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Abstract
We consider optimal attacks or immunization schemes on different models of random
graphs. We derive bounds for the minimum number of nodes needed to be removed
from a network such that all remaining components are fragments of negligible size.
We obtain bounds for different regimes of random regular graphs, Erdős-Rényi random
graphs, and scale free networks, some of which are tight. We show that the
performance of attacks by degree is bounded away from optimality.
Finally we present a polynomial time attack algorithm and prove its optimal
performance in certain cases.
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Introduction
One of the most studied questions in complex networks is the resilience of networks
under different failure models and attack strategies (Albert et al. 2000; Cohen et al. 2000;
Callaway et al. 2000). In particular, one wishes to know the optimal attack strategy that
will lead to fragmentation by removal of a minimal fraction of the nodes. This informa-
tion is important for estimating the vulnerability of network infrastructures, and also for
devising optimal immunization strategies for populations and computer networks.
The main methods that have been proposed for targeted attacks on networks via node

removal have been based on attack by highest degree (Albert et al. 2000; Callaway et al.
2000; Cohen et al. 2001), and attack by highest betweenness centrality (Magoni 2003).
Some methods based on more advanced algorithms for graph partitioning have also been
proposed (Paul et al. 2007), and led to improved upper bounds on the minimal fraction of
nodes that should be removed to shatter a networks.
In recent years, several works studied optimal attacks on networks, presenting sophisti-

cated, highly efficient algorithms for choosing minimal sets of nodes whose removal leads
to complete fragmentation of the network. In (Braunstein et al. 2016) an efficient disman-
tling method is presented, using the replica method on the generating function. In (Ren
et al. 2019) efficient dismantling is considered when costs are attributed to the different
nodes. In Morone and A. Makse (2015) finding sets of influential nodes is considered
using the cavity and Extremal Optimization (EO) methods. In Mugisha and Zhou (2016)
belief propagation is used to find efficient shattering sets. In Osat et al. (2017) optimal
attacks on multiplex networks are studied using simulated annealing methods.
As for measuring the resilience of a network to shocks, there are again quite a few

papers. The following is far from being a comprehensive survey. In Cerqueti et al. (2019)
a shock is injected on one node and the resilience of the (weighted) network is measured
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by its ability to absorb this shock. In Chen and Cheng (2015) network robustness is eval-
uated in terms of the ability to identify the attack prior to network disruption. The affect
of nodes removal on the diameter of the network, a natural parameter, was studied in
Ferraro and Iovanella (2018). Both of these studies regard attack by degree as representa-
tive for an intentional attack. An important breakthrough was made in Gao et al. (2016),
where the dynamics of the systemwas accounted for, in addition to network topology. One
may ask about the resilience of the community structure in a network, and indeed this
approach was taken in Ramirez-Marquez et al. (2018), and tested against link removal.
For a review of definitions and measures of system resilience we refer the reader to
Hosseini et al. (2016).
In this work, we present results for several network classes, giving upper and lower

bounds on the size of the minimal set of nodes to be removed in order to shatter (or dis-
mantle) a network. We first survey the method of generating functions and results on
random attacks and attack by degree, in order to show that random attack and attack by
degree are not asymptotically optimal for any class of generalized (configuration model)
random graphs.We then present exact results and bounds on the size of the shattering set
for various random graph classes. Eventually, we present a polynomial time algorithm for
efficient shattering of random graphs. We show, using exact methods, that for 3-regular
graphs our algorithm obtains asymptotically optimal results. The performance of this
algorithm for other classes of random graphs remains an open question.

Random attacks
The problem of removing nodes in order to shatter the network into small pieces is of
importance both in order to determine the resilience of a network to various attacks and
in order to immunize a network (for example, a social network) against the spreading
of an epidemic disease. By “shattering” a network, we mean breaking the network into
small components, each of which having size o(n), where n is the number of nodes. That
is, breaking the network into pieces whose sizes are negligible compared to the original
network, by means of nodes removal.
The simplest attack mechanism on a network is removing nodes uniformly at random.

This is the standard percolation model. In order to study the effect of this attack on
the network, one can employ the generating function method (See, e.g., (Callaway et al.
2000)). We consider the configuration model, where no correlations exist between neigh-
bouring nodes. Given a degree distribution P(k), and probability p(k) for a degree k node
to exist (i.e., not to be deleted), one can write the generating function for this distribution
as

F0(x) =
∞∑

k=0
P(k)p(k)xk . (1)

Similarly, one can write the generating function for the reciprocal degree distribution of
a node reached by following an edge (i.e., the degree of the node disregarding the edge
through which it was reached):

F1(x) = F ′
0(x)
〈k〉 =

∑∞
k=0 kP(k)p(k)xk−1

〈k〉 , (2)



Balashov et al. Applied Network Science            (2019) 4:99 Page 3 of 9

where 〈k〉 is the average degree. The generating function for branch sizes reached by
following a random edge is given by the recursive equation.

H1(x) = 1 − F1(1) + xF1(H1(x)) , (3)

where F1(1) is the probability of a node reached by following a random edge to exist. and
the generating function for the probability of a node to belong to a component of some
finite size is given by

H0(x) = 1 − F0(1) + xF0(H1(x)) . (4)

H0(1) is the normalization of H0(x). It may happen that H0(1) = 1, in which case all
components are finite and no giant component exists, or that H0(x) < 1 in which case,
a giant component exists and contains a fraction 1 − H0(1) = 1 − F0(1) + xF0(u) of the
nodes, where u is the solution of the self consistent equation

u = 1 − F1(1) + F1(u) . (5)

One can observe that such a solution exists only if F ′
1(1) > 1.

For random attacks p(k) = p := 1 − q is independent of k and using Eq. (5) one
can deduce that the criterion for the existence of a giant component is that there exist a
solution u < 1, which exists only if

p > pc := 1
κ − 1

, (6)

where κ := 〈k2〉
〈k〉 is the ratio of the first twomoments of the distribution (Cohen et al. 2000).

Specifically, using the moments of the constant and Poisson distributions, respectively,
one can deduce that the percolation thresholds for the random d-regular and Erdős-Rényi
networks are 1

d−1 and 1
〈k〉 .

Another result that can be deduced using this formalism is that the probability of a
(non-deleted) node of degree k to belong to a finite component is the probability that all
of the branches emanating from it are finite, i.e., the probability is uk .

Targeted attack strategies
Naturally, random attacks are not expected to give optimal results. Indeed, a simple and
more effective attack strategy is starting the removal with the high degree nodes, as they
play a more substantial role in the network connectivity. Using a function

q(k) =

⎧
⎪⎨

⎪⎩

1 k < k0
0 k > k0
α k = k0

, (7)

for some k0 and α. Solving for the values of k0 and α that give criticality, one can find the
critical fraction for removal.
The attack by degree strategy is, however, suboptimal. This can be seen from the fact

that for any finite k, the probability that a removed node of degree k does not even belong
to the giant component, and therefore its removal is unbeneficial, is uk . Therefore, a finite
fraction of the removed nodes are not included in the giant component to begin with,
and thus the method is not even asymptotically optimal. Furthermore, for random regular
networks, targeted attack by degree is completely equivalent to random removal.
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In order to develop a better attack strategy one may consider methods such as adaptive
attack by degree or attack by betweenness centrality. However, these strategies are very
hard to analyse.

Bounds on optimal attacks
We define cf as the minimal fraction of nodes that are to be removed before the network
is shattered (i.e., becomes fragmented into sublinear components). It is clear that for any
network cf ≤ qc = 1 − pc, where pc is the percolation threshold for random removal of
nodes. For a d-regular graph (where each node has degree d) this yields the upper bound

cf ≤ 1 − 1
d − 1

= d − 2
d − 1

.

However, one can ask the question: Given complete knowledge of the network, and
unlimited computational power, what is the smallest fraction of the nodes that can be
removed in order to break the network into small pieces, each of size o(n)? One might
be tempted to consider the possibility of shattering the network by removing only a zero
fraction, o(1) of the nodes. Indeed, in the case of a square grid, for example, which is a
regular network with fixed degree 4, one can remove n1/4 = o(n) equally spaced rows and
columns and shatter the network into pieces of size O(

√
n).

For some cases, such as random regular networks, this can be shown to be impossible.
Indeed, improved bounds were obtained in Edwards and Farr (2001); Edwards and Farr
(2008):

d − 2
2d − 2

≤ cf ≤ d − 2
d + 1

.

In this paper we establish better lower and upper bounds on cf , focusing on sparse random
graphs. In particular for random regular graphs we show

1 − 2
α(G)

n
≤ cf ≤ 1 − α(G)

n
, (8)

where α(G) is the independence number of G. When d is large enough the independence
number is known (Frieze and Łuczak 1992) to satisfy α(G) ≈ 2n ln d/d. In this case we
obtain

cf ≈ 1 − α(G)

n
.

We provide matching results for Erdős-Rényi random graphs.

Results
For the analytical results, wemainly exploit structural graph properties such as expansion,
domination number and independence and obtain deterministic connections to the shat-
tering number. We then apply known estimations of these parameters for random graphs
either directly or via contiguity arguments.
As an example we establish a lower bound on the minimal fraction of nodes needed

to be removed in order to shatter a regular network into small components of size o(n).
Consider shattering a graph tom disjoint clustersCi, i = 1, . . . ,m by deleting a set of |S| =
cf n nodes. cf is therefore the fraction of removed nodes. Notice that

∑m
i=1 |Ci| + |S| = n.

Thus, 1n
∑

i |Ci|+cf = 1. Denote by Bi the nodes on the boundary ofCi, i.e., the neighbors
of nodes of cluster i outside of the cluster. Since the clusters are disconnected for all i, j,
all boundary nodes for any cluster i must be removed. Therefore, for every i, all nodes
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in Bi are deleted. Now, in a random regular graph with high probability each cluster is
locally almost tree like. Therefore, up to an additive constant, |Bi| = (d − 1)|Ci| − |Ci| =
(d − 2)|Ci|. Since every node has exactly d neighbors, a node can not participate in more
than d of the Bis. Thus 1

d
∑

i |Bi| ≤ |S|. Therefore,

n ≥
∑

i
Ci + d − 2

d
∑

i
Ci = 2d − 2

d
∑

i
Ci. (9)

Summarizing the above we get:

cf = 1 − 1
n

∑

i
Ci ≥ d − 2

2d − 2
. (10)

This approach can be shown to give asymptotically tight solution for d = 3 (i.e., it
matches the upper bound shown in Edwards and Farr (2001)). However, for large values
of d it deviates considerably from the exact value. Indeed, for d → ∞, Eq. (10) leads to
cf ≥ 1

2 , where as will be shown below cf → 1.
In order to give a better lower bound on cf for random regular graphs with large con-

stant degree we observe the following: Random regular graphs are locally tree like, having
a bounded number of short cycles. Therefore after the network is shattered we expect
the remaining components to be trees. A tree can be shattered into isolated vertices by
removing at most half of its nodes. Therefore, it can be deduced that the number of nodes
remaining after the attack is at most twice the size of the largest independent set. Since
removing all but an independent set clearly shatters the graph, we obtain Eq. 8. With
some further effort we can improve the lower bound to close the gap andmatch the upper
bound. The same approach may be applied to the Erdős-Rényi model G(N , p = c/N)

where we get

cf ≈ 1 − log c
c

. (11)

We discuss theoretical and practical implications of our results in “Summary” section.

Shattering scale free networks
Targeted attack strategies usually begin by attacking the hubs of the scale free networks.
This is based on the idea that the hubs are the glue holding the network together, due to
their high degree and large number of neighbours. Indeed, one may use this intuition to
obtains bounds on the hardness of shattering a scale free networks.
Consider a scale free network with degree distribution

P(k) = k−γ

ζ(γ )
, (12)

where ζ(γ ) = ∑∞
k=1 k−γ . This network can be shattered using the following two stage

process:

1. Remove all nodes above degree d. This contains a fraction of
∑∞

k=d+1 k−γ /ζ(γ ) of
the nodes.

2. Shatter the remaining network, requiring at most d−2
d+1 of the network.

One can choose d as to minimize the sum of these two terms in order to obtain an upper
bound on the size of the required shattering set. In fact, a better bound can be obtained by
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noticing that after the removal of the hubs, the remaining nodes form a random network
with degree distribution

P̃(k) =
∞∑

c=k

k−γ

ζ(γ )

(
c
k

)
pk(1 − p)c−k , (13)

with

p =
d∑

1

kP(k)
〈k〉 (14)

denoting the probability of an edge to lead to an undeleted node (i.e. the fraction of edges
leading to undeleted nodes). If one can bound the size of the shattering set for a random
graph with this degree distribution, a better bound on the overall shattering set size can
be obtained. In particular, by showing that the remaining graph is close enough to random
graph in the sense of having all local neighborhoods as almost trees with high probability,
one may replace the upper bound d−2

d+1 in Point 2 above by 1 − α(G)/n.

Algorithmic aspects
Finding an optimal shattering set is NP-hard, but when the input is a random graph the
problem becomes tractable. We propose the following algorithm for finding a shattering
set in a graph. Belowwe describe the algorithm and demonstrate its asymptotic optimality
for random cubic graphs. Let G ∼ Gn.3 be a random cubic graph. Consider the following
algorithm:
Algorithm Shatter, Phase I

1. Input: a graph G and threshold t
2. Find a Hamilton cycle H in G
3. Start from an arbitrary node v0 and advance along H creating a segment.
4. When visiting a node v, it is incident with two edges on the cycle and a third edge

e. If e is the second edge in the segment going backward (in H), delete v.

Each edge is seen once going forward and once going backward, and we delete nodes
for half of the edges seen going backward, we remove exactly 1/4 of the nodes. This is
optimal as can be seen in Eq. (10). A demonstration of Phase I is given in Fig 1.
When Phase I is complete we are left with a tree T of segments of H. These segments

are with high probability of length o(n) and are unicyclic. Shattering T can be easily done
by removing a center vertex of the tree, leaving at least two subtrees with at most half of
the original number of segments in each. We continue in this manner until the graph is
shattered, that is until every connected component is of size smaller than a predefined
threshold. Summarizing we get:
Algorithm Shatter, Phase II

1. Let T be the tree of segments remaining after Phase I
2. Until the maximal size of a connected component is smaller than t

(a) Find a center v in the largest connected component
(b) Remove v

The vertices removed in Phase I and Phase II together form the shattering set.
The two phases are demonstrated in the following figures:
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Fig. 1 Phase I of Algorithm Shatter

Random cubic graphs are known to be Hamiltonian (Robinson andWormald 1992) and
using a variant of ideas from the proofs from Frieze et al. (1996) we could get an algorithm
finding such a cycle with high probability in time O(n7/2). The rest of the algorithm (in
both phases) runs in linear time. Preliminary results using a Branch and Bound approach
suggest we may be able to reduce the running time of the Hamilton cycle finding module.
Notice that unlike removal by degree or by betweeness, which are local algorithms, the

first phase of Shatter finds a global structure in the network. This is ourmain insight—we
take advantage of the network randomness in order to find a global structure, then we use
this structure to achieve high performance. In particular we get an asymptotically optimal
constant for random cubic graphs (Fig. 2). While, as stated below, we can not guarantee
optimality in all cases, we still believe this approach is favorable to local strategies, either
passive or adaptive. This belief stems from the global nature of the problem, for which
it is natural to suggest a global solution, and our attempt to optimize over a set rather
than greedily point by point. Indeed, even when considering shattering to components of
size one (i.e. finding an independent set), greedy algorithms are known to deliver poor
results (in terms of approximation factor) when applied to random graphs (Grimmett and
McDiarmid 1975).
For d-regular graphs with d > 3 the same algorithm can be applied: tour along the

Hamiltonian path, and remove the node at which a second edge going backward is
observed. However, finding a Hamiltonian cycle in a d regular graph with d > 3 induces
non-trivial correlations between the edges, and thus the performance of the algorithm is
hard to evaluate. It is expected, however, that this algorithm will only retain an O(1/k)
fraction of the nodes, which is suboptimal.
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Fig. 2 Comparison of the performance of Algorithm Shatter vs Random Removal (which, in this case is also
equivalent to Attack by Degree), for a random 3-regular graph with 105 nodes

For Erdős-Rényi graphs G(n, p) one may use a similar algorithm, with the following
performance improvements:

1. Every node of degree two can be replaced with an edge connecting its two
neighbours. This is true, since long chains of length O(n) occur with negligible
probability in G(n, p).

2. Once the above step is performed, one can consider only the giant 3-core of the
network, and perform Algorithm Shatter on it.

Summary
We provide bounds on the performance of optimal attack strategies on random networks,
show that local strategies fail to achieve optimality even if used in adaptive manner and
demonstrate an algorithm using global structure with optimal performance in certain sit-
uations. Our work draws the limits of feasibility for this well studied problem and shows
that in some cases these limits are practically achievable. Besides their immediate value,
our results may have broader implications. First, Algorithm Shatter is applicable when-
ever a long path or cycle may be found efficiently, e.g. when the network is based on
a topological structure. Moreover, we see these results as an evidence for the “global
solution to global problem” approach, and hope it will help in promoting this idea.
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