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Abstract
In this work we introduce and analyze a new and comprehensive multilayer dataset
covering a wide spectrum of international relationships between coutries. We select
two cross sections of the dataset corresponding to years 2003 and 2010 with 19
layers and 112 nodes to study the structure and evolution of the network. Country
centrality is measured by the multiplex PageRank (MultiRank) and the multiplex hub
and authority scores (MultiHub and MultiAuth). We find that the MultiHub measure has
the highest correlation to GDP per capita, with respect to the other multilayer
measures and to their single layer analogues. Finally we analyze the differences in the
ranking between GDP per capita and the multilayer centrality measures to evaluate
them as measures of development.

Keywords: Multiplex, Centrality, Development, MultiRank, MD-HITS, International
exchanges

Introduction
Over the last few years we have witnessed an increase in the use of network models in
economics, finance and business studies: details coming from the topology of specific net-
works, either on micro level of social interactions among individuals and collaborations
between firms, or at a macro level of international economics, help scholars identify new
phenomena and clarify how they diffuse and distribute (Easley and Kleinberg 2010).
Usually, though, one network is examined at a time (i.e. trade) or the relationship

between two networks is investigated (i.e. migration and trade). Network features are fre-
quently used as explanatory or descriptive variables in gravity models of international
activities. For instance, we have several studies on the effect of the centrality of countries
in the trade and migration networks on the magnitude of countries’ exports (Fagiolo and
Mastrorillo 2014; Sgrignoli et al. 2015; Metulini et al. 2018). Occasionally, other networks
have been considered in the literature, such as the network of foreign direct investments,
human mobility, information, knowledge and financial flows.
On the one hand, country centrality in networks has been used in the study of

international relations as a proxy of power (Hafner-Burton et al. 2009). On the other
hand, new developments in multilayer network analysis suggest that international stud-
ies may greatly benefit from jointly analyzing multiple international relations in a unified
framework (De Domenico et al. 2015b).
In this paper we study the international network of countries by looking at several

dimensions of development from a multilayer network perspective. We assemble a mul-
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tiplex network of 112 countries as nodes and their connections across 19 heterogeneous
layers, observed at two moments in time before and after the Great Recession (2003
and 2010). We compute the centrality of countries in the multilayer network by using
the multilayer generalization of the PageRank algorithm (Iacovacci and Bianconi 2016) –
MultiRank from now on – and of the hubs and authority score (Arrigo and Tudisco 2018)
– MD-HITS from now on.
The ranking we obtain based on MultiRank centrality is consistent with the common

north-south divide, that is to say the division of countries among developed and under-
developed, and depicts a positive correlation with relevant economic variables such as
GDP per capita purchasing power parity (PPP) (pcGDP from now on). This configuration
of MultiRank gives more importance to those layers which are commonly considered as
relevant for the performance of countries, predominantly trade and financial networks.
Moreover it is very similar to the ranking selected by the MD-HITS algorithm, with the
latter actually having an even better fit with relevant macroeconomic variables.
Our work sheds new light on the relationship between position and centrality of coun-

tries in the international multiplex network and their development by analyzing, for
the first time, a vast set of international relations: trade, finance, transportation, human
mobility and migrations, information and knowledge flows, international alliances.
Increasing data availability coupled with the recent advancements in the analysis of mul-
tiple networks open up new possibilities for the analysis of complex global phenomena
and new dimensions can be added to our framework to cover an even broader set of
international linkages.
The rest of the paper is structured as follows: “Related literature” section describes how

our work fits in the extant literature, “Data” section contains a detailed description of the
data we have collected, “Multiplex centrality” section explains the methodology we apply
and finally “Results” section illustrates our results. Finally the last section discusses our
contribution to the literature and future work.

Related literature
Following previous applications of network theory in macroeconomics, we define a sin-
gle layer economic network G(N ,E) as a set of nodes N representing countries, coupled
with a set of edges E describing the relations between them. In so doing we follow a long
tradition of studies in trade (Chaney 2014), migration (Fagiolo and Mastrorillo 2014),
international aid (Kali et al. 2017), banking (Minoiu and Reyes 2013; Battiston et al.
2012; Bardoscia et al. 2015), mergers and acquisitions (Campi et al. 2016). Usually, the
edges between nodes are weighted and directed, representing the amount of monetary
exchanges from a source country to a target country.
However, there are some international networks in which directed edges represent

relationships other than monetary exchanges, such as the networks of migration and
humanmobility (Sgrignoli et al. 2015; Fagiolo and Santoni 2016; Fagiolo and Santoni 2015;
Fagiolo and Mastrorillo 2014; Riccaboni et al. 2013).
Sometimes edges may also be undirected (symmetric) and unweighted. A stream of

literature has investigated international infrastructures including, among others, the
international airport transportation network (Colizza et al. 2006), the trade shipping net-
work (Kaluza et al. 2010) and the overseas telephone and fiber cables linkage (Rossello
2015). Intangible networks of knowledge flows have also been studied by looking at
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patent citations (Hall et al. 2001) and international collaboration among scholars (Pan
et al. 2012). Finally, international relationships are shaped by the networks of diplomatic
relationships, such as alliances, trade agreements and intergovernmental organization
memberships, as reported in the “Correlates of war” project (Bayer 2006; Pevehouse et al.
2003; Gibler 2008; de Sousa and Lochard 2011).
Bulding upon previous studies, which have analyzed the different dimensions of

international connectivity, and thanks to multiple available data sources, in this paper
we reconstruct the first comprehensive multilayer network among countries: instead
of analyzing each of the layers in isolation, focusing on standard network statis-
tics and comparing them, we analyze the structure of international networks con-
sidered as a whole. Following Kivela et al. (2014) we define our multilayer network
as a multiplex, i.e. a network where no link connects directly the layers but all the
layers share the same set of nodes, e.g. countries. Therefore, a multiplex is a col-
ored network where edges of different colors represent different types of interna-
tional relationships (i.e. trade, migration, investments, knowledge flows etc) between
countries.
In recent years multilayer networks have become the subject of several scholarly works

aimed at generalizing network statistics and algorithms from single to multiple layer anal-
ysis (Lee et al. 2012; De Domenico et al. 2015a; Kivela et al. 2014; Battiston et al. 2014;
Boccaletti et al. 2014; Bródka et al. 2018; De Bacco et al. 2017; Aleta and Moreno 2019).
Among the numerous methods which have been proposed to measure the centrality of

nodes in a multilayer network we have selected two measures which can be computed for
weighted and directed multilayer networks and do not require any pre-defined ranking of
the importance of network layers (i.e. different types of international relationships), but
provide it as an output.
The first is the generalization to multiplex network of the PageRank centrality of nodes

(Brin and Page 1998). According to it, nodes are ranked higher if they receive links from
other important nodes: hence it focuses on the attractiveness of nodes only. To apply it to
ourmultilayer network we closely followed a set of recently published papers (Rahmede et
al. 2018; Halu et al. 2013; Iacovacci et al. 2016; Iacovacci and Bianconi 2016)1 which have
developed a way of defining the attractiveness of nodes by taking into account also the
relevance of each layer in the whole multiplex. In the multiplex version of the Pagerank
nodes are rewarded for their capacity of receiving links from other central nodes in more
relevant layers.
Our second choice is the hubs and authority algorithm, also known as HITS, Hyperlink-

Induced Topic Search, (Kleinberg 1999). Referring to the problem of getting access to
information, it defines as authorities those nodes which hold essential information to
the user whereas hubs are those nodes which redirect the user to the authorities2. In
our case some countries act as brokers among important partners whereas other coun-
tries acquire importance for being connected to many hubs. To apply this algorithm
to our data we follow the work by Arrigo and Tudisco (2018) where not only nodes

1Specifically we apply the version of the algorithm where both layer relevance and node PageRank are calculated at each
iteration and for multiplexes of many layers.
2The classification reflects how information is searched and found: it is difficult to find the right answer at first try, hence
there are nodes which collect information and redirect the user to the right destination gaining in centrality for this
reason. Hence to have high authority score a node must have links from nodes with high hub score, whereas higher hub
score is awarded to nodes linking to high authorities nodes.
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are ranked but also layers receive a score, ranking their capacity of linking impor-
tant layers or being linked by hubs layers 3.
One challenge we face is to analyze a multiplex of heterogeneous layers to characterize

the relevance of countries over a set of different features (flows of goods, services, invest-
ments, knowledge, human mobility and so on).4 So far, only multiplexes of homogeneous
layers have been considered, where each layer represents a different typology of the same
relation (different trade commodities in the trade network, different airlines in the airport
network and so on). To deal with this issue we have filtered our data both by node, i.e. by
deciding which nodes were constantly measured over time, and by edge, i.e. by selecting
only relevant edges and discarding less probable ones.
The position and role of countries in the multiple network of international relations is

then compared to pcGDP as a measure to summarize the relative economic performance
of countries. Our work also contributes to the ongoing debate on the appropriateness of
GDP per capita as a measure of the well being of populations (Sen 1985; Dasgupta and
Mäler 2000; Stevenson andWolfers 2013; Lange andWodon 2018). Alternative measures
could include relevant information on the role a country plays in the multiple networks
of global relations.

Data
As acknowledged in the previous section, this work takes advantage of previous applied
network studies mapping international relations among countries. We have collected and
integrated multiple data sources in a unique dataset spanning several years and we have
selected among the different layers the ones we thought were the most significant to
describe the role of a country in the global system. Figure 12 in the Appendix provides a
full overview of all the data we collected for years 1990-2015, also with examples of layers
which have not been included in our multiplex. In this section instead we first explain the
criteria we have followed to select layers, then we describe their main structural proper-
ties and finally we describe the method we have used to normalize them. All the details
about the sources we have consulted for the selected layers are reported in Table 1 with
references to the literature and URL links to online sources when retrievable.

A selection of international networks

Our main objective in building the international multiplex has been to identify two cross
sections with a sufficient number of nodes and layers to compare the structure of the
multiplex before and after the Great Recession.
From the larger dataset showed in Fig. 12 in the Appendix we have first selected a set of

layers with non overlapping characteristics, avoiding duplicates and partial sources.
The selection of the two years in the dataset to be compared is based on two criteria:

first network measures often evolve slowly, thus a sufficiently long period is needed to
capture some changes; second depending on the choice of the years some layers might
not be present in the final selection, due to lack of data. To partially mitigate this second
issue we have relaxed the constraint on some significant layers including them in the final
cross sections even when they are missing in a given year, but data are available for an
interval around it.

3More details on this are provided in “Multiplex centrality” section.
4By doing so our work is related to social network studies of international relationships such as Smith and White (1992).
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Table 1 Variable summary: descriptive statistics of the raw data

layer code nodes edges weightsa Ub Sc t0 t1
t0 t1 t0 t1 min max avg. std.

fta_wto 211 / 211 2800 / 5004 1.00E+00 1.00E+00 1.00E+00 0.00E+00 ✓ ✓ 2003 2010

expv 211 / 211 24276 / 25862 1.00E+00 3.49E+08 4.24E+05 4.24E+06 2003 2010

serv_exp 207 / 207 4903 / 7126 1.00E+00 5.72E+10 3.33E+08 1.92E+09 2003 2010

arms 153 / 153 274 / 396 1.00E+00 2.33E+03 6.60E+01 1.98E+02 2003 2010

invest 209 / 208 2892 / 3997 1.00E+00 1.14E+06 6.19E+03 3.72E+04 2003 2010

FDI 210 / 210 452 / 720 0.00E+00 1.25E+05 3.19E+03 1.11E+04 2005 2010

FDI_Greenfield 158 / 158 1767 / 2233 7.00E-02 2.19E+04 3.95E+02 1.25E+03 2003 2010

value 177 / 177 672 / 906 3.00E-03 3.47E+04 5.01E+02 1.74E+03 2003 2010

BIS_flow_claims 183 / 183 1993 / 2720 4.00E-03 8.97E+05 3.90E+03 2.81E+04 2003 2010

aid 170 / 136 2726 / 2887 1.00E-02 4.78E+03 1.98E+01 1.15E+02 2006 2010

migration_flow 179 / 179 11544 / 11893 1.00E+00 2.68E+06 3.47E+03 3.24E+04 2000 2005

migration_stock 205 / 202 10787 / 10991 1.00E+00 1.16E+07 1.81E+04 1.53E+05 2005 2010

out_tour 189 / 191 9842 / 10789 1.00E+00 7.93E+07 7.38E+04 8.80E+05 2003 2010

mobility 191 / 189 6014 / 7215 1.00E+00 1.26E+05 3.98E+02 2.82E+03 2003 2010

citation 196 / 195 24054 / 24054 0.00E+00 1.16E+07 2.52E+03 8.01E+04 2003 2010

collaboration 191 / 189 8854 / 8854 0.00E+00 2.04E+06 8.97E+02 2.46E+04 2003 2010

pat_cit_inv 164 / 164 2668 / 2244 1.00E+00 1.68E+06 9.90E+02 2.71E+04 2003 2010

totIC 187 / 187 627 / 833 0.00E+00 2.91E+01 7.87E-01 2.42E+00 ✓ 2003 2010

cow_alliances 124 / 112 2455 / 2505 1.00E+00 5.00E+00 1.24E+00 5.26E-01 2003 2010

Legend: ✓ = True, empty space = False, - = NaN
aWeights are calculated on values greater than 0. Reported zeros are positive values lower than 0.001
bIf True the layer is unweighted
cIf True the layer is symmetric

By choosing years 2003 and 2010 as reference points we obtain the results shown in
the last two columns of Table 1, t0 and t1, where we can see that the two cross sections
are scattered: migration stock, FDI and aid layers are not available for the 2003 reference
year5. In the rest of the paper we will occasionally refer to the cross section in 2003 as first
cross section and to the crosssection in 2010 as second cross section.
Our main goal in the construction of the international multiplex was to include as many

countries as possible. By looking at the column nodes of Table 1 one can see that the num-
ber of reported nodes for some layers differs across time. To obtain a stable and large set
of countries we proceeded in two steps. First, we have identified non missing observa-
tions: if the node is the target or the source of at least one non-zero edge in any of the
years available for a given layer it belongs to the dataset. Second we have calculated the
common subset of nodes for all layers. Some layers have been discarded from the analysis
since they do not have enough observations. A more detailed discussion of our two steps
strategy is provided in the Appendix, section Data selection.
As a result we selected a multiplex of 19 layers with the same set of 112 nodes in each

of them, sampled at two time periods around 2003 and 2010. Table 1 shows the fea-
tures of our final selection and in “Summary statistics” section we describe the content
of each layer. By looking at the distribution of weights and at the density of each layer
we can see that, even though balancing our two cross sections on the same set of nodes
and layers ensures that we can make meaningful comparisons before and after the Crisis,
some further steps are required to normalize the content of the dataset, across multiple

5Migration flows data covers five years intervals by construction.
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and heterogeneous dimensions. In “Filtering” section we explain how we have filtered the
edges to make layers comparable. For additional details on how we processed the data
before filtering we refer to section “Data preprocessing” in the Appendix.

Summary statistics

Table 1 reports the list of selected networks in our multiplex, with the short name of
each layer used in our dataset in the first column and some summary statistics for each
layer of the multiplex: number of nodes and edges in each of the cross sections analyzed,
symmetry and weight checks on the edges and actual years used to construct the database.
Layers can be classified in six categories according to the type of international relation-

ship they represent:

• trade: trade agreements among countries (fta_wto), commodity and services
exchanges (expv, serv_exp) and arms transfers (arms)

• investment: foreign direct investments (FDI, FDI_Greenfield), total portfolio
investments (TPI) (invest), value of mergers and acquisitions (M&A) (value),
international aid (aid) and international bank loans (BIS_flow_claims)

• human mobility: movement of individuals between states as measured by permanent
migration in flows and stocks (migration_flow, migration_stock) and
temporary mobility, i.e. tourism (out_tour) and students abroad (mobility)

• knowledge flows through patent citations (pat_cit_inv), citations of scientific
papers (citation) and paper coauthorship (collaboration)

• common infrastructures between countries as measured by capacity of internet cable
routing (totIC)

• diplomatic relationships (cow_alliances).

Table 1 shows that trade layers are constituted mostly by monetary flows, hence they
are represented by directed weighted graphs where edges are flows of money from source
country to target country. The network of trade agreements (fta_wto) is one exception:
it is a symmetric and unweighted layer with edges equal to 1 when two country have
signed a free trade agreement.
Another exception regards arms exchange (arms): it is an interesting network to polit-

ical scientist, hence a particular effort has been devoted in tracing and accounting arms
trade. They come from separate sources collected in the the SIPRI database.
Financial layers too have edges representing monetary flows, such as FDI, TPI and

M&A. It is worth noticing that FDI flows are reported twice, since we integrate OECD
data with a separate source (FDI_Greenfield) collected in Kirkegaard (2013) focusing
on specific type of firms which are difficult to measure in the official FDI statistic. Given
the extent of this second source and the relevance of its content (which differs signifi-
cantly from OECD) we added it as a separate source. As for BIS flows, which represent
data collected from the Bank of International Settlements on loans among international
banks, we selected only the claims layer, which is also automatically adjusted for changes
in exchange rates. Finally, flows of international aid constitute another exception. These
specific flows of capital are namedOfficial Development Assistance (ODA) Disbursments
and are measured by the OECD. While in the other layers edges represented monetary
payments from source countries to target ones, here the relation represents voluntary
donation from source countries to foster the development of their counterparts. Hence
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ODA flows represent a reversed measure of the development of a countries: central nodes
(in terms of incoming edges) are those which are more underdeveloped. For this reason
in our final multiplex the aid layer has been reversed (more details on this in the section
“Data preprocessing” in the Appendix).
The third category of layers concerns the movement of people. Layers of this group can

be divided in temporary migration (tourism and residencies lasting less than one year)
and permanent stock of migrants. Both measures are collected by the United Nations sta-
tistical division. A third measure, flows of migrants among countries, has been produced
for every five years from 1990 to 2010 by Abel and Sander (2014) through estimates based
on the UN stock data6.
Knowledge flows are represented by citations of patents and papers by countries. Patent

citations come from the NBER database and refer to the country of patent inventors.
Paper citations instead have been collected by Pan et al. (2012) and represent an average
over a five year period. These layers have a common unit of measurement: each edge
between two nodes represents the number of papers/patents of the destination country
cited by the source one.
The last two layers are cable route capacity and diplomatic alliances. The first is a mea-

sure of the common telecommunication infrastructure linking two countries: each edge
represents how many terabyte of data can travel between two countries via cable con-
nection. Hence by construction this layer is weighted and symmetric. The alliances layer
is symmetric too but it is unweighted: each edge represents an international diplomatic
alliance between two countries. This is one of themeasures of diplomatic interaction from
the Correlates of War project7.

Filtering

The layers of the multiplex are very different and there is a need to standardize them
before proceeding in any further analysis. In fact, the distribution of weights of layers in
Table 2 (more details in Fig. 13 and 14 in the Appendix) shows that they have very different
mean value, range and skewness. Moreover, in many of our sources there is a bias in the
reporting countries: due to their economic (and sometimes territorial) size, developed
countries take part in exchanges with other countries more frequently.
To solve these issues we apply an hypergeometric filter on the data, as in Riccaboni

et al. (2013). The reasoning goes like this: since edge weights are affected by the size of
nodes, a filter must be applied to the edges in order to distinguish the significant ones.
Following Riccaboni et al. (2013) and Armenter and Koren (2014) we take as as starting
point a null model where we assume that edges are randomly assigned to all nodes with
probability proportional to their connectivity. The resulting probability distribution is an
hypergeometric one. Next we fix a significance threshold and we test if the weights of the
actual edges in our layers passes the threshold. If not so, we discard them. The outcome
of this procedure is a filtered layer where insignificant edges are removed. This approach
is used to standardize the layers using the probabilities created with the filter, solving at
the same time both the size bias and the heterogeneity of layers. In a nutshell, we replace

6Another set of estimates, this time in ten years interval from 1960 to 2000, was also provided in a previous work (Abel
2013).
7The others are: exchange of diplomatic representatives, membership in international organizations, armed conflicts and
militarized disputes.
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heterogeneous links with the probability of them being more intense than expected under
a random null model.
The final effect of the hypergeometric filter is to reduce the density variance by smooth-

ing out denser layers and leaving almost untouched sparse layers. This follows our
assumption thatmore connected nodes (in denser layers) have a greater share of irrelevant
edges, while less connected ones have few relevant links which pass the filter. Figures 15
and 16 in the Appendix demonstrate this by showing the amount of observations elim-
inated by the filter in every layer and how this quantity is positively correlated with the
layer density before filtering.
Our choice of the filter was made to reduce the variation in density across layers to

make them comparable. However, we have not controlled for variation in other possible
features, such as the clustering or the weak-tie structure, which might have been altered
as a consequence of our procedure.
Other filters could have been chosen to preserve different characteristics of the net-

works. Some examples are the disparity filter of (Serrano et al. 2009), the GloSS filter of
Radicchi et al. (2011) or the Maximum Entropy approach proposed in Gemmetto et al.
(2017). While some of these methods are certainly better to avoid unwanted alterations in
the structure of the filtered networks, as demonstrated in Gemmetto et al. (2017), we see
two possible difficulties in our case. First, the disparity filter relies on a different theoreti-
cal assumption about the null model used to validate the network, a uniform distribution
of links, whereas in our case we have assumed an hypergeometric one. Second, in the
other two cases, the full information on the network structure is used to construct the
null model. Even though this is is principle a desired property of the filter, we cannot
rule out some reporting error in our data which could make the above mentioned meth-
ods less reliable. In our approach, by using only information on a given country, we avoid
spreading the reporting error to the full specification of the null model.
In the next subsections we show some general network statistics calculated on the

filtered multiplex using a very conservative filtering threshold.8

A comparative analysis of the international networks

Given that our interest is in the aggregated multiplex and not in the single layers com-
posing it, we have simplified the presentation of the single layer analysis by computing
network statistics on the unweighted version of our graphs, without taking into consider-
ation those assortativity and clustering measures which rely on the directionality of edges.
We also do not perform a full fledged analysis of similarity of layers, as in Bródka et al.
(2018).
Table 2 reports the network statistics for the cross section in 2003 of our multiplex. A

similar table is provided in the Appendix for the cross section of year 2010 (Table A2).
To help visualizing some properties of layers, we show in Fig. 1 the rank of each layer
with respect to each statistic (left hand side plot) and the correlation matrix measured on
these rankings (right hand side plot). A lighter (darker) color in the left panel means that
the selected layer (y-axis) ranks lower (higher) with respect to the selected statistics (x-
axis). A lighter (darker) color in the right panel means that the two selected layers have
lower (higher) correlation with respect to their position in the statistics ranking (i.e. if
correlation is high the two layers rank similar in the same network statistic).

8Cfr. Figures 17 in the Appendix to see the effect of different thresholds.
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While we see some patterns of similarity, no clear cluster structure emerges: only few
layers have a distinct profile (the symmetric layers) while all the others cannot be grouped
in a clear manner.
This is evident in plot (a) of Fig. 1: layers rank similarly only regarding some particular

statistics, but look very different in all the others. For this reason we do not perform a
proper cluster analysis, which will only increase the complexity of the exposition, and we
inspect only the macro structure of the layers.
We identify two macro groups of layers with somewhat similar ranking in the statistics.

The first one comprehends trade and migration data with the paper citations layer and
the three symmetric layers. These last three also form another more compact ensemble
in the picture. The other big group is mainly composed by financial layers together with
mobility, papers collaboration and patent citation data.While the division in two groups is
not clear-cut, it approximately corresponds to the division of layers by typology we intro-
duced at the beginning with layer of different types behaving differently. This suggests
that integrating these different data sources may be beneficial.
Moving to the network statistics graph (left hand side of Fig. 1) the picture is more

detailed and we can observe differences in the previously identified groups. The first one
is the more defined: migration and trade data, together with the citation layer, are usu-
ally denser, both in the simple and in the bilateral sense, they have bigger average size and
diameter of their bigger strongly connected components, longer average short path length
and larger size of their weakly connected components. On the other hand, they have fewer
components, their degree (including outdegree and indegree) is usually more skewed to
the right and they have lower values of network centralization and weighted asymme-
try. These characteristics are also shared by the next three layers (cow_alliances,
fta_wto, totIC) which are also less dense.
Other layers exhibit an opposite behavior. There is a set of layers (FDI, arms, value)

which is highly anti-correlated with the previous ones: they all rank higher in the left hand

Fig. 1 Network statistics by layer of the multiplex in year 2003: ranking of layers on panel (a), correlation
among rankings on panel (b)
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side statistics, i.e they have greater number of weakly and strongly connected components
and degrees skewed to the left. Moreover they show lower rankings in the statistics where
previous layers showed higher rankings: they are less dense, have lower average cluster-
ing coefficient and their biggest weakly connected component is smaller and has lower
average short path length. Moreover their largest strongly connected components have
smaller diameter and size.
Finally, the remaining layers have less sparkly defined characteristics: while, on average,

they have opposite behavior with respect to the initial ones the differences are not so clear.
In particular, like the first layers, they have higher density and higher average size of their
biggest weakly connected component. However, for the remaining statistics, they differ
from the first set of layers.

Multiplex centrality
We define a multiplex M as a set L of layers, where each layer l is a network defined
as two coupled set of nodes Nl and edges El connecting nodes. In our case nodes are
countries and edges represent different types of relationships between them. For instance,
countries like USA, Russia and India are simultaneously connected by trade, migration
and knowledge flows (see Fig. 2). Therefore, two nodes are connected in the multiplex if
they have a link in at least one layer.
To exemplify this reasoning in Fig. 2 we can see a selection of nodes and links from

the international multiplex: 3 layers have been represented (export, migration and patent
citations). For each layer, four nodes have been chosen for each of the 4 quartiles of the
GDP per capita distribution (PPP) and placed in ascending order on the vertical axis. The
size of the nodes is proportional to their degree in each layer while the color intensity of
the nodes corresponds to the centrality of each of them in the whole multiplex calculated
using the MultiRank centrality explained in “MultiRank” section. We can see that Uzbek-
istan (UZB) and Camerun (CMR) are isolated nodes in the patent citations layer, but not
in the migration and export ones. Moreover we can see how self-loops are present only
in the patent citation layer. In our multiplex there is no link across layers, but the same
countries are present in all layers (Kivela et al. 2014).

Fig. 2 Subset of the international multiplex. Four nodes have been selected from each of the pcGDP
quartiles. Node size is proportional to node degree in the whole layer, node color intensity is proportional to
MultiRank centrality in the whole multiplex, edge width is proportional to edge weights
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The centrality of a node in a multiplex network is no more a local measure related to
its role in each single layer, but becomes a global measure affected by all relationships in
which the node takes part. To measure country centrality we have selected two different
algorithms which generalize single layer centrality measures to multilayer networks and
have the nice property to provide also a ranking of layers as output. This allows us to avoid
any a priori assumption of the relevance of layers.9

The two algorithms are the multiplex PageRank (MultiRank) (Rahmede et al. 2018)
and the multiplex HITS(MD-HITS) (Arrigo and Tudisco 2018), also known as “hubs and
authorities” algorithm. In the next subsections we provide a brief description of the two
methods, while we refer to the original works for any further details.

MultiRank

The (single layer) PageRank of a node is a measure of node centrality that accounts for
the importance of the node by looking at its centrality and the centrality of all the in-
neighbours pointing to it.
Formally, given an unweighted network of N nodes, the PageRank of node i can be

defined as (cfr. Halu et al. 2013):

xi = d
∑

j

Aij

gj
· xj + 1 − d

N
(1)

Where d is the so called damping factor, Aij is an element of the unweighted adja-
cency matrix of our network A and gj is the out-degree of node j (i.e the number of its
out-neighbors) when its greater than 0, 1 otherwise. Hence a random walker will choose
among the out-neighbours of node j with probability d and with probability 1 − d will
switch to one of all the other nodes in the network. Starting with a uniform distribu-
tion and running iteratively the algorithm we should obtain a stable distribution of the
PageRank for all nodes.
When wemove from single to multiple layer networks, nodes will have multiple dimen-

sions over which nodes share links, hence the PageRank centrality of nodes is affected
both by the single-layer centrality and by the centrality of a layer in the multiplex. There-
fore, a rank of the layers of the multiplex is needed to compute the multiplex version of
the PageRank.
Following Rahmede et al. (2018) we summarize the multiplex from two perspectives:

first as a colored network with links of different colors having different influences, second
as a bipartite network of nodes and layers. Then we use both dimensions to obtain a
generalized multiplex PageRank. This multilayer version of the PageRank algorithm can
be defined for directed and undirected networks as well as weighted and binary networks,
hence the adjacencymatrixAα will refer without distinction to any of these types of layers.
From the colored network perspective we obtain matrix G as the sum of adjacency

matrices across M layers weighted by their respective influence zα . So, given layers α =
1, 2, . . .M, the elements of G are given by:

Gij =
M∑

α=1
Aα
ij zα (2)

9Obviously, there is still our selection of the layers and nodes in the dataset but, as we have shown, this is related to data
availability and comparability.
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From the bipartite view of a multiplex we obtain theM ×N incidence matrices Bin and
Bout representing the normalized in-strength and out-strength (respectively in-degree
and out-degree for binary networks) of each node i in every layer α:

Bin
αi =

∑
j Aα

ji
∑N

i=1
∑N

j=1 Aα
ij

=
∑

j Aα
ji

Wα
Bout

αi =
∑

j Aα
ij

∑N
i=1

∑N
j=1 Aα

ij
=

∑
j Aα

ij

Wα (3)

HereWα = ∑N
i=1

∑N
j=1 Aα

ij represents the sum of all edge weights in layer α for directed
weighted networks or twice this number if the layer is undirected. For unweighted net-
works it becomes the total number of link (directed case) or its double (undirected case).
Similarly, for undirected multiplex networks Bin

αi and Bout
αi are identical, since theAmatrix

is symmetric.
Our specification of the multiplex PageRank works on the assumption that, given a cer-

tain node in the multiplex, its centrality will be affected both by the centrality of nodes
pointing to it and by the influence of the layers to which these in-neighbors of the node
belong. A random walker moves from node j to a neighbour of i along all layers with a
probability d̃ and proportionally to Gij. Otherwise with probability 1 − d̃ it jumps ran-
domly on another node of G. The stable distribution we get at the end of this process is
the multiplex PageRank centrality of the nodes.
Similarly to the single layer PageRank equation, we get the multilayer PageRank

equation:

Xi = d̃
N∑

j=1

GjiXj

kj
+ βvi (4)

Where d̃ is the damping factor and:

kj =max
(
1,

N∑

i=1
Gji

)
(5)

vi =θ

⎡

⎣
N∑

j=1

(
Gij + Gji

)
⎤

⎦ (6)

β =

N∑

j=1

[
1 − d̃θ

( N∑

i=1
Gji

)]

N∑

i=1
vi

Xj (7)

Here θ(·) is the Heaviside step function. Equation 4 is a function of the set
of layers’ influences. To avoid calculating all these values, we couple the above
equation with another one aimed at determining the influence of layers. This time
we define layersŠ influence (relevance) as a function of the centrality of their nodes.
Hence:

zα = Wα

N

N∑

i=1
Bin

αiXi (8)

Here N represents a normalization constant. A more flexible specification of this
equation can be obtained by introducing some tuning parameters:
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zα = (Wα)a

N

[ N∑

i=1
Bin

αi(Xi)
sγ

]s

(9)

where a regulates the effect of total weight of layers Wα on the influence: with a = 1
layers with higher Wα become more influential, while with a = 0 the layer influence is
rescaled with respect toWα .
The s parameters instead indicates if more influential layers are those with fewer (s =

−1) or more central nodes (s = 1).
Finally once s is settled the parameter γ allows us to suppress or enhance the contribu-

tion of low centrality nodes: with s = 1 values of γ > 1 ( γ < 1) suppress (enhance) their
contribution. Conversely, when s = −1 values of γ > 1 ( γ < 1) enhance (suppress) the
contribution of less central nodes.
Solving simultaneously the two coupled Eqs. 4 and 9, given a set of parameters a, s, γ ,

allows us to assign a centrality Xi to each node and an influence zα to each layer α of the
multiplex.
Clearly, different choices of parameters will return different rankings. Nevertheless, as

we will show in the next section, the configurations can be refined once we require them
to be stable enough with respect to the choice of γ .

MD-HITS

The (single layer) hubs and authority scores of a set of nodes are two measures of central-
ity which depend one on the other recursively. For a node to have an high authority score
it is necessary to have many high hub nodes pointing to it. Similarly, for a node to have an
high hub score it must have a lot of high authority score nodes to point to.
Given the adjacency matrix A of an (unweighted) graph, the hub and authority scores

are defined as:

hi =
∑

j
Aijaj and ai =

∑

j
Ajihj ⇒ h = Aa and a = ATh (10)

Usually, the algorithm is calculated by setting all scores to one and iterating for a suffi-
cient number of times, which requires after each step to normalize to one the sum of all
the scores.
The generalization of the algorithm for multilayer networks provided by Arrigo and

Tudisco (2018) includes layers and time stamps as dimensions to be used to compute the
centrality. This results in five scores: two for nodes (hub and centrality scores), two for
layers (broadcasting and receiving scores) and one for the time dimension. In our case the
last score would not be used since we have only two cross sections.
Similarly to the MultiRank, a node receives an high hub score if it belongs to an

high broadcasting layer and has many links towards high authority nodes in layers
with high receiving capabilities. Conversely, high authority would be awarded to nodes
in high receiving layers with high hub nodes from high broadcasting layers pointing
to them.
Finally the definition of the broadcasting and receiving scores of the layers follow when

the focus is toward layers instead of nodes.
As for the MultiRank, also the MD-HITS algorithm can be defined on both directed

and undirected network as well as weighted and binary networks. Hence, we refer to the
adjacency matrix A without making any distinction among them.
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For each layer α the multilayer generalization of the HITS algorithm reads as:

hα
i =bα

∑

α

∑

j
rαAα

ija
α
j (11)

aα
i =rα

∑

α

∑

j
bαAα

jih
α
j (12)

bα =
∑

α

∑

j
rαhα

j (13)

rα =
∑

α

∑

j
bαaα

j (14)

where b and r are the broadcasting and receiving scores of each layer. It is straightforward
to notice that the overall hub centrality of a node in the multiplex is hi = ∑

α bαaα
i while

its overall authority score is ai = ∑
α rαhα

i . Since we are dealing with a multiplex, our for-
mulation of the layer scores does not allow for some layer to not be connected to others:
in other words the inter-layer network in our case is fully connected.
As we can see, there are no parameters to choose in the MD-HITS, hence we will

always have one and only one ranking of nodes and layers (according to the score we
are interested in). To obtain the centralities of nodes and layers we need to solve the
recursive equations defined above, which requires us to solve the eigenvector problem
on the whole tensor which represents the multiplex. This can be done by finding an
adequate multi-homogeneous map on the adjacency tensor and its unique Perron eigen-
vector (cfr. Definition 1 in Arrigo and Tudisco, 2018). In Arrigo and Tudisco (2018) the
authors then demonstrate the existence, uniqueness and maximality of the MD-HITS
measure and provide a converging and fast parallel algorithm to compute it. MD-HITS
is an ideal candidate algorithm to compute centrality in a multiplex, since it exists and
is unique regardless of connectivity of the graph, while other centrality measures based
on eigenvectors require the graph to be strongly connected, a property which is rarely
satisfied.
In the next section we analyze the centrality of countries in the international multiplex.

Results
In this Section we summarize ourmain results concerning country ranking obtained com-
putingMultiRank andMD-HITS centrality indicators. In particular, we shall focus on two
setups regarding the free parameters of the MultiRank algorithm, i.e. (α, s, γ ) = (1, 1, 1)
and (α, s, γ ) = (0, 1, 1). In general, results are fairly robust to alternative specifications, see
section “Choice of the MultiRank parameters” in the Appendix for more details. Notice
that when (α, s, γ ) = (1, 1, 1) we measure the layer importance z without rescaling layers
by their weights (α = 1) and without giving more importance to layers with more cen-
tral nodes (s = 1). Furthemore, one does not impute more weight on low centrality nodes
(γ = 1).

Preliminary results

Our dataset contains 19 different layers representing heterogeneous relations among
countries. Our objective is to show how different information sources can be inte-
grated in order to obtain synthetic measures of importance of countries and which
are the possible differences among these measures. Hence we have focused on
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using the full set of layers at our disposal, discarding unsuitable or repeated lay-
ers before constructing the multiplex (more details on this in “Data selection” in
the Appendix).
However another possible question would be to check how much of the final

results is correlated with the single layer composing our network, i.e. to investigate
the redundancy of some layers in determining the multilayer centrality of the nodes.
The intuition would be that if layers are heavily correlated among themselves the
analysis could be carried on by removing some of them without loosing explanatory
power.
Given that this objective is only partially consistent with our focus on analyzing the

multiplex as a whole we show here some preliminary results on the correlation among
single layer centrality measures of our layers and their multiplex equivalent. It is worth
noticing that, however, a clear relation among the multiplex centrality rankings and the
single layer ones cannot be found directly given the recursive nature of the multilayer
algorithms.
In Fig. 3 we show how much the single layers are correlated among themselves in their

centrality rankings and also with respect to the multilayer version of centrality. We can
see that the MultiRank algorithm is positively correlated with almost every layer except
for two, even though rarely with correlation over 70%. Moreover the layers positively

Fig. 3 Spearman correlation of the node rankings obtained by calculating centrality measures on both the
single layers and the multiplex (hence using the multiplex version of the algorithms). For the MultiRank
rankings the other parameters are in both cases s = 1 and γ = 1.All results refer to the cross section in 2003,
results for the cross section 2010 are available in the Appendix
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correlated with MultiRank are also correlated among themselves. Conversely for the
MD-HITS algorithm the set of layers negatively correlated with the multilayer centrality
measures contains more layers. Interestingly the MultiHub and MultiAuth are more cor-
related with different set of layers hence meaning that removing a set of them or another
would affect the centrality measures differently.
In Fig. 4 we have decomposed the set of single layer measures in their principal com-

ponents and plotted the number of components necessary to explain at least 90% of the
variance in the data (the red step line). We can see that there is some redundancy in
the dataset and that the number of required is almost half the one we are analyzing in
our work for all the centrality measures. Moreover we have regressed the multilayer cen-
trality measures against the principal components of their single layer versions, added
progressively one by one. The blue line in Fig. 4 show how the Mean Squared Error of the
regression behaves. We can see that it roughly agrees with the explained variance result
and reaches a minimum for a number of component near half the ones we are using (even
though with more variability).
All in all, we find that it exists some level of redundancy among the layers in our dataset

and that a more parsimonious choice of layers could deliver almost similar results than

Fig. 4 In red: number of principal components sufficient to explain 90% of the variance of the measures of
centrality calculated on the single layers (scale reported on the right y-axis). In blue: mean square error
obtained by regressing the multilayer measures of centrality against the principal components of the single
layer centralities, added one by one (scale reported on the left y-axis). All results refer to the cross section in
2003, results for the cross section 2010 are available in the Appendix
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Fig. 5 Layer rankings in different configurations: cross section 2003 (a), cross section 2010 (b). For the
MultiRank rankings the other parameters are in both cases s = 1 and γ = 1

the one we have made. However how to choose those layers is left to be decided, knowing
that some choices could penalize some of the algorithms more than the others.10 Given
this uncertainty we think our full-fledged approach would at least avoid this type of bias
at the cost of more redundancy in the data.

Layer rankings

The ranking of the layers resulting from the first combination of parameters for the Mul-
tiRank is shown in Fig. 5 at the left of the two panels. We can see that this choice of
parameters rewards the trade layers (value of exports and service exports), some of the
financial layers (BIS loans, FDI flows of both types and the value of M&As) and some
of the mobility layers (temporary migrations and migration stocks). Even though some
choices of the algorithm are not obvious (especially among layers of similar kind) one
can find a final ranking which fulfills some of the usual expectations on which aspects
of a country are more relevant when looking at a global level: exports, foreign direct
investment, international M&A, tourism and stock of migration.
The MD-HITS rankings are reported at the center of Fig. 5. The colouring of the lines

helps us see that this new ranking is very similar to the MultiRank one with a = 1, with
some layers switching only few positions (the only exception being international aid).
Finally by looking at the two panels in Fig. 5 we can see that over time the two previous

observations hold: the ranking of layers does not change and the two algorithms follow
each other.
The second configuration of the MultiRank is reported on the right of Fig. 5. In this

setting we leave s = 1 and γ = 1 but now a = 0 hence all layers are normalized by their
total weight. This corresponds to define the layer importance as zα = 1

N
∑N

i=1 Bin
αi(Xi).

This new configuration reduces the effect of different topological properties among
layers and makes them more comparable. The result is that we have a new ranking with
stark differences from the other two: now trade and migration layers are less important,
loosing positions in favor of other layers such as arms trade and patent citations.

10Indeed while the number of sufficient principal components is similar across all centrality measures, this does not give
us any hint about which of the layers we should remove.
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Fig. 6 Node rankings in different configurations: cross section in 2003 (a), cross section in 2010 (b). For the
MultiRank rankings the other parameters are in both cases s = 1 and γ = 1

Node rankings

We now move to the comparison of node rankings. Our final goal is to understand how
different centrality indicators perform in ranking countries in the multiplex. In Fig. 6 we
report rankings for the top 20 countries obtained employing the two parameter setups
used for the MultiRank, as well as the multiplex hub and authority scores (MultiHub and
MultiAuth).
Results show that, as opposed to the layer rankings, on average the differences in rank-

ings are less pronounced (the blue lines rarely cross the red ones). In fact for the top
ten countries we see an almost stable distribution, with countries switching few posi-
tions by changing algorithms with the exception of RUS and CAN (this last being severely
penalized by the MultiRank and rewarded by MD-HITS) and all algorithms agreeing on
the same nodes. In the bottom 10 positions instead we see more differences, especially
between the MultiRank and MD-HITS algorithms. In particular the ranking of the multi-
plex authority score rewards the countries at the bottom at the distribution and penalizes
those at the middle. Finally results for the two cross sections show that some countries
experience strong catching up or falling behind behaviour. For instance Poland (POL) in
the 2010 cross section does belong to the top twenty countries by MultiRank when a=1
but with a=0 it loses several positions. On the contrary the United Arab Emirates (ARE)
were not in the top twenty countries for any of the algorithms in 2003, while they are in
the 2010.
We now ask whether country centrality rankings correlate with country income, asmea-

sured by pcGDP. Note that, should one find a perfect correlation, our centrality indicators
would not provide any additional insight.
Table 3 shows the Spearman rank correlation coefficient between the nodes ranking

resulting from pcGDP and the one resulting from different centrality algorithms. For

Table 3 First two lines: Spearman correlation coefficient between the rankings from pcGDP of the
reference year and those obtained by different algorithms. Last line: correlation coefficient between
evolution in rankings over time. First 4 columns use multilayer algorithms, last 3 use single layer
algorithms on the aggregate network

MultiHub MultiAuth MultiRank (a = 0) MultiRank (a = 1) PageRank Hub Authority

pcGDP 2003 0.7623 0.7607 0.6372 0.6899 0.6745 0.7017 0.7594

pcGDP 2010 0.7779 0.748 0.6414 0.6264 0.6873 0.7251 0.7373

Difference 2003-2010 0.31 0.137 -0.1715 0.1228 -0.0772 0.3568 -0.1638
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robustness purposes we have added to our four multilayer measures their single layer ver-
sion (PageRank, Hubs and Authority) calculated on the aggregate multiplex obtained by
summing over all the layers the corresponding entries of their adjacency matrices. The
first two rows report the rank correlations for our two cross sections, while the third
contains the (simple) correlation between the evolution in ranking of pcGDP over time
and of the centrality measures. The MultiHub centrality is the one with the highest cor-
relation in ranking with pcGDP consistently between cross sections and over time. It is
followed by MultiAuth centrality and the two aggregate multiplex Hub and Authority
scores. Both MultiRank indicators perform relatively worse together with the PageRank
centrality calculated and the aggregate network. These results show that some of the mul-
tilayer centrality algorithms rank countries in a way consistent with the ranking of pcGDP,
but with some relevant differences. Specifically for the MD-HITS algorithm they are on
average better than their single layer versions calculated on the aggregated network.
Another interesting result is that not only our multilayer measures perform better than

their aggregated multiplex analogues, but they also have better performance than single
layer centrality measures calculated on each layer. This can be seen in Fig. 7 where we plot
the the first two rows of Table 3 as dashed lines and the single layer centrality measures
as barplots. We can see that only some layer centralities have a comparable performance
with our measures, but none of them is better than our best ones, i.e. MultiHub for both
cross sections and MultiAuth for the first only. In the Appendix we are reporting also
the geographic distribution of MultiHub, for the cross section of year 2003 and for the
evolution of rankings over times (Figs. 21 and Fig. 21).
Finally to further inspect the relation between the node rankings of our algorithms and

pcGDP over time, in Fig.8 we have plotted the change in rank of each country from one
cross section to the other for the MultiRank score (x-axis), the MultiAuth score (y-axis),
the MultiHub score (coloring of dots) and pcGDP (size of dots). One can observe that
while for the pcGDP and MultiHub score rankings we cannot see a clear pattern, for
MultiRank and MultiAuth score there is a linear correlation among their rank evolution
over time. Moreover this is not affected by the choice of the parameter a.

Fig. 7 Performance of single layers centrality measures (stacked barplots) against multiplex ones (dashed
lines) evaluated by correlation of their ranking of nodes with respect to pcGDP
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Fig. 8 Evolution over time of node centrality rankings from different algorithms for a = 1 a and a = 0 b.
Labels are provided for the top and bottom 10 nodes in the evolution of the MD-HITS scores

Difference between pcGDP andmultiplex rankings

Asmentioned before, similarity with pcGDP is one possible criterion to analyze multiplex
centrality. On top of this, one can get additional insights by exploring how centrality rank-
ings deviate from those obtained using pcGDP. Fig. 9 reports the difference in rank with
respect to pcGDP ranking in 2003 for the two configurations ofMultiRank (Fig 9a) and the
two MD-HITS scores (Fig 9b).11 Observations at the top of the y-axis have greater nega-
tive difference between their ranking and the pcGDP one, hence they are being rewarded
by pcGDP; while elements at the bottom of the graph have greater positive difference,
hence their rank is better according tomultiplex centrality while pcGDP ranking penalizes
them.
We can see that there are wide differences between the ranking assigned by pcGDP and

those assigned by the algorithms: in both cases there are nodes gaining or loosing more
than 40 positions in the ranking with respect to pcGDP. Moreover, since the two graphs
share the same ordering of rows (given by the Multirank differences), we can see that the
rank divergences do not correspond between the MultiRank and the MD-HITS.
To further inspect these differences the behavior of the top ten and bottom ten nodes

of the distributions has been analyzed in the inset of the graphs. In the insets we position
on the left y-axis the ranking by our algorithm and on the right y-axis the pcGDP rank-
ing. The “bump” from left to right represents the divergence of rankings with respect of
pcGDP, while the thickness of the line represents how much the rankings have changed
over time.
Two observations are in order. First, by looking at the insets in the MultiRank graph,

the nodes with greater divergence have very different starting MultiRank ranking: we can
see that countries being penalized by pcGDP (bottom inset) are coming both from the
bottom part of the distribution (Benin, BEN) and from the top part (India, IND). And the
same holds in the top inset: see Mongolia (MNG) and Kuwait (KWT).
The second observation is that the same countries evaluated by the MD-HITS algo-

rithm have less extreme behaviour. For instance by looking at the bottom inset of the

11 Notice that values have been binned in five element intervals.
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Fig. 9 Difference between ranking of countries by MultiRank (a) and MD-HITS (b) and by pcGDP in year 2003.
The alternative measure for each algorithm is shown in darker color. In the insets only the top and bottom
ten countries by rank difference are plotted, with ranking by multiplex centrality on the left and ranking by
pcGDP on the right. The width of the line represents the evolution over time of the measures

MD-HITS graph we can see that nodes that were ranked higher inMultiRank with respect
to pcGDP, in MD-HITS do not show a great divergence.
Finally in each graph we can also observe with a different color the other ranking

obtained by the algorithms: MultiRank with a = 1 and MultiHub. There are some differ-
ences with respect to the principal rankings but less pronounced than the ones between
algorithms.

Difference between pcGDP andmultiplex rankings over time

In the last subsection, we have compared rankings obtained using our centrality indica-
tors with the country ranking based on pcGDP. We now explore how country centrality
and pcGDP rankings change across the two cross sections. For the sake of simplicity, we
focus on countries gaining or losing at least five positions over time in either centrality
or pcGDP rankings. We then create four country groups according to whether countries
experience a rank improving (worsening) change in the centrality or pcGDP rank.
In Fig. 10 each group of countries has been plotted in a separate graph. The position

of the points represents their initial rankings by pcGDP and MultiRank in 2003 while the
arrows show the movement in ranking for pcGDP(x-axis) and MultiRank (y-axis) over
time. In subplots 2 and 4 their movements in pcGDP and MultiRank are correlated (in
direction, not inmagnitude) while in the other quadrants they are anticorrelated: while for
pcGDP a certain country is expected to gain (lose) positions forMultiRank is the opposite.
As a reference to pcGDP growth the size of points is proportional to the compounded
growth rate of the pcGDP of the country. Finally Fig. 10a and b show the differences when
we change from a = 1 to a = 0 in the MultiRank.
The top right (2) and bottom left (4) plots represent those countries experienc-

ing a similar change in centrality and pcGDP. We can see that this is not related
to their initial rankings: this happens for Venezuela (VEN), Iraq (IRQ) and Geor-
gia (GEO) in the top graph as well as Mexico (MEX), El Salvador (SLV) and Eritrea
(ERI) in the bottom graph which are in different parts of the distribution. At the



Bonaccorsi et al. Applied Network Science           (2019) 4:126 Page 24 of 42

Fig. 10 Evolution of ranking over time of pcGDP (x-axis) and MultiRank (y-axis). MultiRank calculated with
a = 1 in (a) and with a = 0 in (b). Countries have been split by the direction of evolution of MultiRank and
pcGDP; starting from the top left corner clockwise: 1) increase/decrease, 2) increase/increase, 3)
decrease/increase, 4) decrease/decrease

same time, we notice that in the top right and bottom left panels nodes tend to be
distributed along the bisector (hence their initial rankings among pcGDP and Multi-
Rank coincided as well), but with some notable exceptions such as India (IND) and
Gabon (GAB).
The top left (1) and bottom right (3) plots instead show countries whose evolution over

time did not coincide (in direction) by MultiRank and pcGDP. Top left countries have lost
positions by pcGDP but gained byMultiRank, while the contrary happens to bottom right
countries. We can see that affected countries have initial position either at the top of the
graph (Brasil (BRA) in plot (1) and Israel (ISR) in plot (3)) or at the bottom part of the
distribution (Haiti (HTI) in plot (1) and Tajikistan (TJK) in plot (3)) with less countries in
the middle of the distibution.
But the most interesting findings come from the difference between plot Fig. 10a with

MultiRank using a = 0 and plot Fig. 10b where MultiRank is calculated using a = 1.
These differences show that the choice of the MultiRank parameter a and the resulting

ranking of layers has an effect on the final ranking of nodes and on their expected evo-
lution. So if we assume that layers have to be rewarded for their total weight (a = 1), we
get a ranking of layers which rewards trade layers the most (cfr. Fig. 5) and this in turn
affects the ranking of countries and affects which of them seem to gain positions over
their pcGDP rankings. If instead we prefer to normalize layers by their weight ( a = 0 )
we get a different ranking of layers.
While the relation between the choice of parameters, layer and node rankings is clear

for MultiRank, we do not have similar insights for the MD-HITS algorithm: we have a
unique ranking of layers and two ranking of nodes which take into consideration two
different aspects of country centrality.
To have a clear overview on how differently the algorithms we used classify nodes with

respect to their rank evolution in Fig. 11 the four quadrants of plot Fig. 10 have been
assigned four numerical codes and for each of our algorithms nodes have been sorted in
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Fig. 11 Expected direction of movement of nodes with respect to pcGDP for all the algorithms: color
corresponds to the 4 quadrants in Figure 10, for each of the algorithm each country is classified by the joint
direction of evolution of pcGDP and Multirank. Order of rows given by the Multirank (a = 1) algorithm

their respective categories.12 We can see that there are few nodes where all algorithms
agree on the classification, a bigger set where most of them agree and finally for more
than half nodes the algorithms provide wildly different classifications.
So if we want to use a very conservative criterion and think that the agreement of the

all four algorithms represent a good way to identify some stylized facts, we get the follow-
ing picture: while by their pcGDP ranking Yemen (YEM) United Arab Emirates (ARE),
Ecuador (ECU) and Paraguay (PRI) have not been growing, by their multiplex ranking
they have been becoming more central. Another way to see this is that all four algorithm
would have placed these countries in panel 1 (top left) of Fig. 11. On the opposite all algo-
rithms agree to place only Turkmenistan (TKM) in panel 3, which identifies countries
which have become less central than what their pcGDP growth would have predicted.
Furthermore in panel 2 (both the rankings resulting by pcGDP and bymultiplex centrality
have positive growth) the algorithms would place Uruguay (URY), Iraq (IRQ), Geor-
gia(GEO), India (IND), Perù (PER) and Panama (PAN). Finally in panel 4 (negative growth
of rankings) they would place Gabon (GAB), Belize (BLZ), Philippines (PHL), Costa Rica
(CRI) and El Salvador (SLV).

Conclusions
In this work we have collected a new dataset of international network measures, mea-
suring the connections between countries over different financial and non-financial
dimensions and using multilayer network analysis for the first time.

12Hence to see which countries are “appearing” in the plots, as we discussed in the previous paragraphs, it is sufficient to
check the columns where one country is present for one algorithm and not for another (hence the third and the fourth
column in our case)
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We have computed different centrality measures and we have shown how differ-
ent aspects of the data can be highlighted with little change in the parameters of
the algorithms and how the resulting change in ranking can be interpreted. Next, we
have compared the ranking of countries obtained by network measures and a common
measure of macroeconomic performance, such as pcGDP.We have found a satisfying cor-
relation for some of the algorithms, the MultiHub score especially, both at the static cross
section level and for the change in pcGDP.
To show the differences between network measures and pcGDP, we have analyzed

how each country development trajectory compares to changes in network centrality. We
have found only few countries for which all measures agree, while for most of countries
different possible trajectories were drawn, not always consistent to those measured by
pcGDP.
This may reflect the fact that the development of countries is not characterized by a

single path and multiple factors concur to define their growth trajectories, hence new
measures are required to capture those differences. However we are conscious that any
index that would try to summarize all these aspects over one dimension is by definition
an approximation and entails a loss of information.
This work is a first step in order to provide meaningful multiplex measures for the

centrality of countries, hence we have left many issues open for future work. We have
not addressed any issue of community detection of nodes and layer similarity. More-
over we have not addressed any of the issues of causality over the network nor network
reconstruction which we think are too broad topics to be discussed here. Further work
will also be required to integrate other sources in the dataset of relevant international
relationships.

Appendix
Data selection

Reporting agencies collect data on a fixed set of countries in different years. Hence an
empty report would not imply the absence of the country from the dataset but for a given
year only. To translate in network theory terms: there may be some nodes in a network
whose edge weights with respect to all other nodes are 0 at a certain time ti, but are still
present in the network with positive edge weights at other tj with j �= i. These nodes
belong to the network and we call them isolated nodes at time ti. On the other hand,
missing nodes don’t have link to other nodes at any t.
To tell if the absence of a certain node from a specific year means its absence in the

overall layer we needed to define when a node is part of our dataset. To do that we
have made the following assumption: if a node is present as origin or destination at least
once in the whole reported set of years for a certain layer, that node has to be con-
sidered as existing in the dataset.13 To calculate the set of existing nodes in each layer
we have used the whole span of its observations in our dataset, hence not only years
2003 and 2010.
Finally, to get a constant set of nodes across all the multiplex, the existing nodes of

each layer must match across all the others. The result of this process is a set of 112
nodes common to all our layers. By referring to the nodes column in Table 1 we can get

13A more strict assumption would be to use only nodes existing at least once as sources.
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a good approximation of this process: we define the set of nodes for each layer as the
union of the existing nodes in the years 2003 and 2010. Hence their size corresponds
to the maximum number between t0 and t1 in Table 1 and ranges from 211 in the free
trade agreement layer to 124 in the alliances layer. This leaves us with 19 different sets of
nodes, one for each layer, partially overlapping. To obtain a common set of countries for
the whole multiplex we calculate the subset of all the individual layers’ node sets. Hence
our final set is a group of 119 countries and the difference between 124 and 119 is given
by five countries belonging only to the alliances layer and not to the rest of the multiplex,
which we have removed.
It must be noted that this process leads automatically to select the smallest set of com-

mon countries across all layers. To avoid reducing this number too much we had to select
a minimum threshold of countries to include in the multiplex with the consequence of
eliminating some layers which would have had observations in the required years but with
a reduced number of nodes (Fig. 12 in the Appendix show some of the layers we have
eliminated with this criterion).

Data preprocessing

Our final result is a multiplex of 19 layers with 112 nodes in each of them, observed at
two “rugged” time snapshots, i.e. with not exactly the same starting and ending year for all
layers. Balancing our two cross sections on the same selection of nodes and layers ensures
that we can make meaningful comparisons over time, but some further steps are required
before moving on to the actual analysis.
First we have preprocessed our data to remove inconsistent observations.While in prin-

ciple network weights do not have strict requirements to satisfy, in our case we needed to
impose some restrictions: since our network layers are mostly directed, negative weights

Fig. 12 Overview of the full dataset
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Fig. 13 Positive weights distribution in each layer of the cross section in 2003. Values rescaled to 1 if lower
than 1. Logarithmic scale on the y axis

have no meaningful interpretation. They should instead be rewritten as positive edges
in the reverse direction: if country A receives a negative flow from country B, it actu-
ally means that country B is the source of a positive flow towards A. Hence we have
reversed negative flows when possible, i.e when the whole layer showed a consistent
pattern of reversed flows and there were no duplicates after reversion. If instead most
negative weights seemed randomly distributed or reverse flows were already recorded in
the dataset we have dismissed the negative values as computational errors.14

Another type of requirements we imposed is to have edge weights not smaller than
one, in order to avoid problems with eventual filtering operations. As one can see from
the minimum weight column in Table A1 several layers have fractional values. Most
of the time this was due to the unit of scale employed, hence it has been sufficient to
rescale them with the right multiplier. This is the case for FDI, FDI_Greenfield,
BIS_flow_claims, aid, value, serv_exp and totIC layers.
The other cases of fractional weights are the results of citations of multi-authored works

which are attributed to certain countries only with the fraction related to a specific author.
To deal with this we have added by default a single citation to all the fractional citations15.
The last restriction we have imposed on our data regards the way we intend to inter-

pret our results. Since the basic stylized fact we want to recover from the MultiRank and

14This issue affected a small number of layers with marginal effects. Only in one case, the BIS layer, the share of negative
values was substantial (around 15%).
15Another option would have been to rescale all the citations by the minimum, but this would have made the whole
distribution of weights explode.
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Fig. 14 Positive weights distribution in each layer of the cross section in 2010. Values rescaled to 1 if lower
than 1. Logarithmic scale on the y axis

Fig. 15 How density of layers has changed: before the filter (left panel) and after (right panel). Cross section
in 2003 in blue, cross section in 2010 in red. On the inset panels boxplots of the density values of the two
cross sections
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Fig. 16 Relation between percentage of values preserved by filter and density before filtering

MD-HITS algorithms is the division of countries in two groups, developed and underde-
veloped countries (a north-south view of the word), we need our layers to be oriented in
the right way: the concentration of flows toward some countries must reflect their central-
ity as developed nodes in the network. To achieve this we have inverted the international
aid layer, as we said before, and the migration stock one which, by construction, tells us
how many persons from the source country migrated to the destination one. On the con-
trary in a more north-centric view of the world we will need to know how many migrants
the source country hosted from the destination one, since migration flows usually points
from south countries to north ones.

Choice of the multiRank parameters

Results of the MultiRank algorithm with respect to changes in each of the three parame-
ters a, s, γ (for nodes only the top 18 elements are shown) are reported in Fig. 18a and b.
We can see that choosing a different combination of parameters alters the final ranking of
nodes and layers and that some combinations experience more abrupt changes than oth-
ers. While for the MD-HITS we don’t need to provide any parameters in order to obtain
the final rankings, for the MultiRank we need to choose how to specify them. In what
follows we will show how we choose our two configurations.
The process which led us to the choice of the final configurations of the MultiRank

starts by making sensible assumptions on how the ranking of layers should be performed:
as we already explained in the main text the safest configuration is (1,1,1) where the con-
tent of the layers is considered as it is, without making any adjustments. The next best
candidate is the configuration where a = 0, hence where we try to adjust for differences
in the total weight of layers, which we have shown to be non negligible even after filter-
ing, still without making any other assumptions on the importance of central nodes inside
each layer, which will require us to introduce further assumptions on the data.
In Fig. 5 one can see the two rankings of layers which are the results of the previous

assumptions. Now the second step in the evaluation of the two configurations is to move
to the node rankings deriving from them and compare their stability with respect to the
parameter γ which from Fig. 18 seems to create disruptions in the rankings even when
keeping fixed the other two parameters. We would like to have two configurations of the
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Fig. 17 Sensitivity of the preserved values after filtering with respect to the change of the threshold of the
filter. Cross section in 2003 (a) and in 2010 (b)

MultiRank which are not heavily affected by the choice of γ in at least the majority of the
range of its values.
Finally the third criterion to evaluate our choice of parameters is by comparing the

similarity of the node rankings with respect to the one stemming from pcGDP. We would
like our choice of parameters to have a good correlation (in rank) with pcGDP which
will mean that our centrality measures are capturing a good signal from the underlying



Bonaccorsi et al. Applied Network Science           (2019) 4:126 Page 32 of 42

Fig. 18 Evolution of MultiRank for the 18 top countries (a) and for all layers (b) in the dataset with respect to
different parameters choice

Fig. 19 Spearman correlation of rankings of different measures of node centrality with respect to ranking by
pcGDP
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Fig. 20 Change in ranking with respect to MultiRank with parameters s = 1, γ = 1 and a = 0 (a) or a = 1 (b)

data. However we do not aim to completely reconstruct the ranking of nodes by pcGDP,
otherwise our measures will not have an informative content.
Our test for these last two criteria is shown in Fig. 19. Here we have plotted the Spear-

man rank correlation coefficient (ρ) between the nodes ranking resulting from pcGDP
and the one resulting from different centrality algorithms while we let the parameter γ

take different values (x-axis). The coloured lines are 4 different configuration of the Mul-
tiRank while the dashed lines are the MD-HITS hubs and authority scores (here called
MultiHub and MultiAuth) which by definition are not affected by γ . For robustness we
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Fig. 21 Geographic distribution of the multiplex hub score (MultiHub). Cross section in 2003 (a) and change
of the ranking from 2003 to 2010 (b)

have added the single layer version of the three previous measures (PageRank, Hubs and
Authority) calculated on the aggregate multiplex obtained by summing over all the layers
the corresponding entries of their adjacency matrices, which are constant too.
The first thing to notice is that the ranking deriving from hub scores for the MD-HITS

algorithm is the one which follows more closely the pcGDP ranking with a Spearman ρ

between 0.76 and 0.78. In the cross section in 2003 also the MD-HITS authority scores
and the authority scores calculated on the aggregated network have a good fit too but the
same strong similarity does not hold in the cross section in 2010.
Moreover among the ranking obtained from the MultiRank we see different behaviours

according to different choice of parameters in the two cross sections: only for some
particular combinations of them in the 2003 cross section the MultiRank outperforms
the ranking resulting from PageRank calculated on the aggregated multiplex while in the
2010 cross section for the majority of the values of γ the ranking resulting from PageRank
is better than all possible combination of the MultiRank making it the worse choice.
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Fig. 22 Spearman correlation of the node rankings obtained by calculating centrality measures on both the
single layers and the multiplex (hence using the multiplex version of the algorithms). For the MultiRank
rankings the other parameters are in both cases s = 1 and γ = 1. All results refer to the cross section in 2010

We observe in fact that in the 2003 cross section the combinations with a = 1 are
rewarded, while for a = 0 the Spearman correlation with pcGDP ranking is lower. On the
contrary in the second cross section combination with s = −1 are rewarded irrespective
of the magnitude of a.
Even though in these last cases we obtain a better fit with respect to pcGDP, still choos-

ing s = −1 which corresponds to assume that low centrality nodes are more important is
difficult to justify without further evidence and does not account for a sufficient improve-
ment in fitting in cross section 2010. Moreover the combination a = 1, s = −1 which
would be ideal in both cross section is themore affected by the choice of γ in cross section
2010, hencemaking it too volatile. Finally for γ = 1 has the same fitting to pcGDP ranking
as our second choice a = 0, s = 1.
Hence we have two configurations of the MultiRank which are worth analyzing since

they stem from sensible assumptions on the data and are sufficiently stable with respect
to γ . Once we fix the parameter γ to 1, one of them, (a = 1, s = 1), has the best fitting
with respect to pcGDP in cross section 2003, while the other (a = 0, s = 1) represents
a good second best option in cross section 2010. Similar trade-offs could have arises by
choosing one of the other combinations, which however have stronger implication that
needs further empirical justifications.
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Fig. 23 In red: number of principal components sufficient to explain 90% of the variance of the measures of
centrality calculated on the single layers (scale reported on the right y-axis). In blue: mean square error
obtained by regressing the multilayer measures of centrality against the principal components of the single
layer centralities, added one after one (scale reported on the left y-axis). All results refer to the cross section in
2010
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