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Abstract
Similarity measures are used extensively in machine learning and data science
algorithms. The newly proposed graph Relative Hausdorff (RH) distance is a lightweight
yet nuanced similarity measure for quantifying the closeness of two graphs. In this
work we study the effectiveness of RH distance as a tool for detecting anomalies in
time-evolving graph sequences. We apply RH to cyber data with given red team
events, as well to synthetically generated sequences of graphs with planted attacks. In
our experiments, the performance of RH distance is at times comparable, and
sometimes superior, to graph edit distance in detecting anomalous phenomena. Our
results suggest that in appropriate contexts, RH distance has advantages over more
computationally intensive similarity measures.

Keywords: Relative Hausdorff distance, Graph similarity measure, Cyber anomaly
detection, Temporal graphs

Introduction
Similarity measures play a crucial role in many machine learning and data science
algorithms such as image classification and segmentation, community detection, and rec-
ommender systems. A good deal of effort has gone into developing similarity measures
for graphs, in particular, since they often provide a natural framework for representing
unstructured data that accompanies many real-world applications. Some popular graph
similarity measures currently used are graph edit distance (Sanfeliu and Fu 1983), iterative
vertex-neighborhood identification (Blondel et al. 2004; Kleinberg 1999), and maximum
common subgraph based distance (Fernández and Valiente 2001). However, as graph
datasets grow larger and more complex, the need for tools that can both capture mean-
ingful differences and scale well is becoming more critical. In this respect, a number of
sophisticated yet costly graph similarity measures, such as those listed above, fall short.
The recently proposed graph Relative Hausdorff (RH) distance (Simpson et al. 2015)

is a promising measure for quantifying similarity between graphs via their degree distri-
butions. Inspired by the Hausdorff metric from topology (Hausdorff 1914), RH distance
was devised to capture degree distribution closeness at all scales, and hence is well-suited
for comparing the heavy-tailed degree distributions frequently exhibited by real-world
graphs. Furthermore, as recent work has shown (Aksoy et al. 2018), RH distance is
extremely lightweight, with time complexity linear in the maximum degrees of the graphs
being compared. However, as this metric is relatively new, it has not yet been extensively
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vetted. In particular, current research has not addressed its potential as an anomaly
detection method for time-evolving graphs.
In this work, we conduct a statistical and experimental study of RH distance in the

context of dynamic graphs. While RH distance may be applied to arbitrary pairs of net-
works, we focus our attention on sequences of time-evolving networks arising from
cyber-security applications. We begin by first applying RH distance to cyber-security logs
recently released by Los Alamos National Laboratory, and investigate the extent to which
it detects identified “red team" events. Then we follow up by studying RH distance in the
more general and controlled context of random dynamic graph models. Here we gener-
ate sequences of correlated Chung-Lu random graphs using a simplified cyber-security
model proposed by Hagberg et al. (2016), and test the extent to which RH distance detects
several planted attack profiles. Throughout our analysis, we compare the performance
of RH to that of more well-known graph similarity measures, such as edit distance and
Kolmogorov-Smirnov distance of degree distributions. With this work, we better clarify
the range of differences captured by RH, and also highlight its practical advantages and
disadvantages over other methods.

Preliminaries
Graph similarity measures

Belowwe define the graph similarity measures we consider for anomaly detection in time-
evolving graphs. We begin with the graph Relative Hausdorff distance, the primary focus
of our study.

Relative Hausdorff distance

Originally introduced by Simpson et al. (2015), the Relative Hausdorff (RH) distance
between graphs is a numerical measure of closeness between their complementary cumu-
lative degree histograms (ccdh). More precisely, the (discrete) ccdh of a graphG is defined
as (N(k))∞k=1, where N(k) denotes the number of vertices of degree at least k. This is
related to the commonly used degree distribution, which is defined as (n(k))∞k=1 where
n(k) denotes the number of vertices with degree exactly k. Note that the ccdh and degree
distribution are equivalent in the sense that each can be uniquely obtained from the other;
nonetheless, for the purpose of this exposition, it is more convenient to work with the
ccdh. Slightly abusing notation, we writeG(d) for a graphG to mean the value of the ccdh
of G at d, and let �(G) denote the maximum degree of G. With these definitions in hand,
the (discrete) RH distance between F and G is then defined as:

Definition 1 ((Discrete) Relative Hausdorff distance (Simpson et al. 2015)) Let F ,G
be graphs. The discrete directional Relative Hausdorff distance from F to G, denoted−−→RH(F ,G), is the minimum ε such that

∀d ∈ {1, . . . ,�(F)}, ∃d′ ∈ {1, . . . ,�(G) + 1} such that|d − d′| ≤ εd and|F(d) − G(d′)| ≤ εF(d),

and RH(F ,G) = max{−−→RH(F ,G),
−−→RH(G, F)} is the discrete Relative Hausdorff distance

between F and G.

In this paper, we compute RH distance using smoothed ccdhs, in which successive
points are connected via line segments, as recommended by Matulef (2017); Stolman and
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Matulef (2017). Specifically, the authors define the smooth ccdh of a graph G, G(d) :
R≥1 → R≥0, as

G(d) =
{
# of vertices of degree at leastd, d ∈ Z≥1
(d − 
d�)G(
d�) + (�d
 − d)G(�d
), d ∈ R≥1 \ Z.

In this case, the RH distance is defined much the same as before, except that the ccdh
is piecewise linear. An illustration of the RH equivalent of an ε-ball at points on a smooth
ccdh is given in Fig. 1 and the precise definition of smooth RH distance is given below.
Henceforth, we focus exclusively on smooth RH distance so we will drop the qualifier.

Definition 2 ((Smooth) Relative Hausdorff distance (Matulef 2017; Stolman and Mat-
ulef 2017)) Let F ,G be graphs. The smooth directional Relative Hausdorff distance from F
to G, denoted

−−→RH(F ,G), is the minimum ε such that

∀d ∈ {1, . . . ,�(F)}, ∃d′ ∈ R≥1 such that|d − d′| ≤ εd and|F(d) − G(d′)| ≤ εF(d),

and RH(F ,G) = max{−−→RH(F ,G),
−−→RH(G, F)} is the smooth Relative Hausdorff distance

between F and G.

By definition, RH(F ,G) = ε means that for every degree k in the graph F, F(k) is
within ε-fractional error ofG(k′) for some k′ within ε-fractional error of k. Hence, the RH
measure is flexible in accommodating some error in both vertex degree values as well as
their respective counts, yet strict in requiring that every point in F be ε-close to G (and
vice versa).
While RH distance was inspired by the Hausdorff distance metric (Hausdorff 1914)

after which it is named, the concept underlying RH distance between graphs differs from

Fig. 1 An illustration of the RH equivalent of an ε-ball (in green) on one graph ccdh (in blue) compared with
another (in red) at different points
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Hausdorff distance in several important regards. Recall the directional Hausdorff dis-
tance from non-empty subset X to Y of a metric space (M, d) is supx∈X infy∈Y d(x, y), or
equivalently, supx∈X inf{ε > 0 : B(x; ε) ∩ Y �= ∅}, where B(x; ε) denotes the closed ε-ball
centered at x. Crucially, RH distance replaces B(x; ε) with balls that are non-uniform in
X, as illustrated in Fig. 1. This relative notion of ball, while no longer a true metric ball, is
more appropriate for analyzing differences in highly-skewed degree distributions exhib-
ited by complex networks. However, as discussed and analyzed in Aksoy et al. (2018), this
also decouples the “distance” from the underlying topology, yielding a functionRH(F ,G)

that does not satisfy the triangle inequality and hence is best viewed as a similarity mea-
sure rather than bona-fide distance metric. However, to match existing literature we
will still use the term “RH distance.” Lastly, it is worth noting RH(F ,G) is extremely
lightweight, and can be computed with run time O(�(F) + �(G)); for a linear-time
algorithm and more on theoretical properties of RH distance, the reader is referred to
Aksoy et al. (2018).

Othermeasures

While RH distance will be the focus of the present work, we also consider several other
graph similarity measures in order to provide relevant context for its performance. First,
we consider another comparable lightweight, ccdh-based measure called Kolmogorov-
Smirnov (KS) distance. KS distance is a widely-used statistical measure of similarity
between distributions, and serves as the test statistic for the two-sample KS hypothe-
sis test (Gibbons and Chakraborti 2011; Young 1977). In what follows, we will not only
compute KS distance directly between graph degree distributions, but also between distri-
butions of graph similarity values, such as RH values. To avoid confusion, below we define
both KS distance as well as the two-sample KS hypothesis test (for which KS distance is a
test statistic) for general empirical distributions.

Definition 3 (KS distance and two-sample KS test (Gibbons and Chakraborti 2011))
Let F and G be empirical cumulative distribution functions formed from n and m samples,
respectively. The Kolmogorov–Smirnov distance is

KS(F ,G) = max
x

|F(x) − G(x)|.

For the asymptotic null distribution, the null hypothesis that F and G are samples of two
identical probability density functions is rejected at the α confidence level if

KS(F ,G) > c(α)

√
n + m
nm

,

where c(α) is given asymptotically by
√

− 1
2 logα.

See ((Gibbons and Chakraborti 2011), Ch. 6) and the references contained therein for a
detailed overview of the two-sample KS test and derivation of the asymptotic expressions
above. For small sample sizes, tables of critical values may be used in place of asymptotic
estimates (e.g. for n,m ≤ 25, see (Siegel and N.J.C. 1988), Table LI − LII ). The reader is
referred to Marsaglia et al. (2003); Simard and L’Ecuyer (2011) for further discussion on
exact vs. approximate methods for computing the Kolmogorov-Smirnov distribution.
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For clarity, we emphasize that smaller values of KS distance indicate greater similarity
between distributions, whereas smaller p-values permit one to reject the null hypothe-
sis of identical underlying distributions at a higher confidence level, thereby presenting
stronger evidence the empirical distributions were drawn from different underlying dis-
tributions. For the special case that F and G are the ccdhs of two graphs on n and m
vertices, respectively, KS distance is given by KS(F ,G) = maxx∈N |̃F(x) − G̃(x)|, where
F̃ = 1

n · F and G̃ = 1
m · G . As argued in Matulef (2017); Stolman and Matulef (2017),

KS distance between graph ccdhs can sometimes be large in graphs that are intuitively
similar; furthermore, KS distance may also be insensitive to certain important differences
between graph ccdhs, particularly in the tails of ccdhs (which correspond to high-degree
vertices).
On the other end of the computational spectrum, we also consider graph edit distance

(GED). Arguably one of the most well-known graph similarity measures, GED has been
widely used throughout machine learning, particularly in computer vision and pattern
recognition contexts (Gao et al. 2009). An edit operation on a graph consists of either
an insertion, deletion, or substitution of a single vertex or edge.1 An edit path of length
k between F and G is a sequence of edit operations P = (e1, . . . , ek) that takes F to
a graph that is isomorphic to G. Edit distance is the total weight of the minimum-cost
edit path, i.e.

Definition 4 (Graph edit distance) Let F ,G be graphs. The graph edit distance between
F and G, denoted GED(F ,G) is given by

GED(F ,G) = min
P∈ϒ(F ,G)

∑
ei∈P

c(ei),

where ϒ(F ,G) denotes the set of possible edit paths from F to G, and c(ei) ≥ 0 denotes a
cost-function measuring the weight of edit operation ei.

In what follows, we simply take c(ei) = 1 for any edit operation, in which case
GED(F ,G) is the minimum number of edit operations needed to transform F to G.

Related literature

While in this work we focus on the graph Relative Hausdorff distance, we note that a
wide variety of graph similarity measures have been utilized for anomaly detection in
time-evolving graphs. In Ishibashi et al. (2010), the authors propose detecting anoma-
lies in communication network traffic data by measuring cosine similarity between the
principal eigenvectors of graph adjacency matrices. In Akoglu and Faloutsos (2010), also
take an eigenvector-based approach for measuring graph anomalousness. Matrix-analytic
graph similarity measures have also been based on eigenvalue residuals (Giuseppe et al.
2011), non-negative matrix factorization (Tong and Lin 2011), and tensor decompositions
(Sapienza et al. 2015). Other popular approaches for graph-based anomaly detection are
via distance metrics, such as those based on edit distance, maximum common subgraph
distance, or mean vertex eccentricity (Gaston et al. 2006), or take a community-detection
approach towards identifying anomalies by tracking changes between clusters of well-
connected vertices (Aggarwal et al. 2011; Wang and Paschalidis 2017). For a broader

1While others sometimes including merging and splitting edit operations, we restrict our attention to edit distance
based on the three aforementioned operations.
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survey of graph-based anomaly detection techniques see (Akoglu et al. 2014; Ranshous
et al. 2015; Sensarma and Sarma 2015) and the references contained therein. Lastly, we
note that applications of graph similarity functions extend far beyond anomaly detec-
tion. Graph similarity functions are also ubiquitous in inexact graph matching and graph
classification problems. For instance, graph edit distance is a key tool for error-tolerant
pattern recognition and computer vision techniques (Gao et al. 2009). While in this work
we explore Relative Hausdorff distance through the lens of anomaly detection, we note
its application as a graph similarity measure in other contexts such as these remains
unexplored.
As our focus in this paper will be on cyber anomaly detection2 in network flow data, we

also mention some of the existing graph-based methods specifically for cyber anomaly
detection. In this domain, some researchers focus on detecting anomalies edge-by-edge
or target specific types of behavior, e.g., (François et al. 2011; Noble and Adams 2018),
while others look at the graph more globally or structurally and are agnostic to the type of
anomalous behavior being detected, e.g., (Chen et al. 2016). In Noble and Adams (2018)
describe a real-time unsupervised framework for detecting anomalies in network data.
They consider “edge activity” as the sequence of flows on a single edge and compute corre-
lations between event inter-arrival times and other edge data (e.g., byte count or protocol).
Statistically significant changes in those correlations are flagged as anomalies. Groups of
adjacent anomalies can be combined to form larger anomalies perhaps indicating coor-
dinated behavior. The authors of François et al. (2011) use PageRank to perform linkage
analysis followed by clustering techniques to identify groups of IPs with similar behav-
ior. These groups are then compared with known bot behavior to detect botnets within
the network. In the category of more structural and behavior-agnostic algorithms (Chen
et al. 2016) introduces multi-centrality graph PCA and multi-centrality graph dictionary
learning which use structural properties of a graph, e.g., walk statistics and centrality mea-
sures, to learn normal structure and thus detect abnormal structure. This method is not
tailored to the cyber use case, but the authors use network flow as one of their examples.
Our work is similarly not targeted towards a specific cyber use case and is focused on
detecting structural perturbations rather than clustering behavioral patterns.
Finally, we note others have measured network similarity using Hausdorff distance and

the related Gromov-Hausdorff distance (Edwards 1975; Gromov 1981) on metric spaces.
Banič and Taranenko (2015) define the Hausdorff distance between two simple, con-
nected graphs based on the lattice of all subgraphs of the graphs in question. In Lee et al.
(2011), a quantity inspired by Gromov-Hausdorff distance is applied to analyze brain net-
works. This quantity relies on the embedding of the network in a geometric structure; in
general, Gromov-Hausdorff distance is defined over all isometric embeddings of a metric
space. Recent work in Choi (2019) proposes fundamental definitions toward a theory of
Gromov-Hausdorff distances between graphs, and includes exact calculations for a few
simple classes of graphs. The wider applicability of this notion of Gromov-Hausdorff dis-
tance to real graph data is likely to face significant theoretical obstacles, as (Nowak et al.)
shows that only a few special classes of graphs can be isometrically embedded in the class
of metric spaces arising from a Hilbert space. Furthermore, both exact computation as
well as approximation of Gromov-Hausdorff distance present computational challenges

2Note that we do not consider signature-based methods like those employed in intrusion detection/prevention systems
(e.g., Snort) to be anomaly detection methods. Instead these are rule-based behavior identification tools.
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(Agarwal et al. 2018). In contrast, we emphasize RH distance is applicable to any pair of
graphs, admits linear-time computation, and (rather than requiring an associated graph
embedding) is defined on graphs solely as abstract combinatorial objects.

Los Alamos National Laboratory (LANL) cybersecurity data
To begin our study of RH distance as an anomaly detection method for dynamic graphs,
we will first consider a dataset recently released by LANL with known red team events
from their internal corporate computer network (Kent 2015a; 2015b). The dataset rep-
resents 58 consecutive days of de-identified event data collected from four sources,
namely:

• Windows-based authentication events from both individual computers and
centralized active directory domain controller servers,

• Process start and stop events from individual Windows computers,
• Domain Name Service (DNS) lookups collected by internal DNS servers, and
• Network flow data collected at several key router locations.

In total, the data set is approximately 87.4 gigabytes, spread across the four modalities,
including 1,648,275,307 events coming from 12,425 users, 17,684 computers, and 62,974
processes. Ground truth for the red team events is given as a set of authentication events
that are known red team compromise events. In this section, we will demonstrate that
Relative Hausdorff distance is effectively able to identify anomalous behavior around the
red team events in the LANL data.

Data source

As stated above, LANL captured network evolution in four different modalities, namely
authentication, process, network flow, and DNS events. In order to apply the RH distance,
we first must convert these network event files into a time series of graphs. To do so, we
consider 60 sec moving windows that advance 20 sec at a time. For each window we use
the events in that window to construct a graph. For the 58 consecutive days, this yields a
time sequence of 250,560 graphs for each modality. Further details for constructing each
type of graph are given below.

• Authentication Graphs. The authentication data is a record of authentication
events collected from individual Windows-based desktop computers, servers, and
Active Directory servers. Each line of the data file reports a separate authentication
event in the form
time, sourceUser@domain, destUser@domain, source computer,

dest computer,

auth type, logon type, auth orientation, pass/fail.

For a given window, we construct an unweighted graph with edges
{sourceUser, destUser} for each user pair present in the logs within the window.

• Authentication Failure Graphs. These are constructed in the same manner as the
Authentication Graphs, except we restrict the edge set to those corresponding to
failed authentications only.

• Process Graphs. The process data is a record of process start and stop events
collected from individual Windows-based desktop computers and servers. Each line
of the data file reports a separate process start/stop in the form
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time, user@domain, computer, process name, start/end.

For a given window, we construct an unweighted graph with edges
{computer, process name} for each computer-process pair present in the logs within
the window.

• DNS Graphs. The DNS data is a record of DNS lookup events collected from the
central DNS servers within the network. Each line of the data file reports a separate
lookup event in the form
time, source computer, computer resolved,

representing a DNS lookup at the given time by the source computer for the resolved
computer. For a given window, we construct an unweighted graph with edges
{source computer, computer resolved} for each source-resolved computer pair
present in the logs within the window.

• Flow Graphs. The flow data is a record of the network flow events collected from
central routers within the network. Each line of the data file reports a separate
network flow event in the form time, duration, source computer,

source port, dest computer, dest port, protocol,

packet count, byte count.

For a given window, we construct an unweighted graph with edges
{source computer, dest computer} for each source-destination computer pair that
communicate during that time.

Limitations

While working with real-world data often presents challenges, testing graph-based
anomaly detection methods on the LANL dataset is particularly difficult for several
reasons. First and foremost, the data only provides red team authentication attempt
time stamps and does not specify the nature, extent or duration of the red team
events. This makes it difficult to segregate benign from anomalous time periods. Addi-
tionally, without knowing the specific red team actions, it is difficult to determine
which (if any) of the aforementioned modalities a red team signature may appear
in. Finally, it is worth noting the data exhibited large periods of time in which no
events occurred that did not correspond to regular lulls such as weekends and night-
time. In particular, the flow data has records from only the first 37 of the 58 days.
To address some of these limitations, in “Simulated evolving networks” section we
extend our analyses to a generalized dynamic network model (Hagberg et al. 2016) pro-
posed by LANL scientists Hagberg, Mishra, and Lemons. While no synthetic model
is a perfect substitute for real data, this model’s conception and design was directly
informed by direct access to the LANL cyber data (Kent 2014; 2016) and pro-
vides a framework under which we may draw more certain and rigorous conclusions
regarding the behavior of RH distance. First, we present our analysis of the real
LANL data.

Experiment and results

As a first-pass approach towards studying the sensitivity of RH distances to red team
events in the LANL dataset, we test whether the distribution of pairwise RH distance
values before a red team event differs significantly from the post red team event distribu-
tion. In this way, we assess whether there is statistical evidence to support that red team
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events demarcate “change-points” in RH distance distribution. To that end, for each red
team event at time r, we associate a time window w of length � centered at r, which we
denote w�(r). Each such window can be naturally partitioned into a “before” period (i.e.
the time interval (r− �/2, r)) and “after” period, (r, r + �/2). To avoid overlapping windows
and ensure the “before" periods are in fact devoid of red team events, we restrict atten-
tions to windows in which no red team event occurs in the time interval (r − �/2, r). Put
equivalently, we consider the set

W� = {w�(r) : red team event occurs at r, no red team events occur in (r − �/2, r)}.

We note that it is possible for the after period of a window in W� to contain additional
red team events. For each window in W�, we compute the RH distances between pairs
of graphs separated by δ seconds in the before period, as well as such pairs belonging
to the after period. We then aggregate the RH distances over all before periods and all
after periods. More precisely, if G0,G1, . . . denotes the time-ordered sequence of graphs
for a particular mode in the LANL data, we compute the aggregate before and after
distributions as

Db = {RH(Gt ,Gt+δ) : t, t + δ ∈ (r − �/2, r) andw�(r) ∈ W�},
Da = {RH(Gt ,Gt+δ) : t, t + δ ∈ (r, r + �/2) andw�(r) ∈ W�},

respectively. Recalling that we processed the LANL graph sequence for each modality by
generating graphs for windows shifted by 20 sec, we may choose the parameter δ con-
trolling the granularity of pairwise RH measurements to be as small as 20 sec and and as
large as �/2 − 20 sec. Finally, we assess whether these aggregated before and after RH dis-
tance distributions differ significantly by conducting a two-sample Kolmogorov-Smirnov
test. Table 1 presents the resulting p-values for δ = 20, 40, 60, 120, 240 sec, under window
lengths � = 30, 60, 120 min, for each LANL modality.
The p-values in Table 1 suggest that whether the aggregated distribution of RH val-

ues before red team events differs significantly from the post red team events depends
crucially on the cyber modality, window length and granularity parameter δ. In the case
of a 30 min window, almost none of the parameter settings for any modality result in
statistical significance, while for a 2-h window, a majority of parameter settings are sig-
nificant at a level of 0.05. In this case, the before and after RH distance distributions over
longer time windows surrounding red team events more frequently show significant dif-
ferences, which is perhaps unsurprising. On the other hand, the changes in significance

Table 1 The p-values of the two-sample KS test comparing RH distance distributions of aggregated
before and after periods of time windows centered at red team events in the LANL data

Window: 30 min Window: 60 min Window: 120 min

Mode/Shift 20s 40s 60s 120s 240s 20s 40s 60s 120s 240s 20s 40s 60s 120s 240s

AuthFail 0.20 0.49 0.70 0.97 0.57 0.01 0.39 0.10 0.76 0.02 0.02 0.01 0.02 0.01 0.00

Auth 0.36 0.72 0.17 0.38 0.12 0.33 0.03 0.01 0.63 0.06 0.35 0.00 0.00 0.36 0.07

Flow 0.61 0.30 0.31 0.76 0.91 0.75 0.49 0.17 0.31 0.28 0.00 0.00 0.00 0.02 0.00

DNS 0.40 0.02 0.41 0.77 0.12 0.97 0.36 0.60 0.86 0.16 0.59 0.55 0.13 0.34 0.04

Process 0.44 0.82 0.64 0.96 0.74 0.03 0.31 0.08 0.08 0.05 0.08 0.43 0.17 0.06 0.01

The p-values are rounded to two decimal places, with rounded values at most 0.01 highlighted in green and values between 0.02
and 0.05 highlighted in yellow
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levels as the granularity parameter δ varies are more difficult to interpret. Even for a
fixed window length andmodality, the significance levels neither consistently increase nor
decrease in δ.
One plausible hypothesis for this experiments sensitivity to δ is that RH distance values

exhibit periodic behavior both within and across modalities, reflecting the natural circa-
dian rhythms one might expect from temporal cyber data. If this were the case, the choice
of δ may skew the RH values sampled when constructing the representative before and
after distributions. To check whether such periodicity is indeed present in the RH distance
measurements on LANL, we constructed heatmaps of RH distances between all pairs of
graphs over given time windows. As this requires a quadratic number of comparisons,
it is worth noting this analysis is crucially facilitated by the lightweight computational
complexity of RH distance. We examined heatmaps not only for windows surrounding
anomalies, but also for time windows away from red team events. Figure 2 (left column)
presents sample heatmaps for the Authentication, Flow and Processmodalities spanning a
2-h time period. In an effort to select a representative window for short-term nominal RH
behavior within each modality, this time period was selected so as to not include any red
team events nor be preceded or followed by any red team events for 20 h. It is also worth
pointing out that the RH distance between pairs of flow graphs regularly exceeds one,
indicating that the rough guide for detecting anomalous behavior given in Simpson et al.
(2015) is inappropriate for the cyber-security context. We also transformed each heatmap
of pairwise RH distance values into a similarity matrix by applying the Gaussian kernel
with σ = 1, and performed normalized Laplacian spectral clustering3, as described by Ng
et al. (2002). Under the corresponding heatmap, Fig. 2 (right column) plots the pairs of
graphs belonging to common clusters, using a different color for each cluster (and white
for different clusters).
A cursory examination of the heatmaps and their clustering suggests that the RH

distance values for a given modality exhibit persistent and striking periodic patterns. Fur-
thermore, in comparing the plots for Flow, Authentication, and Process, the differences
in the periodic behavior of RH values are also apparent. While these periodicities are not
entirely unexpected they are likely network- and data-dependent. Detecting and visualiz-
ing periodic behavior in network data is an active area of research, e.g., (Gove and Deason
2018; Hubballi and Goyal 2013; Price-Williams et al. 2017). As a consequence of this
experiment and examination of the heatmaps in Fig. 2, it is clear that a single choice of
granularity parameter δ is likely insufficient in establishing a representative distribution
of RH values within a time window for any given modality. Accordingly, next we refine
our experiment to better account for the inherentmulti-scale andmulti-modal nature of
the LANL data.
One of the many difficulties with investigating the effectiveness of RH distance in

detecting anomalous behavior associated with red team events in the LANL data sets is
that the red team process is inherently multi-modal and multi-scale. That is, the red team
events identified in the data are simply the first step of the red team intrusion process
which could potentially affect all of the data modalities (process, DNS, flow, and authen-
tication) and occur over multiple time scales. To attempt to deal with this issue, we craft
an indicator for each time that considers the RH distance between graphs with multiple

3The prescribed number of clusters was chosen to coincide with the first observed gap in Laplacian eigenvalues, as in
von Luxburg (2007).
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Fig. 2 Left Column: RH distance heatmaps for nominal two-hour period. Right Column: Spectral clustering of
similar graphs based on RH distances. a Authentication Heatmap. b Authentication Clustering. c Flow
Heatmap. d Flow Clustering. e Process Heatmap. f Process Clustering

time differences and in multiple modalities. More concretely, let S be the set of potential
data sources and let G = {Gt,s} be the collection of observed graphs indexed by the time t
and data source s ∈ S . For any fixed timestamp t and collection of differences D, we will
define the profile vector at time t, v(t), as the vector given by (RH(Gt,s,Gt−δ,s))s∈S,δ∈D .
Ideally, this profile could be used to aggregate the behavior across multiple modalities
and multiple time scales and give a clearer picture of the overall state of system. How-
ever, there is a further complication with this approach in that the LANL data represents
a system which has a naturally evolving behavior based on various temporal patterns of
human activity (i.e. weekday vs. weeknight, circadian rhythms, etc.). To adjust for these
temporal patterns, for every time t, source s ∈ S , and difference δ ∈ D, we define a base-
line behavior random variable Bt,s,δ which is the random variable which represents the
“typical” behavior ofRH(Gt,s,Gt−δ,s). This baseline behavior can then be combined with
the profile vector v(t) to generate a temporal profile vector v̂(t) where for any (s, δ) ∈ S×D
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we have v̂(t)
s,δ = P

(
v(t)
s,δ − ε < Bt,s,δ < v(t)

s,δ + ε
)
. We define the temporal score of the time t

as the geometric mean of the entries of v̂(t) 4. In what follows, we will calculate the tem-
poral scores of time periods before and after a red team authentication event and show
that there is a statistically significant difference between the behaviors. In fact, we will
show that this temporal scoring methodology is more sensitive than using raw RH scores
evaluated in Fig. 1 indicating that there are significant potential gains to be found by
considering multi-modal and multi-scale indicators for anomalous behaviors.
Before applying our results to the LANL data sets, it remains to address how to estimate

the distribution of the random variable Bt,s,δ and how the ε term defines the temporal
profile vector is chosen. For a fixed t we estimate the empirical distribution for Bt,s,δ , we
consider the RH distance between all pairs of graphs (Gt∗,s,Gt∗−δ,s) where t∗ ranges over
all times that differ from t by a multiple of a week, plus or minus 10 min. In order to avoid
biasing this empirical estimate we exclude times t∗ where there is a red team event in the
interval [ t∗−δ, t∗] as well as those that are within 10min of t. As we see in Fig. 2 the typical
variation of a RH distance changes significantly based on the modality of the observation,
both in source and elapsed time between graphs. Thus, rather than fixing a particular
value of ε, we choose ε as one twentieth of the range of the empirical distribution for
Bt,s,δ . Finally, for each of the 712 red team times provided in the LANL data we calculate
the temporal scores for each graph in the 30 min before and after the red team time and
apply the two-sample Kolmogorov-Smirnov test, see Table 2. We further segregate this
data by whether or not additional red team events occur during the 30min prior to the red
team time.
It is clear from Table 2 that the temporal scores is far from a perfect indicator, as a

non-negligible fraction of the changes associated with a red team event are not detected.
Nonetheless, it is also apparent that for a relatively lightweight measure the RH dis-
tance exhibits reasonable effectiveness in distinguishing between nominal and anomalous
behaviors. However, our conclusions must be somewhat tempered by the challenging
nature of real world data and the LANL data in particular. Specifically, the lack of clear
demarkation between anomalous and non-anomalous behavior as well as the limited
time-scope of the investigation are significant caveats to any conclusions we make about
the effectiveness of RH distance. In following section, we attempt to address these caveats
by analyzing a synthetic temporal graph model inspired by the LANL cyber data.

Simulated evolving networks
The study of temporal networks is concerned with the analysis and modeling of time-
ordered sequences of graphs. In order to better understand temporal network dynamics,
researchers have proposed a plethora of abstract models for their simulation (for a
survey, see (Holme and Saramäki 2012)). In the present work, we consider a tem-
poral graph model that belongs to the broader class of Markovian Evolving Graphs
(MEGs) (Avin et al. 2008). Given a probability distribution over the set of all graphs
on a fixed vertex set, MEGs have the defining property that the distribution at time
t is completely determined by that at t − 1, thereby forming a sequence of random
variables which satisfy the Markov property. Because of their generality and flexibility,

4As a practical matter, for those entries (t, s, δ) where there is insufficient or no data to estimate v̂(t)
s,δ , the entry is dropped

from the vector and ignored in the calculation of the temporal score.
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Table 2 Aggregate behavior of temporal scoring on a per event basis

p ≤ 0.10 p ≤ 0.05 p ≤ 0.01 Total

intervals with no prior red team events 30 30 21 48

intervals with prior red team events 478 460 370 664

MEGs have been popularly used to study information spreading processes, such as
file sharing on peer-to-peer networks, social network memes, and disease spreading
(Clementi et al. 2014; Clementi et al. 2010).
In Hagberg et al. (2016) proposed a newMEGmodel, the design of which was informed

by their study of LANL centralized authentication system cyber data (Kent 2014; 2016).
In particular, they observed that these sequences of graphs exhibit certain stable global
properties, such as skewed degree distributions, while local dynamics such as individ-
ual vertex neighborhoods change rapidly. To capture these dynamics, they designed a
temporal model that can be used to preserve certain random graph structure while afford-
ing tunable control over the rate of dynamics. We refer to their model as the HLM
model. Ultimately, Hagberg et. al utilized the HLM model to study temporal reachabil-
ity; that is, the expected time (number of evolutions or transitions) before a constant
fraction of the vertices are reachable from an arbitrary vertex. We note that although
the HLM model was developed to capture abstract dynamics exhibited by cyber data,
the HLM model need not be limited to simulating cyber phenomena. Although, the
experiment that follows is driven by cyber-security structures and data, the is no a pri-
ori reason that a similar experiment could not be applied across the variety of domains
for which the evolving nature of the HLM model is appropriate, such as communi-
cation networks, social networks, and (on a much slower time scale) transportation
networks. In the remainder of this section, we study the sensitivity of RH distance
in detecting several planted attack profiles, utilizing the HLM model to simulate the
natural time evolution of a generic cyber network graph topology. Before describing
our experimental methodology, we first begin by defining and briefly discussing the
HLMmodel.

Hagberg-Lemons-Mishra (HLM) model

As the HLM model can be viewed as a time-evolving generalization of the Chung-Lu
model G(w), we will first briefly review the Chung-Lu model as introduced in Chung and
Lu (2002); Chung and Lu (2004). The parameterization vector of the Chung-Lu model, w,
is n-dimensional where n is the number of vertices in the graph. Additionally, the vectorw
satisfies that wv ≤ √

ρ for all v where ρ = ∑n
i=1 wi. From the parameter w the Chung-Lu

model is generated by including each edge {u, v}, independently, with probability wuwv/ρ.
For overview of many of the known properties of the Chung-Lu model see the recent
monograph (Chung and Lu 2006).
The HLMmodel generates an infinite sequence of graphs G0,G1,G2, . . . with the prop-

erty that there is a fixed vector w such that for all i, Gi
D= G(w) where D= is equality in

distribution. In order to generate this sequence an additional parameter, α, is introduced
to tune the extent to which graph Gi+1 is controlled by Gi. Specifically, α ∈[ 0, 1]n and
Gi+1 is formed fromGi by generating a masking setM where each pair {u, v} is inM inde-
pendently with probability √

αuαv. For an edge {u, v} �∈ M, {u, v} ∈ Gi+1 if and only if
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{u, v} ∈ Gi, while each potential edge {u, v} inM is present independently with probability
wuwv/ρ. In summary, we have that

P({u, v} ∈ Gi+1) =
{
1 − √

αuαv + √
αuαvwuwv/ρ {u, v} ∈ Gi√

αuαvwuwv/ρ {u, v} �∈ Gi
.

The fact that Gi+1
D= Gi follows by induction and the observation that

wuwv/ρ(1 − √
αuαv + √

αuαvwuwv/ρ) + (1 − wuwv/ρ)
√

αuαvwuwv/ρ = wuwv/ρ.

We note that there is a natural trivial generalization of the HLM model where the edge
probability wuwv/ρ is replaced with arbitrary values in puv ∈[ 0, 1]. In this case, at each
time step the network is distributed over graphs like G(P), the generic independent edge
graph model with parameter P. Similarly, the evolution parameter α can be generalized to
a symmetric matrix A ∈[ 0, 1]n×n. We note that several well studied models fall into this
framework, including the stochastic block model, stochastic Kronecker graphs (Leskovec
et al. 2005; Mahdian and Xu 2007), random dot product graphs (Young 2008; Young and
Scheinerman 2008; 2007), and the inhomogeneous random graph model (Bollobás et al.
2007; Söderberg 2002). In order to maintain consistent notation, we will specify all of the
experiments in this work in terms of this generalized HLM model even though most of
generative matrices P come from the Chung-Lu model. Further, with the aim of having
the minimum number of free-parameters we will only consider HLM evolutions where
Auv = Axy for all u �= v and x �= y. We will further slightly abuse notation and refer to this
common value as α.
Finally, we note that this generalized framework can be further expanded by allowing

the parameter matrix P to depend on the time step t. In particular, we have

P({u, v} ∈ Gt+1 | Gt) =
{

(1 − α) + αp(t+1)
uv {u, v} ∈ Gt

αp(t+1) {u, v} /∈ Gt
.

It is worth mentioning that in this case Gt+1 is not distributed like G(P(t+1)) because of
the possibility of edges being present from earlier timesteps. In fact, it is an easy exercise
to show that the edges ofGt are distributed according to (1−α)tP(0)+∑t

i=1 α(1−α)t−iP(i).

Experimental setup

In our experimental setup, in keeping with the lightweight nature of the RH calculation,
we focus on the detection of small anomalies in extremely sparse graphs, such as we
observed in small time windows for the LANL data set and other proprietary network
flow data. For the sparse graphs we consider two different fixed degree distributions.
Both of these degree distributions are formed by choosing 5000 samples from some fixed
probability distribution. For the first degree distribution, we estimate a degree density
function using a smoothed median estimator from a selection of one minute graphs in
the LANL network flow data set, see Fig. 3a. The resulting degree density function results
in a “power-law” like degree distribution with exponent approximately 3.5. Although the
resulting degree density function is not truly a power-law distribution, we will abuse nota-
tion and refer to it as a “power-law” degree distribution. For a discussion of the difficulties
and appropriateness of the power-law degree distribution for real data the interested
reader is referred to the recent work (Broido and Clauset 2018). The resulting distribu-
tion has 4742 edges in expectation as well as maximum expected degree 961. The second
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Fig. 3 log-log Degree Distribution. a Power-Law. b Bump Power-Law

distribution represents what we call a “bump power-law,” that is, a power-law distribu-
tion coupled with an approximately binomially distributed “bump” at higher degrees.
This can be thought of as a more hub-and-spoke style network where the degree of the
spoke vertices are approximately power-law distributed while the degree of the hub ver-
tices are approximately binomially distributed. For the bump power-law distribution, the
degree probabilities were explicitly estimated from a collection of several thousand graphs
generated from a proprietary enterprise boundary network flow data set (see Fig. 3b).
This resulting distribution has 6067 edges in expectation as well as maximum expected
degree 327.5

We will also consider two different styles of anomalies involving between 10 and 50
edges. The first anomaly involves three randomly chosen vertices adding some number of
edges to the rest of the network uniformly at random.We view this as behavior consistent
with a probe or scan of the network structure. For the second anomaly a random collec-
tion of vertices are chosen and a random spanning tree is added among those vertices.
We view this as behavior consistent with lateral movement scenario where an attacker is
exploring the network by moving from machine to machine. They may backtrack and try
different routes (thus a tree rather than just a path) as needed.
For each of these 420 scenarios (two different degree distributions, two different

anomaly types, five different anomaly sizes, and 21 different values of α) we produce 1000
different pairs of graphs (G,G′) where G is a random instance of the Chung-Lu model
with the chosen degree distribution and G′ is formed from G by performing one step of
the HLM evolution with the chosen parameter α, and then adding a random instance
of the chosen anomaly of the chosen size. In this way, the anomaly occurs concurrently
with the natural evolution of the network, as might be typical of real-world data. For
each of our 420 scenarios, and 1000 pairs of graphs within the scenario, we compute the
RH distance between G and G′ to get a distribution of RH distances for the anomalous
transition.

5It is worth mentioning that both of these degree distributions violate the standard assumption for the Chung-Lu model
maxv wv ≤ √

ρ. To deal with this, we replace that edge probabilities of wuwv/ρ withmin{1, wuwv/ρ}. However, as there are
under 200 pairs {u, v} where wuwv > ρ for each of the degree distributions, this makes a minimal difference in the model.
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Anomalous versus nominal relative hausdorff distance

In this section we consider whether the anomalous transitions in the HLM model result
in a different distribution of RH distances than a nominal transition. To this end, for
each degree distribution and choice of α, we simulate 10,000 different HLM transitions to
develop a baseline distribution of RH distances, see Fig. 4. For each of the 420 anomalous
scenarios we calculate the 2-sample Kolmogorov-Smirnov p-value (Young 1977) between
the previously calculated anomalous distribution and this baseline distribution. For each
of the 420 different anomaly scenarios the KS test significance value is less that 0.01, indi-
cating that we can reject the null hypothesis that the distribution of RH distances for an
anomalous HLM transition is the same as the distribution for non-anomalous transitions.
In particular, this means that in a statistical sense the RH distance is able to pick up on
anomalous evolution of the degree distribution, even when the anomaly only consists of
10 edges.6 In the next subsection we will consider the effectiveness of the RH distance in
detecting anomalous behavior directly, rather than statistically.

Anomaly detection

In this section we consider how RH distance could be used to detect anomalous behavior
in a streaming environment and compare to the performance with a similarly lightweight
measure (KS distance) as well as a “ideal” measure (graph edit distance). To com-
pare between these three methods in a non-parametric way (i.e. without introducing a
“anomaly threshold”) we introduce the idea of an anomaly score of an observation with
respect to a theoretically or empirically observed baseline distribution. Specifically, let
the random variable Z have theoretical or empirical cumulative distribution function
fZ : R →[ 0, 1]. We will then say that a particular observation z (not necessarily dis-
tributed as Z) has an anomaly score relative to fZ of 2

∥∥fZ(z) − 1
2
∥∥. Note that this score

takes on values from [ 0, 1] with values closer to one being more “anomalous.” This score
can be thought of as measuring the deviation of the observation z from the bulk of the
distribution of Z.
Before turning to a direct comparison between anomaly scores for RH distance, KS p-

values7, and edit distance, we consider the performance of each of these anomaly scores
in isolation via ROC-like curves, presented for a subset of our 20 scenarios (2 distribu-
tions, 2 anomaly types, 5 levels of each anomaly) in Figs. 5, 6, 7, and 8. Note that as the
relative frequency of anomalous and non-anomalous behavior is unknown, these are not
truly ROC curves but rather implicit plots (x(t), y(t)) where t is some threshold value.
Specifically, y(t) is the fraction of the anomalous transitions that have anomaly score at
least t, i.e. “true positives”, where x(t) is the fraction of non-anomalous transitions that
have anomaly score at least t, i.e. “false positives”. At this point it is worth pointing out that
if z is identically distributed with the random variable Z, then the anomaly score for z is
uniformly distributed over [ 0, 1]. As a consequence, we can explicitly define x(t) = 1− t.
To compute the ROC curve for one scenario we used the previously computed cumula-
tive distribution function for the 10,000 non-anomalous transitions as fZ . Then, for each

6It is important to note that this is not always the case. For example, in an experiment that is not reported for space
limitations, we synthetically generated a degree distribution with a power-law exponent of 4 and average degree around
1.4, the anomalies resulted in a range of KS statistics including several scenarios which were not statistically
distinguishable.
7From this point on in this work, although we will be using the KS p-value we will be treating it simply as a distance
measure rather than a statistical quantity. In particular, we will make no assumptions about the meaning of large or small
values of the p-value other than as a means of measuring the “closeness” between two degree distributions.
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Fig. 4 Distribution of RH distance under HLM evolution. a Power-Law. b Bump Power-Law

of the 1000 anomalous transitions we use the RH distance as z and compute the anomaly
score for that value in the context of fZ .
Overall we can see that, for detecting anomalies, edit distance would be preferred to

RH distance, which would in turn be preferred to the KS statistic. However, for the
bump power-law, under the lateral movement anomaly with 10 edges, we see that the RH
distance outperforms the edit distance, see Fig. 7.

Kolmogorov-Smirnov (KS)

For this section we will compare the anomaly score of the RH distance with the anomaly
score of the KS p-value (significance value) between successive degree distributions both
for the 420 anomalous scenarios and the 40 baseline distributions. We note that since
the degree distributions are discrete valued, the application of the KS test for hypothesis
testing is not necessarily appropriate, however as we are interested in statistical behavior
of the significance test and KS is widely used in the network analysis literature (see, for
instance, (Aliakbary et al. 2014; Broido and Clauset 2018; Simpson et al. 2015)) we will
ignore these technical issues.
Figure 9 gives the relative performance of the KS and RH anomaly scores across all 420

anomaly scenarios. The y value counts how many of the 1000 cases RH outperforms KS.
We can see that the RH distance outperforms KS themost for the scenario where there is a
50-edge scan anomaly on the power-law distribution with an evolution rate of 0.23. In this
case, the RH anomaly score is larger in 924 of the 1000 different trials. We see that overall,

Fig. 5 Power-Law Distribution, Scan, 10 edges. a Kolmogorov-Smirnov. b Relative Hausdorff. c Edit
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Fig. 6 Power-Law, Lateral Movement, 50 edges. a Kolmogorov-Smirnov. b Relative Hausdorff. c Edit

excepting cases with a low-evolution rate and larger, lateral movement anomalies, RH
distance is clearly superior, especially for the power-law degree distribution. It is worth
noting that relative performance of the KS statistic improves when considering the lateral
movement anomaly rather than the scan anomaly. Since the degree change caused by
lateral movement is spread across many vertices (as opposed to scan where the primary
change is spread across only three vertices), this result can be explained by the well known
sensitivity of the KS test to variation away from the a tails of the distribution (Simpson et
al. 2015).
We note that a direct binary comparison between the two measures may not tell the

whole story of their relative performance. For instance, in an extreme case, one can imag-
ine one of the two measures taking on a fixed large value (indicating an anomaly) while
the other takes on both small values and, more frequently, a value that is slightly larger
than the other anomaly score. We separate the anomalous pairs of graphs into two sets
according to whether their RH or KS anomaly score is higher. Then, for each of these
two classes we report in Fig. 10 (across all 420 anomaly scenarios) the mean difference
between the scores with error bars representing one standard deviation of range around
this mean. We note that the RH anomaly score typically exceeds the KS anomaly score by
about 0.4, while the KS anomaly score typically exceeds the RH anomaly score by between
0.2 and 0.3. Further, the standard deviation across all cases the average gap between the
RH and KS anomaly score is fairly consistently in the range [ 0.2, 0.3] essentially indepen-
dent of all parameters. Together, the data in Figs. 9 and 10, indicates that the RH distance

Fig. 7 Bump Power-Law, Lateral Movement, 10 edges. a Kolmogorov-Smirnov. b Relative Hausdorff. c Edit
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Fig. 8 Bump Power-Law, Scan, 50 edges. a Kolmogorov-Smirnov. b Relative Hausdorff. c Edit

is significantly more sensitive than KS distance to the broad range of anomalies we have
investigated.

Graph edit distance

In this section we compare the sensitivity of RH distance to a “perfect information” aggre-
gate measure, in particular graph edit distance. Recall that the edit distance between two
graphs F andG is the minimum “weight” of a sequence of edge/vertex additions/deletions
needed to transform F to G. In general this quantity is NP-complete to compute (see
(Zeng et al. 2009)) and likely impractical to even approximate (Lin 1994). This complexity
is driven by the difficulty in finding the optimal alignment between the vertices of F and
G which maximizes the edge overlap between F andG. For the HLMmodel, this problem
is mitigated by the natural alignment between the graphs generated at consecutive time
steps. Thus, for purposes of this section we will approximate the graph edit distance as
the number of edges that “flip” during each evolution of the HLMmodel.
The following lemma allows us to significantly simplify the calculation of the anomaly

score for edit distance by approximating the baseline distribution with the large n limit.

Lemma 1 Let G be an random graph distributed according to G(P) and let G′ be the
graph formed by one iteration of the Hagberg-Lemons-Mishra evolution with evolution

Fig. 9 Relative Performance of RH and KS Anomaly Scores. a RH versus KS. b RH versus Edit. a RH versus KS. b
RH versus Edit
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Fig. 10 Difference between KS anomaly scores and RH anomaly scores. a Power-Law Scan. b Bump
Power-Law Scan. c Power-Law Lateral movement. d Bump Power-Law Lateral movement

parameter α and probability matrix P′. Let X be the random variable that counts the
number of edges that differ between G and G′. If Var(X) → ∞, then X is asymptotically
normally distributed.

Proof Let Xij be the indicator function for the random variable that edge {i, j} is present
in precisely one ofG′ andG and observe thatX = ∑

i<j Xij.We recall that by the Lyapunov
Central Limit Theorem ((Billingsley 2008), p. 362), we have that

X − E[X]√
Var(X)

D−→ N (0, 1)

if there is some δ > 0 such that

lim
n→∞

1
Var(X)2+δ/2

∑
i<j

E

[∣∣Xij − E[Xij]
∣∣2+δ

]
= 0.

Fixing δ = 1, we note that
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∑
i<j

E
[|Xij − E[Xij] |3

] =
∑
i<j

E[Xij] (1 − E[Xij] )3 + (1 − E[Xij] )E[Xij]3

=
∑
i<j

E[Xij] (1 − E[Xij] )
(
E[Xij]2 +(1 − E[Xij] )2

)

≤
∑
i<j

E[Xij] (1 − E[Xij] )

= Var(X).

Thus, if Var(X) → ∞, then

lim
n→∞

1
Var(X)3/2

∑
i<j

E
[|Xij − E[Xij] |3

] = 0

and X is normally distributed.

It is worth mentioning that this, in principle, allows for an explicit formula for the dis-
tribution of the anomaly score for edit distance in a wide range of baseline and anomalous
behaviors, namely

P(S ≤ s) = �

(
μ − μA

σA
+ σA

σ
�−1

(
s + 1
2

))
− �

(
μ − μA

σA
− σA

σ
�−1

(
s + 1
2

))
,

where (μ, σ) and (μA, σA) are the mean and distribution of the baseline and anomalous
evolutions, respectively, and � is the cumulative distribution function of the standard
normal distribution. However, given the correlated nature of the anomalies the calculation
of σA is tedious, so we will empirically estimate this distribution.
Figure 9b again presents the relative performance of the anomaly scores, this time for

edit distance and RH distance, for all 420 anomaly trials. Again the y value counts how
many of the 1000 cases RH outperforms edit distance. We note that in the best case
(bump power-law degree distribution, lateral movement anomaly, 10 edges, α = 0.24),
the RH distance anomaly score is larger than the edit distance anomaly scores 646 times.
However, for the power-law case the RH anomaly scores essentially never outperform the
edit distance anomaly scores. This failure is mitigated by the fact that, as mentioned ear-
lier, in many cases the edit distance is computationally infeasible, while the RH distance
requires minimal computational overhead. It is also worth mentioning that we can see a
clear degradation of performance for edit distance as the size of the anomaly decreases
and the evolution rate increases. This phenomenon can be explained by observing that
the anomaly score for edit distance is driven by a z-score of the anomaly, which is linearly
correlated with the anomaly size and inversely correlated with the standard deviation of
the baseline distribution. Additionally, the variance baseline distribution of edit distance
is linear related to the evolution rate, resulting in significantly decreased sensitivity at high
evolution rates.
We further compare the relative behavior of the edit distance anomaly scores and the

RH distance anomaly scores, in the same way as we did for KS above, by considering the
average difference between the anomaly scores in the cases where the RH anomaly score
is larger (positive values) and in the case the edit distance anomaly score is larger (negative
values). As the RH distance anomaly score is essentially never larger than the edit distance
anomaly score for the power-law distribution, we restrict our attention here to the bump
power-law distribution. In Fig. 11, we again report the relative magnitude of the differ-
ences with the error bars representing an interval one standard deviation away from the



Aksoy et al. Applied Network Science            (2019) 4:80 Page 22 of 25

mean. Again we can see a clear stratification of the behavior with the RH anomaly scores
performing better as the size of the anomaly decreases. We also note the mild improve-
ment in the performance of RH distance as the evolution rate increases, likely reflecting
the decreased sensitivity of edit distance (due to larger variance).
Interestingly, the standard deviation is essentially constant over all choices of degree

distribution, anomaly type, anomaly size, and evolution rate and is also roughly equal to
the standard deviations shown in Fig. 10. Furthermore, the magnitude of the standard
deviation is close to the minimal possible standard deviation given by the generalization
of Bhatia-Davis inequality for the variance of a bounded random variable (Agarwal et al.
2005). As the extremal distribution is given by point masses at the end points of the dis-
tribution, this indicates that there are three essentially distinct outcomes: the RH distance
anomaly score is significantly larger than the edit distance anomaly score, the RH and edit
distance anomaly scores are essentially the same, and the edit distance anomaly score is
significantly larger than the RH distance anomaly score. Furthermore, this holds regard-
less of the size and nature of anomaly or evolution rate and also holds when replacing edit
distance with KS distance (for both degree distributions).

Conclusions
In this work, we conducted an experimental and statistical study of Relative Hausdorff
distance in the context of time-evolving sequences of graphs. Applying RH distance as an
anomaly detection tool, we first tested its detection of red team events across multiple
modalities in real cyber security data. We found evidence that RH distance values regis-
ter statistical change-points at red team events, although these results were sensitive to
window length, the granularity of pairwise RH measurements, and subject to the limita-
tions of the data. In order to test RH distance in a more controlled and rigorous manner,
we then turned our attention to a temporal graph model inspired by cyber-data.
Using this temporal graph model to generate synthetic sequences of evolving graphs,

we experimentally tested the sensitivity of RH distance to two attack profiles. To broaden
our tests scope, we considered a multitude of parameter settings in which we varied the
input degree distribution, temporal evolution rate, and intensity of the attack signal. In

Fig. 11 Difference between edit distance and RH distance. a Bump Power-Law Scan. b Bump Power-Law
Lateral movement



Aksoy et al. Applied Network Science            (2019) 4:80 Page 23 of 25

its own right, RH distance performed respectably, yielding ROC curves above the line of
no-discrimination for every scenario tested. Compared with other similarity measures,
RH distance consistently outperformed another lightweight similarity measure based
on Kolmogorov-Smirnov distance, while its performance against the computationally-
intensive edit distance was more mixed: while edit distance clearly outperformed RH
distance under scenarios featuring the power law degree distribution, RH distance was
better able to detect the low-intensity lateral movement attack under the bump power law
degree distribution.
Anomaly detection generally, and even specifically in cyber security, is not amenable

to a “one method to rule them all” mentality. Indeed, there are many types of anoma-
lies and one does not expect them to all be caught by the same detector. It is important
to recognize that our analysis does not use all of the available information pertinent to
real cyber data. Distilling a time interval of data down to a single graph and remov-
ing all metadata is likely to introduce many false positives. It could be that a graph is
anomalous given the recent context, but the behavior is fully expected by cyber secu-
rity operations analysts (e.g. a daily backup may appear to be an exfiltration if the
IP addresses involved aren’t considered). In the other direction, if the graph does not
contain the metadata that would flag an anomaly, this may similarly introduce false neg-
atives. By integrating metadata into our analysis, it is possible that as anomalies are
discovered, this metadata could be used to help classify them as benign and nefarious
anomalies. Lastly, it is also worth noting that our analyses considered the entire data
in a given period, as opposed to an online approach. Whether and how RH distance
might be utilized in online anomaly detection frameworks remains another open topic for
future research.
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