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Drive, 60208 Evanston, IL, USA Research shows that individuals benefit from setting up their personal networks
strategically. There are two fundamental networking approaches: structural change,
which involves the addition and deletion of communication ties, and frequency
change, which means an increase or decrease of communication on existing ties.
Existing literature has focused predominantly on structural change, leaving the
potential of frequency change understudied. To investigate the differential effects of
structural and frequency change on the efficiency of information flow through a
network, we conduct simulations of networking approaches on a diverse set of
real-world directed weighted communication networks. Our results indicate that,
overall, frequency change is associated with higher efficiency than structural change in
all but one of the studied cases. Structural change has a strong direct effect on
individuals who actively modify their personal network. Surprisingly, our simulations
also show that the indirect effects of frequency change (i.e., an individual’s ties are
reshaped due to others’ actions) can exceed direct ones. Our results highlight the value
of the so far less studied frequency change and suggest that using targeted network
alterations can result in gains for information flow at the scale of the entire network.
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Introduction

Individuals communicate with each other strategically to improve access to information
and to capitalize on social contacts in attaining personal and professional goals. Although
people hardly consider larger network structures when they communicate, to whom
they choose to speak has unintended and far-reaching implications for information flow.
Research in network science has studied in detail how the structure of socio-technological
networks impacts human behavior (Barabdsi 2016; Borgatti et al. 2009; Newman 2003;
Watts and Strogatz 1998). This perspective establishes that individuals’ structural position
predetermines their opportunities (Giddens 1984), but does not address people’s ability
to shape their own network to better fit individual and group needs. By contrast, recent
studies acknowledge the importance of individual efforts in shaping personal networks
and accessing critical information through networking (Casciaro et al. 2014; Ebbers 2014;
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Engel et al. 2017; Hallen and Eisenhardt 2012; Vissa 2012). This line of research defines
networking as individuals’ proactive and purposeful action to communicate with their
social contacts (Kuwabara et al. 2018). Building on this definition, we study how various
networking approaches impact the efficiency of communication networks.

We conduct data-driven computer simulations that examine the effect of two predom-
inant networking approaches: (a) structural change, involving the addition and deletion
of communication ties and (b) frequency change, involving an increase or decrease of
communication on existing ties. In our proposed framework, these two approaches cover
the spectrum of exploring new connections and exploiting existing ones (Aral and Van
Alstyne 2011; Mason and Watts 2012; Siciliano et al. 2018; Sommerfeldt and Yang 2017;
Vissa 2012). Structural change is implemented based on the generic social process of tri-
adic closure (i.e., individuals with shared connections start to communicate with each
other). The implementation of frequency change relies on interaction reciprocity (i.e., the
mutuality of message exchanges between individuals). Additionally, we quantify network
efficiency based on the average shortest weighted path length as a proxy for the speed at
which information can be exchanged through the network (Latora and Marchiori 2001;
Mason and Watts 2012). Throughout this work, we leverage real-world communication
networks as the base structure for our analysis. We represent these data with weighted
directed networks, to account for the fact that communication is usually initiated by one
person, providing direction for interactions, and occurs repeatedly over time between
interacting pairs, a detail that we model with edge weights. We analyze these networks by
exploring how efficiency changes for the entire network and, more importantly, for indi-
viduals. In the latter case, we differentiate between two effects: a direct effect, impacting
individuals whose neighborhood changes as a result of their own networking efforts, and
an indirect effect, affecting individuals whose network is reshaped as a result of others’
actions.

Our paper makes two main contributions. To further empirical inquiries in this area,
the work develops a novel conceptual framework to study the effect of various network-
ing approaches on the efficiency of communication networks. Our proposed framework
indicates that triadic closure and reciprocity impact efficiency differently. Our approach
enabling this finding connects existing methodologies at the level of the entire network,
that is, system-level approaches from network science (Miritello et al. 2013), with the
extensive study of personal or ego networks in management literature (Casciaro et al.
2014; Ebbers 2014; Engel et al. 2017; Hallen and Eisenhardt 2012; Vissa 2012). Addition-
ally, unlike previous research focusing on forming and maintaining connections (Ebbers
2014; Engel et al. 2017; Siciliano et al. 2018; Sommerfeldt and Yang 2017; Vissa 2012),
the proposed framework also covers the dissolution of social ties, which so far repre-
sent a less prominent aspect in the literature prominent aspect in the literature, with a
few exceptions (Chan et al. 2014; Chen et al. 2016; Tong et al. 2012). Most importantly,
the framework also includes a gradual decrease in the frequency of interactions between
pairs of people. Our work thus opens new avenues to empirically test the complexity of
networking.

Methodologically, we contribute to the expanding literature on edge alteration methods
by proposing and implementing new approaches for weighted directed networks. Prior
work on edge alteration focused solely on unweighted, undirected networks (Arrigo and
Benzi 2016; Beygelzimer et al. 2005; Chan et al. 2014; Chen et al. 2016; Garimella et
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al. 2017), and as a result, has not developed edge strengthening or weakening methods.
We argue that since weighted social and communication network data have increased in
availability and importance (Opsahl and Panzarasa 2009), our proposed methods are not
only a fundamental addition to the edge alteration literature, but also to the study of social
and communication networks.

This paper extends our previously introduced framework that centered on the tensions
between individual and network-level efficiency. The main idea was that when individu-
als optimize their personal networks, this creates inefficiencies in the network as a whole
(Tanaka and Horvat 2019). In this paper, we explore the opportunities behind frequency
change, especially at the individual level. The enhanced focus on the individual level is
important for the entire range of cases, in which a centralized decision that shapes the
whole communication system is not feasible or desired. There is also a small, but con-
sequential, difference in one of the fundamental quantities we compute for weighted
networks: our previous paper normalized the weighted shortest path length, used in the
definition of efficiency, by the average path length over the entire network as suggested
by Opsahl et al. (2010). Here, we use the non-normalized version of the weighted shortest
path length (Newman 2001; Brandes 2001), which enables us to better study micro-
changes at the level of individuals. Ultimately, this is required to understand how each
individual could improve his/her own networking efforts. As important steps toward this
goal, we uncover both direct and indirect effects of networking in this paper. The latter
account for the sometimes unintended and often hidden consequences of information
flow on overall communication efficiency.

The paper is structured as follows. In “Experimental setup” section, we outline our edge
alteration simulations that examine “what-if” scenarios based on different networking
approaches and describe the five datasets we used throughout these simulations. Then, we
detail the two main components of our framework: networking approaches and efficiency.
While we use a standard way to quantify efficiency (see “Measuring efficiency” section),
we propose novel models of networking approaches that alter connection structure and
communication frequency (see “Modeling networking approaches” section). Our analyses
explore the differences in efficiency changes across the five datasets at the system level
and around individuals. We conclude with a discussion of our findings.

Experimental setup

Edge alteration simulations

To examine how networking approaches change efficiency in different communication
settings, we conduct data-driven computer simulations throughout which we manipu-
late the structure and frequency of communications based on four different networking
rules (see “Modeling networking approaches” section). Our simulations are aligned with
so-called edge alteration methods. Edge alteration methods are commonly used in net-
work science and have allowed researchers to manipulate network structures to assess
robustness (Beygelzimer et al. 2005; Chan et al. 2014), opinion polarization (Garimella
et al. 2017) and efficiency (Arrigo and Benzi 2016; Chen et al. 2016; Tong et al. 2012).
Since most research on edge alteration methods aims to optimize a certain measure, it
often puts forth assumptions that overlook inherent human constraints, such as cognitive
limits and attention (Arrigo and Benzi 2016; Beygelzimer et al. 2005; Chan et al. 2014;
Chen et al. 2016; Garimella et al. 2017; Tong et al. 2012). For instance, (Chen et al. 2016)
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developed eigenvalue algorithms for edge addition and deletion. These algorithms choose
those edges for alteration that most facilitate diffusion. Nevertheless, it is unrealistic to
assume that people who are embedded in the network would have enough information
to do a similar calculation and then optimize their personal connections accordingly. To
address such shortcomings, the edge alteration rules that we propose are guided by social
and communication theory. This increased domain-awareness can better inform per-
sonal networking in real-world settings, where direct experimentation with networking
approaches could have high social costs.

We also note that edge alteration methods are different from statistical network models,
such as exponential random graph modeling (ERGM) or stochastic actor-oriented mod-
eling (SAOM). ERGM and SAOM enable researchers to estimate which micro-actions
or social processes are likely to account for existing network structures (Block et al.
2016). Nonetheless, they do not necessarily explain which type of micro-action is likely
to change individual and/or network-level objectives, such as the efficiency of informa-
tion flow. Moreover, the current implementations of ERGM and SAOM focus more on
understanding the structural features of networks than on the frequency of connections.
That is, these methods reveal the presence or absence of communication ties based on
specific social processes like homophily, but are oblivious to changes in the weight of
edges. Thus, our edge alteration methods provide complementary insights about com-
munication networks, in which the frequency of information exchange plays a major
role.

Data
We conduct simulations based on real-world networks to obtain more realistic insights
compared to synthetic toy networks. To this end, we use five communication networks.
The DNC network is built from the email communication between the members of the
Democratic Party around the National Committee for 17 months (Kunegis 2013). The
EU-Dept4 and EU-Inst networks are based on email exchanges between affiliates of a
large European research institution over one year (Leskovec and Krevl 2014). While
EU-Dept4 is a sub-network that maps the communication within a department of the
institution, EU-Inst is the email network of the entire institution. The MANU net-
work comes from employee emails at a mid-size Polish manufacturer over nine months
(Kunegis 2013). Finally, the OSN network maps message exchanges among U.S. col-
lege students on a social networking site for half a year (Leskovec and Krevl 2014). We
obtained these datasets from different sources: The EU-Dept4, EU-Inst, and OSN net-
works are from Stanford Large Network Dataset Collection (Leskovec and Krevl 2014),
while DNC and MANU are retrieved from the Koblenz Network Collection (Kunegis
2013). We select datasets that mainly record communication via email, as this has been
the key form of computer-mediated communication for the past decades. Email usage has
been found to influence productivity (Jackson et al. 2003; Mark et al. 2016), perceptions
of overload (Dabbish and Kraut 2006), work-life balance (Waller and Ragsdell 2012), and
trust and engagement with certain topics (Mishra et al. 2014). Most importantly, a lot of
our networking happens via email, recording a near-complete trace of communication
activity that we then analyze here.

Table 1 provides a summary of descriptive statistics. The five networks differ in terms of
their contexts, covered time period, the number of individuals and the structural features
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Table 1 Summary statistics of the datasets: number of nodes, edges and messages; number of
messages sent on average between communicating individuals (message per edge); time frame
covered in the data expressed in months; reciprocity; transitivity; and efficiency (%)

Data DNC EU-Dept4 EU-Inst MANU OSN
Nodes 1866 142 986 167 1899
Edges 5517 1375 24,929 5783 20,296
Messages 39,264 48,141 332,334 82,927 59,835
Messages per edge 7117 35.012 13.331 14.340 2.948
Time frame (in months) 17 18 18 9 6
Reciprocity 0411 0.788 0711 0.876 0.636
Transitivity 0.089 0.735 0.267 0.541 0.057
EY 0.385 5.279 6.909 15.817 0.811

of the emerging communication networks. For instance, the smallest network (EU-Dept4)
is one order of magnitude smaller than the largest one (OSN), and the most densely
connected network (MANU) is considerably denser than the least connected network
(DNC). More importantly, the efficiency (see Eq. 1 in “Measuring efficiency” section)
ranges between 0.385 and 15.817, thus spanning two orders of magnitude.

To consistently model networks of different digital communication traces, we construct
weighted directed networks that capture how frequently a specific individual messaged
another person. In network terms, we build cross-sectional weighted edge lists from

temporal data and then perform the simulations outlined below.

Modeling networking approaches

We define networking as individuals’ proactive and purposeful action to communicate
with their social contacts (Kuwabara et al. 2018). According to this definition, networking
is an action taken by the individual. As prior research asserted, those who network well
accrue benefits, such as better access to information and more career success (Vissa 2012;
Wolff and Moser 2009). Nonetheless, networking also impacts those neighbors whose
network is reshaped as a result of another person’s networking. In this paper, we demon-
strate both direct and indirect effects of networking on information flow, and contribute
to the argument that it is important to understand both effects (Miritello et al. 2013).
To complement existing qualitative research centered on personal networking (Ebbers
2014; Engel et al. 2017), we put our individual-level findings into a system-wide perspec-
tive as well, showing the benefits and drawbacks of networking, beyond one’s immediate
neighborhood.

Prior literature has identified two main approaches to networking (Aral and Van
Alstyne 2011; Siciliano et al. 2018; Sommerfeldt and Yang 2017; Vissa 2012). As sum-
marized in Fig. 1, the first approach centers on structural change by expanding or
narrowing the set of existing communication partners, while the second approach focuses
on frequency change, by increasing or decreasing the prevalence of interactions between
connected pairs. While structural change enables individuals to connect with a diverse set
of contacts, frequency change is related to creating networks of strongly connected indi-
viduals (Aral and Van Alstyne 2011). These approaches map intuitively to the principles
of exploration (i.e., choosing an unfamiliar option with unknown outcomes) and exploita-
tion (i.e., choosing a familiar option with known outcomes) found in learning problems
across human decision-making and computer science (Aral and Van Alstyne 2011; Auer et
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al. 2002; He and Wong 2004; Lazer and Friedman 2007; Mason and Watts 2012; Siciliano
et al. 2018).

Building on the trade-off between exploration and exploitation, one can argue that
structural change is less likely to occur because it is more costly than frequency change.
First, structural change requires searching and identifying new contacts (Siciliano et al.
2018; Vissa 2012). This exploration is costly: since information about new contacts is lim-
ited, it is uncertain whether it is worth investing in a potential new contact. Exploration is
a process in which individuals expand their contacts (variation) and select some contacts
over others (selection), as argued by March (1991). In this sense, stopping interaction
with an existing contact, which is another way to alter network structure, can also be
considered a potentially expensive form of exploration (Siciliano et al. 2018).

Additionally, frequency change might be more straightforward and less costly than
structural change because it is mainly a form of exploitation where individuals repeat their
existing communication patterns. Changing the frequency of interactions with estab-
lished contacts is less risky (Vissa 2012). These arguments point to the importance of
understanding the so far understudied frequency change.

Certainly, most individuals engage in a sustained combination of exploration and
exploitation, regularly altering both their connections and the prevalence of their inter-
actions. We thus study both structural and frequency change and compare how both
affect not only those individuals whose neighborhood changes as a result of their own
networking efforts, but also those whose network is reshaped as a result of others’ actions.

Structural change

Structural change in the form of adding new and deleting existing communication ties is
common in every communication context (Siciliano et al. 2018). Thus, most literature on
networking focuses on this form of networking. For instance, several studies have been
dedicated to understanding how individuals form new connections with potential part-
ners in business contexts (Ebbers 2014; Engel et al. 2017; Hallen and Eisenhardt 2012).
Equally often, people stop communicating with their contacts. This process is apparent
on social media to the extent where Facebook coined the term unfriend (Pefia and Brody
2014) and Twitter introduced the usage of the new verb unfollow (Kwak et al. 2011; Xu
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et al. 2013). Since in any communication setting there are several possibilities to decide
which ties to create and/or remove, we use key observations from social network analy-
sis to model the addition and deletion of connections. These models are informed by key
social processes and distinguish our research from previous work on edge addition and
deletion (e.g., Chen et al. 2016; Tong et al.2012).

Adding Edges

Expanding one’s existing contacts plays a key role in accessing new information. Hence,
several of our networking attempts are aimed at creating new contacts (Vissa 2012). As
suggested by the pervasiveness of connecting to friends of friends, the fundamental ten-
dency of triadic closure indicates that ties are most likely to form naturally between
individuals who have a mutual friend (Estrada and Arrigo 2015; Faust 2010). This obser-
vation will guide our models of edge addition as we create a new communication tie
between two people with a shared contact who have not been previously communicating
with each other.

For the implementation of our addition rule, we define the neighbors of node A as those
individuals who have either sent message(s) to, received message(s) from, or have been
mutually communicating with A. Then, we (1) pick a random person with at least two
unconnected neighbors from the network, (2) randomly select two of their unconnected
neighbors, and (3) connect these neighbors with an edge weight of 1, randomly determin-
ing the directionality of the new edge. We repeat these steps until the desired number of
edges are added.

Deleting Edges

By reducing the number of communication ties, people can cultivate their existing rela-
tionships. In network terms, this maps to a process of edge deletion that is typically
associated with amplifying the bandwidth of the remaining communication ties. Existing
triangles (A connected to B connected to C connected to A) often break for two reasons:
to avoid conflict, as predicted by structural balance theory (Faust 2010), and to channel
communication through the shared contact who gains information advantages from this
bridging position (Burt 1992). Our edge deletion heuristic will thus enable us to study
how increasing the number of unclosed triangles in a communication network changes
network-level and individual information flows.

Accordingly, our deletion rule (1) picks a random person with at least two connected
neighbors, (2) randomly selects two of the connected neighbors, and (3) eliminates a
connection between the neighbors. As in the case of the edge addition, these steps are
repeated until the specified number of edges get removed. The addition and deletion of
edges as approaches to change the structure of communication networks are summarized
in the top panel of Fig. 1.

Frequency change

The key novelty of our paper relies on the proposed models for frequency change that
focus on how individuals allocate their time and attention to existing contacts. Humans
are, on average, limited to 150 relationships at a specific time point, as argued based on the
social brain hypothesis (Dunbar 1998) and according to findings of limited attention and
energy (Aral and Van Alstyne 2011). More importantly, the attention given to individual
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contacts varies strongly: using large-scale mobile communication data, Miritello et al.
(2013) found that communication capacity at a certain time is fairly constant across indi-
viduals, yet there are significant differences in terms of whom they frequently call among
their contacts. These arguments support the observation that people tend to maintain a
certain number of active communication partners. As in the case of structural change,
the range of possible networking approaches is extensive. In what follows, we will distill
two simple heuristics to model increasing and decreasing communication frequencies on

existing ties.

Strengthening edges

Reciprocation or withholding interaction is a fundamental mechanism throughout the
process of differentially allocating time and energy to certain communication partners
(Block 2015; Squartini et al. 2013). Reciprocity is broadly defined as an “exchange of any
resource to equalize the relationship” (Casciaro et al. 2014, p.709). It helps build and
access social capital by increasing communication frequency between a pair of people to
balance their interactions (Siciliano et al. 2018; Sommerfeldt and Yang 2017). Reciprocity
has also been shown to have become an essential norm in digital communication (Akoglu
et al. 2012). For these reasons, we base our approach to strengthening ties on reciprocity.
Implicitly, enhancing reciprocity will increase communication frequency.

Our implementation of the strengthening rule increases the weight of the existing
communication tie from A to B if B frequently messaged A previously, but has not recip-
rocated these messages. In every step of the process, we focus on the most imbalanced
connection between A and its neighbors. Specifically, we (1) pick a random person from
the network, (2) select their neighbor with whom they have a maximally imbalanced tie,
and (3) increase by 1 the weight of the connection between the focal person and their
neighbor. We repeat this until a given number of connections have been strengthened
across the network.

Weakening Edges
Instead of suddenly dropping a contact, people typically progressively dissolve certain
relationships. When it comes to communication, most of us gradually reduce contact
with a partner (Raeder et al. 2011). For instance, using longitudinal data on professional
connections between investment bankers, Burt (2002) found that their interactions often
decayed over time. More recently, studies have investigated how people’s friendships and
mobile communication deteriorate (Kleinbaum 2018; Miritello et al. 2013). Based on this
research, weakening ties is thus ubiquitous in the course of all sorts of social interactions.

To model how individuals re-allocate time spent on emailing certain partners, we
weaken existing connections by gradually discouraging the reciprocation of interac-
tions. Our implementation targets the most balanced conn ections as follows: (1) pick
a random person, (2) select a neighbor such that the email exchange rate between the
two is maximally similar, and (3) decrease by 1 the higher weight connection between
the person and this neighbor, which is the equivalent of dropping one message. We
repeat these steps until connection weights have been weakened a predefined number
of times.

The bottom panel of Fig. 1 summarizes frequency change in the form of strengthening
and weakening existing connections. Before we use this framework to examine the effect
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of networking approaches on the efficiency of communication networks, we discuss the

used measure of efficiency.

Measuring efficiency

A useful notion of efficiency in our context is described by the speed at which infor-
mation can spread through a network (Mason and Watts 2012). We thus evaluate the
efficiency of a communication network by its capability to enable information exchange
between individuals promptly (Boccaletti et al. 2006; Latora and Marchiori 2001; 2003).
The most common approaches approximate the ease of transmission across a network by
the shortest paths between pairs of people. Following Latora and Marchiori (2001), we
use the average distance across all pairs of nodes in the quantification of the efficiency
of a communication network. Note, however, that other measures have also been pro-
posed. Most relevantly, the so-called communicability, which is built around the idea that
in many real-world situations, the communication between pairs of nodes does not only
take place on the shortest path between them. Instead of focusing on the shortest path,
the communicability concept is centered on the total number of different paths that exist
between two individuals (Estrada and Hatano 2008; Estrada et al. 2012). While this is
a sensible argument, the measure effectively introduces the alternative assumption that
the more paths between two nodes, the faster the message transmission. Additionally,
given the intricate connection structure of large-scale networks, communicability takes
very large values that make its interpretation hard. For this practical reason, we adopt the
more common approach and use the widespread measure described next in the case of
weighted networks.

In unweighted networks, the shortest path d;; between two specific individuals i and j is
defined as the path having the minimum number of edges. In weighted networks, multiple
interactions between the same pair of individuals i and j are coded as weights w;;, while
the length of the edge is defined as the inverse of the weight /;; = w%} and can be used to
indicate how “far” i and j are. The weighted shortest path d;}’ is then defined as the one
with the smallest sum of edge lengths /;; across all possible paths in the network running
from i to j. Note that in a weighted network, a path with the minimum number of edges
is not necessarily the shortest weighted path. Figure 2 illustrates the difference between
the unweighted and weighted shortest path length: the shortest path between nodes A
and D is 2 (see green path in Fig. 2b). However, if the edge between B and D has weight
10 (i.e., length 1/10), while the edges from B to C and C to D have weights 20 and 50,

b o

e 20 e 20

100

®

Fig. 2 Unweighted vs. weighted shortest path length. a A toy network. b Unweighted shortest path
between A and D in green. ¢ Weighted shortest path between A and D in purple
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respectively, then the weighted shortest path between A and D goes through B and C and
has a total length of 1/100 + 1/20 + 1/50 as opposed to 1/100 + 1/10 (see purple path in
Fig. 2c). The weighted shortest path is identified by inverting the edge weights and then
using Dijkstra’s algorithm (Brandes 2001; Dijkstra 1959; Newman 2001).

To characterize information exchange at the network level, we compute the typical

separation between any pair of individuals based on the following average efficiency:

po_ 1 1 )
NN -1) ; d @)
where N is the number of individuals in the network and the summation goes over all
pairs of individuals. Note that through the use of the inverted distance, we avoid diver-
gence problems when the network has disconnected components, and thus the distance
between nodes is formally equal to infinity. This measure has been widely applied across
different domains, ranging from social to technological (Buhl et al. 2004; Latora and
Marchiori 2005; Migliano et al. 2017).

Results

In this section, we report findings organized into two parts. The first part shows how
different networking approaches affect efficiency across the five considered datasets.
The second part describes how networking approaches impact individuals directly or
indirectly, illustrating the findings on two datasets.

Networking approaches and overall changes in efficiency

Figure 3 shows the efficiency under different networking approaches. We alter the net-
work by modifying up to 10% of the observed edges. On the right side of the plot, we
add/strengthen 1%, 2%, ... 10% of the edges, while on the left side, we delete/weaken 1%,
2%, ... 10%. Each data point averages over 100 simulations and shows the corresponding
standard deviation. In the DNC network, adding connections (blue, between 0% and 10%)
increases efficiency at a lower rate than strengthening connections. Deleting connections
(blue, -10%—0%) has a larger impact on efficiency than weakening them. Strengthening
connections (yellow, 0%—10%) achieves the highest increase in efficiency. By contrast,
weakening connections (yellow, -10%—0) has a relatively small impact on efficiency. Thus,
in the DNC network, efficiency decreases in the presence of edge deletion and increases
most through strengthening connections.

Across all studied networks, the improvement in efficiency is most prominent when
strengthening connections. Edge addition increases efficiency only slightly. Weakening
edges has a negative impact on efficiency in every case, while deleted edges yield the
biggest drop in all networks but OSN. Thus, our results show that structural and fre-
quency change have asymmetric effects: whereas edge strengthening has a stronger effect
on efficiency than edge addition, edge weakening is likely to have a weaker effect than
edge deletion. Accordingly, frequency change is associated with higher efficiency than
structural change in nearly all of the studied cases.

Networking approaches and changes in individual efficiency
To better understand the emerging differences between structural and frequency change,
we investigate whether a change in outdegree (i.e., the number of people a focal individual
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Fig. 3 Changes in efficiency under different networking approaches in the five datasets. We report efficiency

as a function of the percentage of added, deleted, strengthened and weakened connections. Error bars
indicate standard deviations from 100 simulations

emails) is also associated with changes in efficiency. These analyses are conducted at the
individual level, meaning that they establish the link between each individual’s effi-
ciency and outdegree. First, we take the average efficiency over 100 simulations for each
person in the five datasets under each of the conditions (i.e, added/strengthened and
deleted/weaken connections). Then, we calculate the difference between the original
value and £10% of altered connections. This enables us to investigate how individuals are
affected by different networking approaches. We illustrate the results on the EU-Inst and
OSN networks and show similar plots for the remaining three networks in the Appendix.

Figure 4a shows the results for EU-Inst. In the case of 10% strengthened connections,
there is hardly any change in outdegree (top panel, green). As expected, edge addition is
associated with change in degree (bottom panel, green). It is interesting, however, that
the few individuals who experience an increase in efficiency only change their outde-
gree by 1 at most. We find a similar separation into two nearly disjointed categories in
the case of 10% weakened connections (top panel, red): almost exclusively, people either
lose connections (i.e., change their outdegree) without significant associated changes in
efficiency, or they experience a decrease in efficiency without a drop in their outdegree.
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Finally, when edges are deleted (bottom panel, red), the change in outdegree is correlated
with the change in efficiency. To quantify the correlation between the changes in out-
degree and efficiency, we use Kendall’s 7. This shows a positive correlation in the case
of edge addition (r = 0.491, p <0.001) and deletion (r = 0.564, p <0.001). Contrarily,
changes in outdegree are negatively correlated with changes in efficiency in the presence
of strengthening (t = -0.059, p <0.05) and weakening (t = -0.065, p <0.01).

The separation into two scenarios seen in Fig. 4a suggests that there are two dif-
ferent types of effects experienced, on average, by individuals in this communication
network. Our intuition is that individuals will see different changes in efficiency based
on differences in their agency. In other words, we identify individuals who “actively”
change their outdegree and outflow (i.e., their communication frequency with existing
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contacts) as a result of being selected throughout our simulations because they were adja-
cent to a chosen edge. We call this the direct effect and the formal condition for it is:
Soutdeg = 1 A Sousflow = 1. When this condition does not hold, we establish an indi-
rect effect. This impacts individuals whose network neighborhood changes as a result of
others’ networking, without them taking explicit networking actions.

Figure 4b compares the change in efficiency for individuals grouped into the direct and
indirect effect conditions. First, this segmentation of the data allows us to quantify the
extent to which efficiency is modified despite the fact that some individuals did not mod-
ify the structure or frequency of their connections as part of our algorithms. In the case of
frequency change, the median indirect effect on efficiency of strengthening and weaken-
ing is 0.481 (n = 206) and -0.078, (n = 310), respectively. Remarkably, the effect size in case
of indirect strengthening is slightly larger as the corresponding direct effect (Mdn = 0.459,
n = 780). Moreover, the indirect weakening effect is considerably larger than the direct
weakening effect (Mdn = -0.068, n = 676). A Wilcoxon rank sum test shows that these dif-
ferences between direct and indirect effects are significant in both cases (strengthening:
W =61,632, p <0.001; weakening: W = 132,420, p <0.001). This supports the finding that
in the case of EU-Inst, the indirect effect of frequency change is stronger than the direct
effect.

By contrast, in the presence of structural change, indirect effects are weaker than direct
effects (addition: W = 175,180, p <0.001; deletion: W = 18,862, p <0.001). The indi-
vidual median effects are as follows: the direct effect of deletion (Mdn = -1.311, n =
627), the direct effect of addition (Mdn = 0.043, n = 693), the indirect effect of deletion
(Mdn = -0.099, n = 359), and the indirect effect of addition (Mdn = 0.035, n = 293). Notice
here that direct deletion has the strongest effect on efficiency.

Next, we examine similar results for the OSN network because this data showed differ-
ent trends in the first part of our analysis (see Fig. 3). The relationship between changes
in individuals’ efficiency and their outdegree based on different networking approaches
qualitatively yields similar trends in all aspects to EU-Inst. Namely, while the correla-
tion in case of frequency is negative (strengthening: v = -0.183, p <0.001; weakening:
7 =-0.298, p <0.001), it becomes positive in the presence of structural change (addition:
7 = 0.553, p < .0001; deletion: T = 0.580, p <0.001). Furthermore, Fig. 5a reiterates that
with frequency change, in particular, weakening of edges is associated with stronger indi-
rect effects (Mdn = -0.086, n = 1160) compared to direct effects (Mdn = -0.053, n = 739).
This difference is statistically significant (W = 590,230, p <0.001). There is no statisti-
cally significant difference between the direct and indirect effects of strengthening (W =
470,820, p = 0.082). By contrast, structural change has a stronger direct effect (addition:
Mdn = 0.023, n = 829; deletion: Mdn = -0.102, n = 604) than indirect effect (addition: Mdn
=0.016, n = 1070; deletion: Mdn = -0.022, n = 1295). The stronger direct effect is also sup-
ported by a Wilcoxon rank sum test for addition (W = 634,620, p <0.001) and deletion
(W = 65,258, p <0.001). Similar trends are also observed in Fig. 5b, where we calculate
the difference between the original value and £5% of altered connections. This suggests
that the shown trends are not singular to the chosen edge alteration threshold.

Finally, we investigate the main difference between the results of EU-Inst and OSN:
the effect size of edge deletion. Changes in efficiency in the presence of deletion are an
order of magnitude larger in EU-Inst than in OSN. In Eu-Inst, the biggest change affected
not the individual with the highest number of contacts (i.e., 167), but the person who
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most frequently communicated with their 64 contacts (i.e., 4607). By contrast, in OSN,
the largest change in individual efficiency happened neither in the case of the person with
the highest number of contacts (i.e., 237) nor the person with the highest frequency of
communication (i.e., 1091). Instead, it affected an individual with an average outdegree
(i.e., 26) and outflow (i.e., 26). These exploratory observations indicate that extending our
descriptive analyses with predictive components will represent non-trivial challenges. In
addition, there are topological differences between EU-Inst and OSN (see Table 1). We
assume that the discrepancies in messages per edge are likely to impact the effect size
of edge deletion and edge weakening. OSN’s messages per edge (i.e., the average edge
weight) are lowest at 2.948, and the same quantity for EU-Inst is 13.331. This means that
in order to actually delete an edge in OSN, we need to weaken it three times. In EU-Inst,
it is considerably harder to attain the deletion effect through edge weakening since this

requires, on average, 13 weakening steps.
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Discussion

We have investigated how basic networking approaches impact the efficiency of com-
munication networks overall and at the level of individuals. Our results highlight the
importance of combining computer simulations with real-world data to understand
changes in paths for information flow. Based on the results of our data-driven computer
simulations, at a network level, frequency change tends to be associated with higher
efficiency than structural change, establishing the importance of increasing or decreas-
ing communication frequency with current partners, as opposed to establishing new or
dissolving existing connections. Efficiency can thus be grown through increasing commu-
nication frequency via enhanced reciprocity of interactions. These findings highlight that
the so far less studied frequency change produces valuable results for network engineering
that are worthy of further investigation. In obtaining these results, we measured efficiency
using weighted path lengths. Unlike unweighted shortest paths, weighted shortest paths
are not always the shortest in terms of the number of edges (cf. Fig. 2). Our findings sug-
gest that reciprocity of interactions and triadic closure play different roles in weighted
directed networks compared to their effects in unweighted undirected networks. As
Opsahl et al. (2010) argued in a broader methodological context, this is an important
modeling detail, especially for the study of social and communication networks. Our
results benefited from the inclusion of this more involved modeling framework.

As further innovations to the framework, we not only applied existing edge alteration
methods to study the effect of networking, but also implemented a novel approach con-
sisting of frequency change. Most work on edge alteration has been based on addition
and deletion in unweighted networks (Arrigo and Benzi 2016; Chan et al. 2014; Chen
et al. 2016; Garimella et al. 2017; Tong et al. 2012), but this paper explored how alter-
ing communication frequency can have as large an effect on efficiency as structural
change (addition or deletion of connections), which can be an important consideration
in ongoing edge alteration research. Given that communication should focus not only on
whom you communicate with but also on how often you communicate (Aral and Van
Alstyne 2011; Monge and Contractor 2003), our method contributes to the investigation
of communication networks in a novel way.

At the level of individuals, we found that they are indirectly affected by changes in their
neighborhoods and that these indirect effects are substantial, especially in the case of fre-
quency change. This finding confirms that the frequency of communication between a
pair of individuals is essential to obtain novel information, as suggested by the diversity
bandwidth trade-off theory (Aral and Van Alstyne 2011). This theory asserts that there
is a compromise between having a diverse set of contacts vs. the frequency of interac-
tions, with high-frequency connections (i.e., strong ties) playing a key role in accessing
novel information. Our results also highlight the importance of having high-frequency
connections to improve efficiency. Since the diversity bandwidth trade-off theory focuses
on similar personal networks as the ones studied here, our findings contribute to current
knowledge by also taking important indirect effects into account.

Finally, we contribute to the literature on networking by demonstrating direct vs. indi-
rect effects of networking on the efficiency of information flow. Previous studies mainly
focused on understanding the intent of networking and its consequences (Ebbers 2014;
Engel et al. 2017; Siciliano et al. 2018; Sommerfeldt and Yang 2017; Vissa 2012) and prin-
cipally overlooked unintended consequences of networking. Our results show that as an
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effect of networking, some alters can benefit from others’ networking action. In partic-
ular, our simulation results indicate that frequency change has stronger indirect effects
than structural change. This externality should be incorporated into networking theories
in the future and should also be tested based on further empirical data in various con-
texts. Indirect effects of networking, we find, considerably enrich our understanding of

networking.

Limitations and future directions

We address here the limitations of our work that provide promising opportunities for
future research. First, we focused solely on modeling two out of several possible network-
ing approaches. Prior research has begun to explore alternative algorithms that model
networking (Arrigo and Benzi 2016; Chan et al. 2014; Chen et al. 2016; Garimella et al.
2017; Tong et al. 2012). However, these studies have not yet examined weighted networks
and frequency changes. Given our results, it is important for future work to investi-
gate how individual and system-level characteristics change in accordance with different
networking approaches.

Second, we did not investigate the content of digital communication. Although this
was beyond the scope of our study, we acknowledge the importance of examining how
simple vs. complex knowledge is transmitted and which networking approaches work
best in different cases. Accordingly, future research could investigate the content and
context of messages in addition to networking approaches, as the linguistic markers of
conversation will have major consequences for the success of networking. We expect
such research to expand the measure of efficiency by taking into account the hetero-
geneity of the communication that circulates through email (from the mundane to the
critical). For example, one could re-weight email exchanges based on different notions
of importance and define efficiency in terms of the spreading speed and reach of
“important” information.

Third, although the used network efficiency measure has been widely adopted in net-
work science (Boccaletti et al. 2006; Latora and Marchiori 2001; 2003), our findings might
not be generalized to other types of outcome measures, such as betweenness centrality
(Freeman 1977; Brandes 2001) and communicability (Estrada and Hatano 2008; Estrada
and Arrigo 2015). Given that the goals of networking often differ by individuals in orga-
nizations, future research should study how different networking approaches affect other
outcome measures.

Finally, there is great potential in extending the presented framework. It would be useful
to add external factors to the model, such as node attributes and different types of social
relations. Furthermore, instead of implementing the model with random node selection,
one can extend the model by devising targeted selection approaches such as the pref-
erential selection of nodes based on their degree (Watts 2004 pp. 279-285). Also, while
we manipulate networks using one approach at a time, one might combine different
networking approaches to simulate other potential consequences.

Conclusion

In this paper, we reported results on the effects of networking in social and commu-
nication networks modeled by directed weighted networks. Interestingly, the analysis
of our data-driven simulations suggests that changes in the frequency of interactions
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significantly improve or deteriorate efficiency both at a network and individual level.
Additionally, our simulations demonstrate an indirect effect of the two studied net-
working approaches on information flow, highlighting that the thus far less studied
frequency change produces valuable outcomes for network engineering. Therefore, we
believe that further investigations in this area can provide a fruitful direction in social and
communication network research.

Appendix
Here we provide figures showing changes in individuals’ efficiency in the networks DNC
(see Fig. 6), EU-Dept4 (see Fig. 7), and MANU (see Fig. 8).
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