoy leer lento pas persona
saber sus
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are used more frequently than others and their usage follows Zipf ’s law (Powers 1998)
(given a large sample of words used, the frequency of any word is inversely propor-
tional to its rank in the frequency table), it is interesting to see if more common or
frequently used words have more central positions in the semantic spaces as well. To
quantify the word position in the semantic network we used four classic centrality
measures (degree, closenness, betweenness and PageRank) which capture the comple-
mentary aspects of node importance based on their connectivity, location and proximity
to other nodes within the network. For more details on various centrality measures see,
e.g., Boldi and Vigna (2014).
Table 3 lists the 15 most central words in the largest connected component of Word-

Net synonyms network ranked according to four selected centrality measures along with
the corresponding centrality scores. Thus, the word ‘pass’ has the highest degree 152. It
also has the highest betweenness score 0.026, which roughly means that 2.6% of all short-
est paths in this connected component go through this word. It should be also noted that
all top 15 words have closeness centrality scores that are very close to each other. All top
15 scores span a small range 0.22-0.23, which is an inverse of the average distance and
means that all these words have roughly 4.5 average distance to all other nodes (nodes
with highest score have the smallest average distance to other nodes). This is a common
issue with the closeness centrality score observed in many networks, and it is also present
in this semantic network: its values tend to span a rather narrow range from the smallest
to the largest (see, e.g., Newman (2018) for more discussion on centrality score distri-
butions in real-world networks). Note that the scores of the most central nodes of other
centrality measures span a much wider range, which makes them more suitable for word
ranking. As the PageRank centrality score is essentially a probability distribution of some
randomwalk over the network, a PageRank score of 0.00042 of the word ‘pass’ means that
a person doing random walk (defined by PageRank algorithm) in the connected compo-
nent of WordNet synonyms network with 32K nodes can be found at the word ‘pass’ with

Table 3 The most central nodes (words) in the largest connected component in WordNet synonyms
network according to four classic centrality measures: degree, closeness, betweenness, and
PageRank centrality

Degree Closeness Betweenness PageRank

Rank Word Score Word Score Word Score Word Score

1 pass 152 get 0.23 pass 0.026 pass 0.00042

2 break 148 take 0.23 get 0.025 break 0.00040

3 get 147 make 0.23 take 0.023 hold 0.00036

4 take 143 takings 0.22 break 0.023 check 0.00036

5 make 132 getting 0.22 check 0.022 take 0.00036

6 hold 132 taking 0.22 go 0.021 get 0.00034

7 check 128 break 0.22 make 0.021 run 0.00033

8 go 125 taken 0.22 run 0.020 go 0.00032

9 run 115 making 0.22 hold 0.019 make 0.00030

10 deal 105 made 0.22 draw 0.017 line 0.00030

11 see 104 go 0.22 charge 0.015 cut 0.00029

12 beat 103 broken 0.22 cover 0.012 passing 0.00028

13 set 102 draw 0.22 broken 0.012 charge 0.00028

14 passing 99 run 0.22 clear 0.012 set 0.00028

15 cut 95 pass 0.22 place 0.012 see 0.00026
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0.042% chance. If any word is chosen randomly then the chances would be roughly 0.003%
(1/32K) or 14 times smaller.
As a final remark we note that the most central words in this synonyms network are

indeed very common and can be found in the list of 1000 most frequent words in the
English language. We believe that this is an important observation that may have many
practical applications and may need to be investigated further to understand the reasons
behind it. One possible explanation might be the fact that people naturally try to avoid
the usage of the same words many times within a small window of context and attempt to
substitute them with the synonyms, which leads to the need of creating more synonyms
for the more frequently used words. Another plausible explanation might be that lexi-
cographers working on lexical databases tend to spend more time finding synonyms for
more frequent words. Also, one may conjecture that words which are used more often
are inclined to have more meanings (homonyms) which results in more synonyms as well.
The are some earlier studies that support the hypothesis that “synonym representation
covaries with the frequency of word use” (Lepley 1950; Lepley and Kobrick 1952). Hence,
more frequently used words are more likely to occupy more central positions in the cor-
responding semantic networks and more thorough analysis of this fact can be a good
direction of further research.
In contrast, we do not observe this pattern in word embedding-based (machine built)

semantic networks. This is discussed in more detail below.

Moby thesaurus network characteristics

The project Moby Thesaurus II (Ward 2002) has a publicly available thesaurus dictionary
in which each entry has a list of words that are conceptually similar to the entry word.
Specifically, the dataset contains a file with 30260 lines, each line starts with a root word
followed by a set of conceptually similar words. In order to construct a network, for each
entry, we connect by an (undirected) edge the root word with all its similar words. The
resulting network is connected and contains 103306 nodes and 1.7M edges with average
degree of approximately 34.5 (Table 1), which is roughly 4.7 times larger than the average
degree of the largest connected component of WordNet synonyms networks. This is due
to the fact that in Moby Thesaurus synonyms are interpreted in a broader sense than in
WordNet. Table 1 reports the basic characteristics of the resulting Moby Thesaurus net-
work, and Fig. 1 illustrates its degree distribution in comparison with the same statistics
of the WordNet synonyms network.
As it can be expected, its diameter and average distance are much smaller than that

of WordNet. The largest clique in Moby Thesaurus network (Table 2) is exactly twice as
large (68 vs. 34) as the largest clique in WordNet network. The highest degree of a node
is almost 10 times larger than the highest degree in the WordNet network. Interestingly,
average local clustering coefficients of both networks are very similar, which means that
each node in both networks has on average a little over 60% of pairs of its neighbors being
connected by an edge. The global clustering coefficient (transitivity) of a WordNet net-
work is almost twice as large as global clustering coefficient of Moby Thesaurus network.
This can be explained by the fact that Moby Thesaurus has nodes with larger degrees and
in real-life networks large degree nodes normally have very small clustering coefficients.
The global clustering coefficient weights the contribution of larger degree nodes more
heavily as it measures the density of triangles in a network (Newman 2003, 2018).
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We have also identified the most central nodes according to four aforementioned cen-
trality measures (Table 4). The most central nodes also seem to be quite common (almost
all of them are in the list of 1000 most frequently used words in the English language)
and overlap with the most central words in WordNet network. It indicates that in both
networks the words which occupy the most central network positions, are also frequently
used in English texts. The range of closeness centrality score for most central nodes is
also very small, similarly to the observation made inWordNet. However, the most central
nodes are on average much closer to other nodes and have the average distance roughly
2.6 (1/0.38) from other nodes.

Structural characteristics of machine built semantic networks

Google newsword embedding-based network

The semantic network of Google News word embedding is constructed based on pub-
licly available pre-trained vectors trained on part of Google News dataset (Google
Open Source Project 2013) (about 100 billion words) using word2vec algorithms
(Mikolov et al. 2013a, b). The dataset contains 300-dimensional vectors for 3 million
words and phrases. In our study, for comparison reasons, we consider only words or
phrases included in WordNet lexicon. There are 64278 of such terms (words). To get
a network representation (backbone) of this semantic space we construct similarity-
based networks using cosine similarity and slice it at various threshold levels, i.e., for any
given threshold, only pairs of nodes with cosine similarity higher than this threshold are
included in the sliced network.
Figure 2 illustrates one of the connected components (the third largest one) in this net-

work sliced at 0.6 cosine similarity cutoff containing 109 nodes and 159 edges. Clearly,
the edges do connect the words with similar meanings, e.g., ‘confirm’ - ‘verify’, ‘stop’ -
‘halt’, ‘calculate’ - ‘compute’, etc. This slicing threshold seems to be reasonable to capture
the semantic similarity among words. Hence, for further analysis, we consider threshold
values around 0.6.

Table 4 The most central nodes (words) in the Moby Thesaurus network according to four classic
centrality measures: degree, closeness, betweenness, and PageRank

Degree Closeness Betweenness PageRank

Rank Word Score Word Score Word Score Word Score

1 cut 1486 set 0.38 cut 0.009 language 0.00084

2 set 1250 cut 0.38 set 0.009 cheese 0.00065

3 turn 1180 turn 0.37 light 0.008 english 0.00057

4 run 1093 run 0.37 color 0.008 magpie 0.00045

5 line 1042 line 0.37 language 0.007 color 0.00041

6 check 1037 point 0.37 turn 0.006 wine 0.00034

7 break 1035 cast 0.37 right 0.006 pigment 0.00031

8 color 1032 light 0.37 head 0.006 fish 0.00030

9 pass 1004 head 0.37 close 0.006 cut 0.00030

10 light 990 measure 0.37 run 0.005 philosopher 0.00030

11 point 981 mark 0.37 line 0.005 parts 0.00027

12 close 980 pass 0.37 flat 0.005 silver 0.00027

13 flat 928 check 0.37 cross 0.005 set 0.00026

14 charge 920 break 0.37 mean 0.005 device 0.00026

15 cast 918 round 0.36 point 0.005 turn 0.00025
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Fig. 2 One of the connected components in the network constructed based on word2vec embedding of
Google News containing words form WordNet sliced at 0.6 cosine similarity threshold. The component
contains 109 words and 152 edges

Table 5 reports the basic characteristics of the resulting networks (and their largest
connected components) sliced at five thresholds (0.5, 0.55, 0.6, 0.65, and 0.7) and Fig. 3
illustrates the degree distributions in the largest connected components of the respective
networks. Note that in the resulting networks, by construction, each node has at least
one neighbor, so the networks may have less than 64278 nodes, which means that the
remaining nodes are isolated (for such words, no other word has similarity higher than
the considered threshold). In terms of the average degree, observe that each time the slic-
ing threshold increases by 0.05, the average degree in the largest connected component
drops almost twice (for the whole network, the drop is even higher). It suggests that the

Table 5 Basic characteristics of the Google News word embedding-based similarity networks
obtained for various slicing thresholds on cosine similarity among the corresponding vectors

Only the words that are also in WordNet are considered.

Cosine similarity threshold 0.5 0.55 0.6 0.65 0.7

Number of nodes 58186 50576 39363 26509 14694

Number of edges 2033297 801085 373458 78227 19557

Average degree 69.88 31.67 13.84 5.9 2.66

Largest connected component characteristics

Number of nodes 57102 46717 29374 11363 1739

Number of edges 2032530 798363 263731 62834 5885

Average degree 71.19 34.17 17.95 11.05 6.76

Diameter 21 27 45 67 23

Average distance 5.75 7.89 11.45 18.09 8.65

Global clustering coefficient 0.43 0.43 0.41 0.39 0.28

Average local clustering coefficient 0.37 0.36 0.36 0.36 0.32

Degree assortativity 0.43 0.41 0.40 0.38 0.11

Largest clique size 245 155 89 37 14
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Fig. 3 Degree distributions of the largest connected component of the Google News word2vec embedding
similarity networks (containing words from WordNet lexicon) sliced at five different thresholds (0.5, 0.55, 0.6,
0.65, and 0.7) on cosine similarity between the corresponding vectors

dependence of average degree on the slicing cutoff may exhibit a power law behavior.
Interestingly, the diameter of the largest connected component with 0.65 threshold con-
taining 11363 nodes is 67, which is unusually large for a real-life network. It indicates
that this network topology may have some non-typical structural features. Another inter-
esting property is that for almost all thresholds (except 0.7) global clustering coefficients
are greater than average local clustering coefficients. Moreover, these values are almost
the same for all thresholds except 0.7 as well. This observation clearly distinguishes these
networks from the aforementioned WordNet and Moby Thesaurus networks.
In addition, we have identified the largest cliques in all sliced networks. Similarly to

the average degree, their size quickly drops as the slicing threshold increases. However,
the largest cliques seem to be formed by unusual and rarely used words (unlike largest
cliques in lexical databases). For example, the largest clique with 0.7 cutoff contain 14
words (Table 2), which are the names of flowers and shrubs.
Another interesting observation is that nodes with high degrees are rarely used words in

texts. For example, five nodes with the largest degrees for 0.5 slicing cutoff are ‘glomerular’
(degree: 1866), ‘leiomyoma’ (1862), ‘lichen_planus’ (1842), ‘eccrine’, (1800), ‘peroxidase’
(1794), whereas the top 5 nodes with highest degrees in WordNet network (Table 3) have
substantially smaller degrees in Google News word2vec similarity network with this 0.5
cutoff: ‘pass’ (degree: 1), ‘brake’ (34), ‘get’ (10), ‘take’ (4), ‘make’ (2). Note that in Word-
Net and Moby Thesaurus networks we observe that their most central words are the
words which appear relatively frequently in English language (most of them are the list
of 1,000 most frequent words). To investigate this observation in more detail we com-
puted the average degrees of most common words in this network sliced at 0.5 cutoff
(and other considered networks for comparison purposes). The lists of the most frequent
words in the English language are obtained fromMoby Thesaurus project (most frequent
1000) and the list of most common 1/3Mwords (Norvig 2009) (most frequent 3000, 5000,
and 10,000). Table 6 reports the average degree of nodes in the considered networks
which appear in the corresponding lists of most frequent words. We also report the ratios
between the average degrees of most frequent words and all words in the corresponding
networks to better illustrate the differences.
Clearly, in WordNet and Moby Thesaurus networks more frequently used words on

average have higher degrees. For example, the words which appear in the 1000 most fre-
quent words have on average degree 3 and 7 times larger, respectively, than the average
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Table 6 Average degree of all nodes vs. average degree of words appearing in the lists of 1000,
3000, 5000 and 10000 most frequent words (from Moby Thesaurus ll and Beautiful Data, Natural
Language Corpus data book (Norvig 2009)) in WordNet synonyms network, Moby Thesaurus and
Word2Vec embedding of Google News and Amazon Reviews containing WordNet words (cosine
similarity threshold = 0.5)

Lexical databases Word2Vec embeddings

Number of words WordNet Moby thesaurus Google news Amazon reviews

Average degree of most frequent words

All Words 7.32 34.52 69.89 31.63

1000 22.48 241.33 10.72 8.16

3000 17.58 175.71 11.08 15.88

5000 16.02 157.61 11.50 17.91

10000 14.10 134.01 14.23 21.80

Ratio of average degree of most frequent words to average degree of all words

1000 3.06 6.99 0.15 0.25

3000 2.39 5.08 0.16 0.50

5000 2.19 4.57 0.17 0.57

10000 1.92 3.88 0.20 0.69

word degree in these networks. The ratios decrease as we consider larger and larger sets of
the most frequent words (include less and less frequent words), but nevertheless remain
quite high. Even the average degrees of words which appear in the 10,000 most frequent
words have on average degree almost 2 and 4 times larger, respectively, than the aver-
age word degree in these networks. Hence, more frequent words do tend to occupy more
central positions in these networks.
However, the situation for word embedding based networks is exactly the opposite. For

example, the average degree of words in word2vec embedding network of Google News
(sliced at 0.5 threshold) which appear in 1000 most frequent words is almost 7 times
smaller (10.7 vs. 69.9) than the average degree of all words. Moreover, the average degree
increases asmore andmoremost frequent words are considered.We find this observation
to be very interesting and worth exploring in more detail, since word embeddings are
heavily used in various text mining applications. As it will be discussed below, a similar
pattern is observed in another word2vec embedding based-network obtained from the
Amazon Reviews dataset (although its size and other characteristics are rather different
from the Google News dataset).

Amazon reviews word embedding-based network

The semantic network of Amazon Reviews is generated using the dataset containingmore
than 400,000 reviews (Amazon Reviews dataset 2017) from Amazon’s unlocked mobile
phone category. Customer reviews have become a ubiquitous and influential part of many
people’s everyday lives; therefore, constructing and analyzing the network corresponding
to these text corpora would be an interesting task. The choice of the reviews category sub-
ject (in this case, unlocked mobile phones) is not critical in the context of this study, but
the choice of this dataset was mostly motivated by the fact that, unlike other datasets con-
sidered above, it consists of text entries written in more casual English language, which
may contain errors, misspellings, abbreviations, incomplete phrases, foreign-language
words, emojis, etc. Thus, such a dataset may be rather challenging to analyze and it would
be interesting to test our proposed graph-based approaches on this dataset.
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To generate the word embeddings we first use sentence tokenizer and tweet tokenizer
(as it preserves emojis as separate tokens) from NLTK module (Bird et al. 2009) to split
the reviews into sentences and sentences into words (tokens). It produced approximately
1.1M sentences, 19M words and 30K unique words. Then we feed the resulting list of
sentences split into words into word2vec function in Gensim library (Řehůřek and Sojka
2010) in Python, which returns the word embeddings as vectors. For comparison reasons
with other networks, we have generated 300-dimensional vectors keeping other word2vec
parameters as their default values (window = 5, number of negative samples = 5, algorithm
used = CBOW, number of epochs = 5, min_count=5) and consider only words or phrases
included in WordNet lexical database. There are only 8547 such words. However, we will
use other words for analysis of clusters of new words and emojis later. Then we construct
similarity-based networks using cosine similarity and slice it at 0.5 threshold level.
We observe that since the reviews are not always written in proper English, but

occasionally contain misspellings, abbreviations, foreign-language entries, incomplete
sentences, grammatical errors, etc., the analysis of global characteristics of the result-
ing network may not have any meaningful information. For example, the words with the
largest degrees (‘consecutively’, ‘wyatt’, ‘trouble-free’, ‘wrest’, ‘asl’) and the largest clique
with 0.8 threshold containing 13 words (Table 2) do not seem to have any practical inter-
est. In addition, we observe that the words, which are the most central in WordNet
synonyms network have very small degrees in this word embedding-based network, e.g.,
‘brake’ (degree 1), ‘get’ (9), ‘take’ (1).
Similarly to results for the Google News semantic network mentioned above, the aver-

age degree of the most frequent English words in this network is also very small in
comparison to the total average degree (Table 6). For example, the words that appear
in the 1,000 most frequent words have degrees on average four times smaller (8.16 vs.
31.63) than the average node degree in the network. Although we observed this effect
only for two machine built semantic networks, one may hypothesize that this property
might be common for semantic spaces corresponding to word embeddings. Verifying this
hypothesis on a larger variety of text datasets may be one of the potential future research
directions.

Dense clusters in ego networks

In the previous sections, we presented results on the structural characteristics and largest
cliques in all considered networks. Although this information might be useful to bet-
ter understand global topological properties of the semantic networks, analyzing ego
networks (networks around certain words or word phrases (Everett and Borgatti 2005;
Newman 2018)) and finding dense clusters (cliques or clique relaxations) in these net-
works may provide more insights into the local structure of semantic space and have
many practical applications. Specifically, we demonstrate the advantages of this approach
in networks constructed based on word embeddings.

Cliques in ego networks

In practice, one might not necessarily need to identify a large cluster (i.e., clique) in the
entire network of words, but to find a large cluster that contains a given word of interest:
this can be interpreted as a comprehensive set of synonyms for that word sharing the same
meaning. For example, consider the word ‘happy’. In the Google News word embedding
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network sliced at 0.5 cutoff this word has 31 neighbors (Table 7). Note that the list of
neighbors has not only words with positive sentiment, such as ‘pleased’ or ‘glad’, but also
words with negative sentiment (e.g., ‘sad’, ‘unhappy’, ‘anxious’). This is due to the way the
word embeddings are generated: words which appear in similar context tend to be closer
to each other in the corresponding semantic space. The largest clique in the subgraph of
this network induced by these 31 neighbors contains 11 words. Note that all words in that
clique have positive attitude and appear to be synonyms of the word ‘happy’. We observe
the similar trend in the word2vec embedding of Amazon Reviews network (with only
WordNet words) sliced also at 0.5 cutoff. The neighborhood of the word ‘happy’ contains
28 words and some of them have negative sentiment as well (e.g., ‘displeased’, ‘dissatis-
fied’). The largest clique in the induced by this neighborhood subgraph has 14 words;
however, there are still some words with a negative sentiment in that clique. This might
be due to the fact that this word embedding is based on much smaller text corpora and
indicates the importance of training word embeddings on large datasets (or parameter
tuning is required). Moreover, higher slicing cutoffs might need to be used.
Therefore, the structure of an ego network of a particular word in word embedding-

based networks provides much richer information about its semantic neighborhood in
addition to semantic distances (similarity scores) to other words.We believe that this is an
important observation that can be used to measure the quality of word embeddings. One
way tomeasure this quantitatively would be to use some benchmark ego network clusters,
for instance, constructed for the most frequent 1000 words (which would comprise most
of the text), and quantify the deviation of these clusters for a given word embedding,
which would measure the distance from that benchmark.

Table 7 Neighborhood of the word ‘happy’ and the largest cliques in the corresponding
neighborhoods in the considered networks

Cluster type Size Words

Word2vec embedding of Google News network (threshold = 0.5)

Neighborhood 31 anxious appreciative chuffed confident delighted disappointed
eager ecstatic elated excited fortunate glad good grateful
hopeful lucky nice okay optimistic overjoyed pleased proud
relieved sad satisfied sorry sure surprised thankful thrilled
unhappy

Clique 11 appreciative delighted ecstatic elated excited glad grateful
overjoyed pleased proud thrilled

Word2vec embedding of Amazon Reviews network (threshold = 0.5)

Neighborhood 28 delighted disappointed disgusted displeased dissatisfied
ecstatic excited familiar frustrated glad glade grateful
impressed infatuated mad obsessed optimistic picky pleased
proud relieved sad satisfied thrilled unhappy unimpressed
unsatisfied upset

Clique 14 delighted disappointed disgusted displeased dissatisfied
grateful impressed pleased proud satisfied thrilled unhappy
unsatisfied upset

WordNet and Moby Thesaurus networks

WordNet Neighborhood 3 felicitous glad well-chosen

Moby Thesaurus Clique 34 advantageous advisable appropriate becoming befitting
congruous convenient decent desirable expedient favorable
feasible felicitous fit fitting fructuous good likely meet
opportune politic profitable proper recommendable right
seasonable seemly suitable timely ’to be desired’ useful
well-timed wise worthwhile

The number of neighbors in Moby Thesaurus is 233 (words not reported)
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For comparison reasons, we have also reported in Table 7 neighbors of the word ‘happy’
and the largest cliques in its ego networks in WordNet and Moby Thesaurus networks,
respectively. It seems that these lexical databases can be improved by including more
relevant words or synonyms using such word embedding-based networks. As it has been
discussed in Gaillard et al. (2011), the list of synonyms in the lexical databases is based
on a lexicographer’s judgment, which might be subjective and may not fully reflect the
general language use.

Incorporating cliques in ego networks intomachine learning algorithms

In this section we provide an example illustrating how information about cliques in ego
networks extracted from semantic networks constructed based on word embeddings can
be used inmachine learning applications. Specifically, we consider sentiment analysis task
which we conducted on Amazon Reviews dataset. Intuitively, as we have observed in the
previous section, all words in a clique in the ego network tend to share similar meaning
with the given ego (word). Therefore, the performance of a machine learning algorithm
should be better if it “knows” that all words from a given clique and its ego have the same
meaning.
Specifically, we selected reviews from the Amazon Reviews dataset with positive and

negative sentiments and considered a review to be positive if it has rating 4 or 5, and
negative if it has rating 1 or 2. Note that the Amazon Reviews dataset contains customer
rating for each review in the respective column. Totally, out of 413840 reviews, there are
382075 (approximately 92.3%) positive and negative reviews, from which approximately
75% (286556) are positive and the other 25% (95519) are negative. Note that the remaining
reviews (7.7% of the total number) have rating 3 and are considered to be neutral: these
reviews are not included into the sentiment analysis example discussed here.
To perform data split, text vectorization (transforming reviews into high-dimensional

feature representations), classification and evaluation tasks, we use scikit-learn
(Pedregosa et al. 2011) module in Python. First, we split the dataset (reviews and corre-
sponding sentiments) into training and test sets using the respective function with default
parameters (0.75/0.25 split) and random state set to 0. As a result, the training set (on
which a classifier will be trained) contains 286556 reviews (213794 positive and 72762
negative) and the test set (on which the performance of a classifier will be evaluated)
contains 95519 reviews (71203 positive and 24316 negative).
To vectorize the reviews (in order to feed them into a machine learning algorithm) and

illustrate how to incorporate the information about cliques in ego networks into vector
representations of reviews we use the standard bag-of-words approach, as it is known to
be very effective in document classification tasks, and serves as a simple and good starting
point (baseline) for performing more complex methods (Bengfort et al. 2018). Moreover,
it does not consider any order among word appearances in the texts and, hence, does not
encode any relations (contextual use) among words. Essentially, this approach represents
each review as a vector whose length is equal to the vocabulary of the whole training set
of reviews. We use frequency vector representations of reviews, which simply fill in the
vector with frequency of each word as it appears in a given review.
Next, we perform two vectorization processes using CountVectorizer function in scikit-

learn. To be consistent with previous computational experiments on constructing word
embedding based on Amazon Reviews dataset, we also feed tweet tokenizer from NLTK
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module (Bird et al. 2009) into this function to split the reviews into tokens and set the
minimum word count parameter to 5 (min_df=5). The rest of parameters are kept at their
default values. The first process uses all tokenized reviews as is and the second one sub-
stitutes words in a clique by some unique word (say, ‘clique1’). For illustration purposes
we identified the maximum clique containing the word with one of the largest coefficient
in the logistic regression performed on the training set, as it may have high impact on
the classifier performance when compressed into a single word. Interestingly this word is
‘excelent’, which turned out to be the misspelled word ‘excellent’, and the largest clique of
size 7 containing this word in Amazon Reviews network constructed from the respective
word embedding described above (cosine similarity cutoff is 0.5 and the neighbourhood
of top 10 similar words is considered) also seems to contain misspelled words (‘excelent’,
‘exelent’, ‘excellente’, ‘exellent’, ‘exccelent’, ‘ecellent’, ‘excente’).
As a result, in the first setup the vocabulary (and the corresponding feature space

dimension) contains 23530 unique tokens (which appear at least 5 times in the train-
ing set of reviews) and the vocabulary in the second setup contains 23524 unique tokens
(since all 7 words in a clique are treated as the same word). Figure 4 reports the confu-
sion matrices of the predictions of a classifier (logistic regression) on a test set when it
was trained on a training set of reviews without any modifications (Fig. 4a) and when all
words in a clique containing the word ‘excelent’ in the respective word embedding based
network were substituted by one unique word (Fig. 4b). As it can be observed, a classifier
trained when information about clique is introduced showed slightly better performance
for both predicting true positive and true negative reviews, and have smaller number of
false positive and false negative predictions.
Although we have illustrated how to incorporate information about a single clique into

machine learning algorithms from the respective semantic networks and demonstrated
its benefits, this methodology can be further generalized by incorporating any number
of cliques containing a given set of words, for example, those that might be important in
classification tasks. It should also be noted that in practice cliques may overlap and their

Fig. 4 Confusion matrices for (a) standard classification and (b) classification when words included in a
maximum clique around word ‘excelent’ from the respective word embedding are treated as words with the
same meaning. Accuracy scores of a classifier on a training and test instances are equal to (a) 0.9483, 0.9433
and (b) 0.9521, 0.9461 respectively
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structure depends heavily on the chosen similarity threshold level (existence of an edge
between two words based on cosine similarity value). Therefore, future research should
address methods for clique selection and incorporation into machine learning algorithms
in more detail.
In addition, we would like to point out a few other comments and observations related

to the illustrated technique and its potential use. First, since the clique in the aforemen-
tioned illustrative example was extracted from the semantic network constructed form
word embedding trained on the entire dataset (which included both the training and
the test set), it should be done more carefully in practice. Ideally, one should use word
embeddings trained on a set of reviews that does not include the test set, or on other
text corpora (preferably, with a similar style). For example, in order to test this approach
using word embedding trained on other text corpora, we conducted additional computa-
tional experiments where the incorporated clique was obtained from the word embedding
of Google News dataset containing the word ‘happy’ (‘appreciative’, ‘delighted’, ‘ecstatic’,
‘elated’, ‘excited’, ‘glad’, ‘grateful’, ‘overjoyed’, ‘pleased’, ‘proud’, ‘thrilled’) from Table 7. For
these experiments, we still observed a slight improvement in the accuracy of sentiment
analysis performed on the original training and test datasets: 0.9490 vs. 0.9483, and 0.9439
vs. 0.9433 with and without incorporating this clique, respectively.
Second, many studies indicate that using word embeddings instead of bag-of-words is

more preferable in machine learning and usually leads to better performance, so it might
be interesting to see if the same technique can be applied in this case as well. Although
we believe that this is a promising research direction, it should be approached carefully
as it is not clear how to represent documents using a more complex semantic space
and if there is any intuitive explanation for that. For example, we found that using most
common word embedding representations such that each review is represented by an
average vector of words in it (which might be hard to justify and interpret the results)
shows worse performance than standard bag-of-words representations. For example, the
training/test scores of the same classifier are approximately 0.91 and 0.92 when word
embeddings of Google News and Amazon Reviews (considered in the paper) are used,
respectively (vs. 0.94-0.95 with standard bag-of-words representations). Note that simi-
lar lower accuracy scores are reported in Bansal and Srivastava (2018) for the sentiment
analysis of the same dataset when word embeddings are used. Although in certain NLP
tasks using distributed representation of words (word embeddings) shows better perfor-
mance than bag-of-words representations, we attribute this observation to the fact that
in our case (sentiment analysis of short reviews) the polarity of a review might be heavily
dependent on a small set of very influential words (e.g., love, great, fantastic, etc.) whose
effect might be diminished after the vector averaging process. The bag-of-words model
does not have this drawback as every feature represents a certain word and its impact
on the polarity of a review can be captured better. Moreover, incorporating cliques into
bag-of-words representation helps mitigate one of its main weakness, namely, the lack
of semantic similarity among words, without increasing complexity. Hence, we believe
that incorporating information about cliques into bag-of-word representations allows
extracting only local and most important information from word embeddings and, hence,
infuse bag-of-word representations with semantic information and take advantages of
both representations. Moreover, the resulting feature space is still quite simple and intu-
itive and the results can be interpreted in the same manner as with standard bag-of-word
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representations, which may help further improve the performance of machine learning
algorithms.

Quasi-cliques in ego networks

As it is mentioned in Zinoviev (2018), game developers and creative writers are often in
need of a collection of adjectives that characterize a particular property in a range from
‘very good’ to ‘very bad’. Although, such word rankings can be based on a survey data, the
amount of that data is very limited and is based on responses of relatively few respon-
dents. The semantic spaces constructed from word embeddings intuitively should be
good sources of that information as they are usually trained on large text corpora written
by many people and reflect the use of these words in a natural language.
For example, consider the word ‘amazing’. There are 52 neighbors of this word (Table 8)

in the Google News network sliced at 0.5 threshold, which appear to be semantically sim-
ilar (synonyms) to this word. One may note that some of them are better than others. For
example, ‘fantastic’ seems to be better than ‘nice’ and closer to the word ‘amazing’. The
largest clique in the ego network of ‘amazing’ contains 11 words, all of which seem to be
very close to the meaning of the original word.
Intuitively, if we start relaxing the edge density requirement and find the largest clusters

with a given edge density, these clusters should includemore andmore words with a lower
level of perceived “excitement” than words in denser clusters. Table 8 reports the largest
γ -quasi-cliques for γ = 0.9, 0.8, 0.7, 0.6 (sizes 15, 18, 23, 28), which means that the edge
densities of these clusters are at least 90%, 80%, 70% and 60%, respectively (in fact, they are
roughly equal to these values). Clearly, the cluster sizes increase as γ decreases, and the
sets of words contained in the respective clusters appear to support the aforementioned
intuition.
In addition, Table 8 reports the neighbors and the largest cliques in the ego networks

of the word ‘amazing’ in other semantic networks. Interestingly, in word embedding of
Amazon Reviews network almost all the neighbors are also present among neighbors in
word embedding of Google News network; whereas the largest cliques in both ego net-
works have almost the same size and large overlap. It indicates that the contextual use of
these words in Google News text corpora and customer reviews is very similar.

Newwords and emojis clusters

The language that people use in everyday life constantly evolves and more and more
new words are being added to the lexicon. For example, emojis and various abbrevia-
tions (e.g., ‘fb’), which have become an integral part of many texts nowadays, can be
treated as words as well. In the final set of experiments in this study, we have gener-
ated word embeddings based on Amazon Reviews and consider only relatively frequently
used words (set minimum word count parameter to 20). Then we constructed the corre-
sponding semantic networks and identified the maximum cliques (Fig. 5) containing the
words ‘twitter’, and the ‘grinning face with smiling eyes’ emoji (note that slicing thresholds
are different). As one can observe, the respective similar words are naturally clustered
together, which is true even in the case of emojis. This observation may help to uncover
the perceived meanings of emojis, which are found to have diverse interpretations across
platforms and it is not well understood how people interpret the meaning of emojis
(Miller et al. 2016).
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Table 8 Neighborhood of the word ‘amazing’, largest clique and quasi-cliques in its neighborhood
in word2vec embedding of Google News network with 0.5 similarity cutoff

Cluster type Size Words

Word2vec embedding of Google News network

Neighborhood 52 amazed amazingly astonishing astounding awesome awful beautiful breathtak-
ing brilliant captivating dazzling ecstatic excellent exceptional exciting exhil-
arating extraordinary fabulous fantastic fascinating gorgeous gratifying great
humbling impressive incomparable incredible indescribable inspiring interesting
lovely magical magnificent marvelous mesmerizing miraculous nice phenom-
enal remarkable spectacular stunning stupendous superb terrific tremendous
unbelievable unforgettable unreal weird wonderful wondrous wow

Clique 11 brilliant excellent fabulous fantastic great incredible marvelous phenomenal
superb terrific wonderful

0.9-quasi-clique 15 awesome brilliant excellent fabulous fantastic great incredible magnificent mar-
velous phenomenal remarkable superb terrific unbelievable wonderful

0.8-quasi-clique 18 awesome brilliant excellent fabulous fantastic great impressive incredible mag-
nificent marvelous phenomenal remarkable spectacular superb terrific tremen-
dous unbelievable wonderful

0.7-quasi-clique 23 astonishing awesome breathtaking brilliant dazzling excellent fabulous fantastic
great impressive incredible lovely magnificent marvelous phenomenal remark-
able spectacular stunning stupendous superb terrific unbelievable wonderful

0.6-quasi-clique 28 astonishing awesome beautiful breathtaking brilliant dazzling fabulous fantastic
gorgeous great impressive incredible lovely magnificentmarvelousmesmerizing
nice phenomenal remarkable spectacular stunning stupendous superb terrific
unbelievable unforgettable wonderful wondrous

Word2vec embedding of Amazon Reviews network

Neighborhood 31 astounding awesome awful beautiful brilliant excellent exceptional exquisite
fabulous fantastic good gorgeous great impressive incredible insane lovely mag-
nificent nice outstanding phenomenal remarkable spectacular stellar stunning
superb terrific unbeatable unbelievable unreal wonderful

Clique 12 awesome excellent exceptional fabulous fantastic great outstanding phenome-
nal stellar superb terrific wonderful

WordNet network

Neighborhood 23 amaze astonish astonishing astound awe-inspiring awesome awful awing baf-
fle beat bewilder dumbfound flummox get gravel mystify nonplus perplex pose
puzzle stick stupefy vex

Clique 16 amaze baffle beat bewilder dumbfound flummox get gravel mystify nonplus
perplex pose puzzle stick stupefy vex

Moby Thesaurus network

Neighborhood 36 astonishing astounding awesome breathtaking confounding dazzling exciting
extraordinary eye opening eye-opening fabulous good incredible marvellous
marvelous mind-boggling miraculous overwhelming phenomenal portentous
prodigious remarkable sensational shocking spectacular staggering startling
strange striking stunning stupendous superhuman surprising tremendous won-
derful wondrous

Clique 16 astonishing astounding extraordinary fabulous incredible marvelous miraculous
phenomenal prodigious remarkable sensational strange striking stupendous
wonderful wondrous

Neighborhoods and largest cliques in these neighborhoods in other networks are also reported

Extensions and future research
As mentioned above, the main goal of this study is to illustrate that network science and
graph theory are potentially useful tools for exploring semantic spaces; however, there are
many possible ways to develop related network-based techniques beyond the scope of this
paper. In this section, we discuss potential extensions and future research in the context
of the results of this study. Below we outline several directions that we believe are worth
exploring in detail in subsequent studies.
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Fig. 5 Maximum cliques containing in an ego network of a) word “twitter” (similarity cutoff=0.65), b)
“grinning face with smiling eyes” emoji (similarity cutoff=0.55). The network of words is constructed using the
word embedding of Amazon Reviews dataset

Similarity measures

One of the important aspects that is worth exploring further is the choice and the com-
parison of similarity measures between word2vec representations of words. Clearly, the
topological properties of the constructed networks of words would depend on the choice
of similarity measure, and it is possible that the results of a similar graph-theoretic study
of word embeddings would be different if another similarity measure was used for con-
structing the respective graphs. Thus, besides the popular cosine similarity measure that
we chose in this study, it would be interesting to conduct similar studies by constructing
graphs based on other well-known similarity measures (i.e., Euclidean distance, Pearson
correlation coefficient, Jaccard similarity, etc.) In particular, it would be interesting to see
if the discrepancy in global connectivity patterns of human built and machine built word
networks would still be observed when these networks are constructed using other simi-
larity measures. If this is indeed the case, this may indicate the need for an in-depth study
of tuning the parameters of word2vec embedding techniques so that they would produce
word networks with more intuitive and consistent node degree distributions (i.e., more
frequently used words having higher degrees).

Datasets

Another important aspect that naturally follows from this work is the choice of datasets
(text corpora) on which the proposed graph-theoretic approaches can be tested. In this
study, we chose two datasets that are easily accessible in the public domain, with one
dataset (Google News) mostly containing text written by journalists in proper English,
and the other one (Amazon Reviews) containing text entries that may contain errors,
typos, occasional words from other languages, emojis, etc. Rather than cleaning up the
Amazon Reviews dataset, we deliberately decided to test the proposed graph-based tech-
niques on this dataset as is, in order to see whether our tools would be able to extract
interesting and intuitively consistent patterns from such text corpora. It turned out that
the identified dense clusters were consistent and meaningful on both of the considered
datasets, which indicates that these graph-based tools are rather robust with respect to
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possible impurities in text entries. Moreover, as the above example suggests, the infor-
mation about dense clusters may help to reveal and correct misspelled words as well as
improve the performance of machine learning algorithms. One may also argue that the
usage of slang, informal acronyms, words from other languages, and emojis (which could
also be treated as a separate language) is an essential part of the modern casual written
English language; therefore, it is important that the developed techniques work consis-
tently not only on texts written in proper English, but also on “mixed” text corpora such
as Amazon Reviews considered here.
Clearly, the methods proposed in this paper, as well as text analytics tools developed in

other studies, should be tested on a variety of text corpora. We believe that the datasets
used in this study are a good representative sample that illustrates the applicability of our
techniques; however, it would certainly be of interest to test them on a much larger selec-
tion of other text corpora, such as various discipline-specific texts, modern vs. classical
literature, etc.

Network community structures

From the perspective of network science and graph theory, there are also a lot of pos-
sible extensions of the proposed techniques that can be addressed in future research.
For instance, in addition to cliques and γ -quasi-cliques that were considered here, one
may employ other community-type clusters in word networks and investigate the respec-
tive results. In particular, there are many other types of clique relaxations (see Pattillo
et al. (2013b) for a comprehensive review) that can be used in the context of identify-
ing clusters of similar data points. One may also consider partitioning of the constructed
word networks into modularity-based communities (i.e., by maximizing modularity,
which characterizes the difference between the number of intra-cluster and inter-cluster
links). It would be interesting if the identified modularity-based communities exhibit any
patterns related to the meanings of the words within each community.

Integration with other natural language processing techniques

Last but not least, it is important to point out that there exists a large body of work on
natural language processing and text analytics using machine learning techniques (e.g.,
sentiment analysis, syntactic parsing, recommender systems) which use various text vec-
torization approaches to produce underlying input representations of words. Hence it
would be interesting to investigate in a greater detail how to boost the performance of
such natural language processing tasks by incorporating network-based features extracted
from the respective semantic networks (similar to the example presented in this paper on
using cliques in sentiment analysis).
In addition, it might be interesting to analyze how to integrate word embeddings with

lexical databases using network science tools and concepts. Specifically, a semantic net-
work for a given word embedding can be enhanced by adding edges which are present
in the semantic network constructed from some lexical database but not in the word
embedding-based network, i.e., connecting true semantically similar words which are not
close to each other in the word embedding. For example, as we have observed, frequently
used words, which have high degrees in WordNet or Moby Thesaurus networks, tend to
have small degrees in word embeddings-based semantic networks. Hence, such missing
links can be added to the word embedding-based networks and the resulting network
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can, again, be embedded in some geometric space preserving small distances among
connected nodes. Intuitively, this word embeddings should capture not only contextual
similarity among words, but also true semantic similarity; therefore, performance com-
parisons of natural language processing tasks with original word embedding and the new
one would be of interest and could potentially be studied in the future by the machine
learning research community.

Concluding remarks
In this study, we have shown potential benefits of applying network science and graph-
theoretic techniques to the analysis of semantic spaces. The comparison of machine built
and human built semantic networks reveals interesting observations, which highlight
potential advantages and disadvantages of the respective network models. Specifically,
human built networks exhibit global characteristics that are more consistent with the
frequency of word usage in the English language, whereas machine built networks lack
such global characteristics. However, we observed that local properties of machine built
networks (specifically, dense clusters) allow one to produce meaningful and consistent
sets of synonyms for given words, which could enhance the existing lexical databases
and improve the performance of machine learning algorithms. Moreover, the considered
models of community-type dense clusters exhibit inherent flexibility in the sense that as
one relaxes the edge density of a cluster (starting from a clique and moving on to γ -
quasi-cliques with decreased values of γ ), one may increase the size of the synonyms set
and control the level of semantic similarity of the words in this set. On the other hand,
since the existing word embedding techniques appear to produce networks with some-
what counter-intuitive global connectivity patterns, there may be a potential for further
research in order to synthesize human built and machine built semantic networks. We
should also note that although this study used primarily English-language text corpora,
the proposed approach may work on texts in other languages with similar organization
principles (for instance, in our study of Amazon reviews dataset, occasional Spanish-
language entries did not affect the quality of the identified clusters), thus potentially
producing text data analytics tools applicable to some other languages besides English.We
hope that this work could initiate promising research directions that would be of interest
to both machine learning and network science communities.
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Řehůřek R, Sojka P (2010) Software Framework for Topic Modelling with Large Corpora. ELRA, Valletta
Schneider C (2016) The biggest data challenges that you might not even know you have. IBM Watson. https://www.ibm.

com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/. Accessed: 6 June 2019
Siew CS (2013) Community structure in the phonological network. Front Psychol 4:553
Siew CS (2018) The orthographic similarity structure of English words: Insights from network science. Appl Netw Sci 3(1):13
Siew CS, Wulff DU, Beckage NM, Kenett YN (2018) Cognitive Network Science: A review of research on cognition through

the lens of network representations, processes, and dynamics. PsyArXiv. https://doi.org/10.31234/osf.io/eu9tr
Sigman M, Cecchi GA (2002) Global organization of the Wordnet lexicon. Proc Natl Acad Sci 99(3):1742–1747
Sim K, Li J, Gopalkrishnan V, Liu G (2006) Mining Maximal Quasi-Bicliques to Co-Cluster Stocks and Financial Ratios for

Value Investment. In: Proceedings of the Sixth International Conference on Data Mining. ICDM ’06. IEEE Computer
Society, Washington. pp 1059–1063

Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci
100(21):12123–12128

Steyvers M, Tenenbaum JB (2005) The large-scale structure of semantic networks: Statistical analyses and a model of
semantic growth. Cogn Sci 29(1):41–78

Sumathy K, Chidambaram M (2013) Text mining: concepts, applications, tools and issues-an overview. Int J Comput Appl
80(4)

Tsourakakis C, Bonchi F, Gionis A, Gullo F, Tsiarli M (2013) Denser than the densest subgraph: extracting optimal
quasi-cliques with quality guarantees. In: Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. pp 104–112. https://doi.org/10.1145/2487575.2487645

Vazirgiannis M, Malliaros FD, Nikolentzos G (2018) GraphRep: Boosting Text Mining, NLP and Information Retrieval with
Graphs. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management.
ACM. pp 2295–2296. https://doi.org/10.1145/3269206.3274273

Veremyev A, Prokopyev OA, Butenko S, Pasiliao EL (2016) Exact MIP-based approaches for finding maximum
quasi-cliques and dense subgraphs. Comput Optim Appl 64(1):177–214

Vitevitch MS (2008) What can graph theory tell us about word learning and lexical retrieval?. J Speech Lang Hear Res
51(2):408–422

Vitevitch MS, Goldstein R (2014) Keywords in the mental lexicon. J Mem Lang 73:131–147
Vitevitch MS, Goldstein R, Siew CS, Castro N (2014) Using complex networks to understand the mental lexicon. In:

Yearbook of the Poznan Linguistic Meeting. vol. 1. De Gruyter Open. pp 119–138. https://doi.org/10.1515/yplm-2015-
0007

Ward G (2002) Moby thesaurus II. Project Gutenberg Literary Archive Foundation. Available from: http://onlinebooks.
library.upenn.edu/webbin/gutbook/lookup?num=3202

Wasserman S, Faust K (1994) Social Network Analysis. Cambridge University Press, New York
Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’networks. Nature 393(6684):440
Zinoviev D (2018) Complex Network Analysis in Python: Recognize-Construct-Visualize-Analyze-Interpret. Pragmatic

Bookshelf, Raleigh

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://content.pivotal.io/blog/text-analytics-and-natural-language-processing-in-the-era-of-big-data
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://doi.org/10.31234/osf.io/eu9tr
https://doi.org/10.1145/2487575.2487645
https://doi.org/10.1145/3269206.3274273
https://doi.org/10.1515/yplm-2015-0007
https://doi.org/10.1515/yplm-2015-0007
http://onlinebooks.library.upenn.edu/webbin/gutbook/lookup?num=3202
http://onlinebooks.library.upenn.edu/webbin/gutbook/lookup?num=3202

	Abstract
	Keywords

	Introduction
	Notations and definitions
	Network characteristics
	Dense clusters

	Methods
	Word embeddings (word2vec) similarity network construction
	Network analysis and dense clusters identification

	Results and discussion
	Structural characteristics of human built semantic networks
	WordNet network characteristics
	Moby thesaurus network characteristics

	Structural characteristics of machine built semantic networks
	Google news word embedding-based network
	Amazon reviews word embedding-based network

	Dense clusters in ego networks
	Cliques in ego networks
	Incorporating cliques in ego networks into machine learning algorithms
	Quasi-cliques in ego networks

	New words and emojis clusters

	Extensions and future research
	Similarity measures
	Datasets
	Network community structures
	Integration with other natural language processing techniques

	Concluding remarks
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

