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Abstract
Recent neural networks designed to operate on graph-structured data have proven
effective in many domains. These graph neural networks often diffuse information
using the spatial structure of the graph. We propose a quantum walk neural network
that learns a diffusion operation that is not only dependent on the geometry of the
graph but also on the features of the nodes and the learning task. A quantum walk
neural network is based on learning the coin operators that determine the behavior of
quantum random walks, the quantum parallel to classical random walks. We
demonstrate the effectiveness of our method on multiple classification and regression
tasks at both node and graph levels.
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Introduction
While classical neural network approaches for structured data have been well investi-
gated, there is growing interest in extending neural network architectures beyond grid
structured data in the form of images or ordered sequences (Krizhevsky et al. 2012) to the
domain of graph-structured data (Atwood and Towsley 2016; Bruna et al. 2014; Gori et
al. 2005; Kipf and Welling 2016; Scarselli et al. 2009; Velickovic et al. 2017). Following the
success of quantum kernels on graph-structured data Bai et al. (2013, 2017, 2015), a pri-
mary motivation of this work is to explore the application of quantum techniques and the
potential advantages they might offer over classical algorithms. In this work, we propose
a novel quantum walk based neural network structure that can be applied to graph data.
Quantum random walks differ from classical random walks through additional operators
(called coins) that can be tuned to affect the outcome of the walk.
In (Dernbach et al. 2018) we introduced a quantum walk neural network (QWNN) for

the purpose of learning a task-specific randomwalk on a graph.When dealing with learn-
ing problems involving multiple graphs, the original QWNN formulation suffered from
a requirement that all nodes across all graphs share the same coin matrix. This paper
improves upon our original network architecture by replacing the single coin matrix
with a bank that learns a function to produce different coin matrices at each node in
every graph. This function allows the behavior of the quantum walk to vary spatially
across the graph even when dealing with multi-graph problems. Additionally, this func-
tion produces the coins based on neighboring node features so that even for structurally
identical graphs, a different walk is produced if the node features change.We also improve

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0188-2&domain=pdf
http://orcid.org/0000-0003-1412-7195
mailto: dernbach@cs.umass.edu
http://creativecommons.org/licenses/by/4.0/


Dernbach et al. Applied Network Science            (2019) 4:76 Page 2 of 16

the neural network architecture in this work. In the new architecture, each step of the
quantum walk produces its own set of diffused features. The aggregated set of features,
spanning the length of the walk, are passed to successive layers in the neural network.
Finally, the previous work produced results that were dependent upon the ordering of the
nodes. This work provides a QWNN architecture that is invariant to node ordering.
The rest of this paper is organized as follows. “Related work” section describes the back-

ground literature on graph neural network techniques in further detail. The setting of
quantum walks on graphs is described in “Graph quantum walks” section, followed by
a formal description of the proposed quantum walk based neural network implementa-
tion in “Quantumwalk neural networks” section. Experimental results on node and graph
regression, and graph classification tasks are presented in “Experiments” section, followed
by a discussion of the techniques’ limitations in “Limitations” section and concluding
remarks in “Concluding remarks” section.

Related work
Gupta and Zia (2001) and Altaisky (2001) among other researchers proposed quantum
versions of artificial neural networks; See Biamonte et al. (2017) and Dunjko et al. (2018)
for an overview of the emerging field of quantum machine learning. While not much
work exists on quantummachine learning techniques for graph-structured data, in recent
years, new neural network techniques that operate on graph-structured data have become
prominent. Gori et al. (2005) followed by Scarselli et al. (2009) proposed recursive neural
network architectures to deal with graph-structured data, instead of the then prevalent
approach of transforming the graph data into a domain that could be handled by con-
ventional machine learning algorithms. Bruna et al. (2014) studied the generalization of
convolutional neural networks (CNNs) to graph signals through two approaches, one
based upon hierarchical clustering of the domain, and another based on the spectrum of
the graph Laplacian. Subsequently, Defferrard et al. (2016) proposed to approximate the
convolutional filters on graphs through their fast localized versions.
Along with the spectral approaches described above, a number of spatial approaches

have been proposed that relied on random walks to extract and learn information from
the graph. For comparison, we detail several modern approaches. Atwood and Towsley
(2016) propose a spatial convolutional method that performs random walks on the graph
and combines information from spatially close neighbors. Given a graphG = {V ,E} and a
feature matrix X, their approach, Diffusion Convolutional Neural Networks (DCNN) use
powers of the transition matrix P = D−1A to diffuse information across the graph, where
A is the adjacency matrix andD is the diagonal degree matrix such thatDii = ∑

j Aij. The
kth power of the transition matrix, Pk , diffuses information from each node to every node
exactly k hops away from it. The output Y of the DCNN is a weighted combination of the
diffused features from across the graph, given by

Y = h
(
W � P∗X

)
,

where P∗ is the stacked tensor of powers of transition matrices, the operator� represents
element-wise multiplication, W are the learned weights of the diffusion-convolutional
layer, and h is an activation function (e.g. rectified linear unit).
The second approach of interest due to Kipf andWelling (2016), was proposed to tackle

semi-supervised learning on graph-structured data through a CNN architecture that
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uses localized approximation of spectral graph convolutions. The proposed technique,
the Graph Convolutional Neural Network (GCN) simplified the original spectral-based
frameworks of Bruna et al. (2014) andDefferrard et al. (2016) for improved scalability. The
method uses the augmented adjacency matrix Ã = A+ I and degree matrix D̃ii = ∑

j Ãij
to diffuse the input with respect to the local neighborhood according to:

Y = h
(
D̃− 1

2 ÃD̃− 1
2XW

)
,

where, again,W are learning weights and h is an activation function.
Many graph convolution layers are inspired by classical CNNs used in image recog-

nition problems. However, other deep learning models have also inspired graph-based
variants. One such example, Graph Attention Networks (GATs) (Velickovic et al. 2017), is
inspired by the attention mechanisms commonly applied in natural language processing
for sequence-based tasks. The neural network architecture uses a graph attention layer
that combines information from neighboring nodes through an attention mechanism.
Unlike the prior approaches, this allows a nonuniform weighting of the features of each
node’s neighbors. The method uses attention coefficients

eij = a
(
WXi,WXj

)

where, W is a learned weight matrix that linearly transforms feature vectors of nodes
vi and vj, Xi and Xj respectively, and a is an attention function (e.g. inner product).
The attention coefficients eij are normalized through the softmax function to obtain
normalized coefficients αij. The output from node i is given as

Yi = h

⎛

⎝
∑

vj∈N (vi)
αijWXj

⎞

⎠

whereN (vi) is the neighbor set of node vi.
Our proposed quantum walk neural network is a graph neural network architecture

based on discrete quantum walks. Various researchers have worked on quantum walks
on graphs – Ambainis et al. (2001) studied quantum variants of random walks on one-
dimensional lattices; Farhi and Gutmann (1998) reformulated interesting computational
problems in terms of decision trees, and devised quantum walk algorithms that could
solve problem instances in polynomial time compared to classical random walk algo-
rithms that require exponential time. Aharonov et al. (2001) generalized quantum walks
to arbitrary graphs. Subsequently, Rohde et al. (2011) studied the generalization of dis-
crete time quantumwalks to the case of an arbitrary number of walkers acting on arbitrary
graph structures, and their physical implementation in the context of linear optics. Quan-
tum walks have recently become the focus of many graph-analytics studies because of
their non-classical interference properties. Bai et al. (2013, 2017, 2015) introduced novel
graph kernels based on the evolution of quantum walks on graphs. They defined the sim-
ilarity between two graphs in terms of the similarities between the evolution of quantum
walks on the two graphs. Quantum kernel based techniques were shown to outperform
classical kernel techniques in effectiveness and accuracy. In Rossi et al. (2013, 2015), Rossi
et al. studied the evolution of quantumwalks on the union of two graphs to define the ker-
nel between two graphs. These closely related works on quantum walks and the success
of quantum kernel techniques motivated our approach in developing a quantum neural
network architecture.
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Graph quantumwalks
Motivated by classical random walks, quantum walks were introduced by (Aharonov et
al. 1993). Unlike the stochastic evolution of a classical random walk, a quantum walk
evolves according to unitary process. The behavior of a quantum walk is fundamentally
different from a classical walk since in a quantum walk there is interference between dif-
ferent trajectories of the walk. Two kinds of quantum walks have been introduced in the
literature; namely, continuous time quantum walks (Farhi and Gutmann 1998; Rossi et al.
2017) and discrete time quantum walks (Lovett et al. 2010). Quantum walks have recently
received much attention because they have been shown to be a universal model for quan-
tum computation (Childs 2009). In addition, they have numerous applications in quantum
information science such as database search (Shenvi et al. 2003), graph isomorphism
(Qiang et al. 2012), network analysis and navigation, and quantum simulation.
Discrete time quantumwalks were initially introduced on simple regular lattices (Nayak

and Vishwanath 2000) and then extended to general graphs (Kendon 2006). In this paper,
we use the formulation of discrete time quantum walks as outlined in (Ambainis 2003;
Kendon 2006). Given an undirected graph G = (V ,E), we introduce a position Hilbert
spaceHP that captures the superposition over various positions, i.e., nodes, in the graph.
We define HP to be the span of the position basis vectors

{
ê(p)
v , v ∈ V

}
. The position

vector of a quantum walker can now be written as a linear combination of position state
basis vectors,

ψψψp =
∑

v∈V
αvê

(p)
v

where {αv, v ∈ V } are coefficients satisfying the unit L2-norm condition
∑

v ‖αv‖2 = 1,
with the understanding that ‖αv‖2 is the probability of finding the walker at vertex v.
Similarly, we introduce a coin Hilbert space HC that captures the superposition over

various spin directions of the walker on each node of the graph. We define HC to be
the span of the coin basis vectors

{
ê(c)
i , i ∈ 1, . . . , dmax

}
, where i enumerates the edges

incident on a vertex v and dmax is the maximum degree of the graph.We will use d instead
of dmax for conciseness. The coin (spin) state of a quantum walker can now be written as
a linear combination of coin state basis vectors,

ψψψc =
∑

i∈1,...,d
βv,iê(c)

i

where {βv,i, i ∈ 1, . . . , d} are coefficients satisfying the unit L2-norm condition
∑

i
∣
∣βv,i

∣
∣2 = 1. If a measurement is done on the coin state of the walker at vertex v, |βv,i|2

denotes the probability of finding the walker in coin state i. The Hilbert space of the quan-
tum walk can be written as HW = HP ⊗ HC , which is the tensor product of the two
aforementioned Hilbert spaces.
Time-evolution of discrete time quantum walk over graphG is governed by two unitary

operators, namely, coin and shift operator. Let���(t) = ψψψ
(t)
p ⊗ ψψψ

(t)
c inHW denote the state

of the walker at time t. At each time-step we first apply a unitary coin operator CCC which
transforms the coin state of the walker at each vertex,

ψψψ(t)
p ⊗ ψψψ(t+1)

c = (III ⊗CCC)
(
ψψψ(t)

p ⊗ ψψψ(t)
c

)
.

III denotes the identity operator. After transforming the coin (spin) states, we apply a
unitary shift operator SSS which swaps the states of two vertices connected by an edge. i.e.,
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for an edge (u, v) if u is the ith neighbor of v and v is the jth neighbor of u, then we swap the
coefficient corresponding to the basis state ê(p)

v ⊗ ê(c)
i with that of the basis state ê(p)

u ⊗ ê(c)
j .

SSS operates on both coin and position Hilbert spaces,

���(t+1) = ψψψ(t+1)
p ⊗ ψψψ(t+1)

c = SSS
(
ψψψ(t)

p ⊗ ψψψ(t+1)
c

)
.

In shorthand notation, the unitary evolution of the walk is governed by the operator
UUU = SSS (III ⊗CCC). Applying UUU successively evolves the state of the quantum walk through
time.
The choice of coin operators as well as the initial superposition of the walker control

how this non-classical diffusion process evolves over the graph and therefore provides the
deep learning technique additional degrees of freedom for controlling the flow of infor-
mation over the graph. Figure 1 shows how the diffusion behavior of a classical random
walk differs from a discrete time quantum walk with a single coin. Ahmad et al. (2019)
recently showed that for a discrete quantum walk on a line, having a position-dependent
coin can lead to quantitatively different diffusion behaviors with different choices of coin
operators. Our work uses the setting of multiple non-interacting quantum walks acting
on arbitrary graphs, as introduced in Rhode et al. (2011), to learn patterns in graph data.
Calculating a separate quantum walk originating from each node in the graph allows us
to construct a diffusion matrix where each entry gives the relationship between the start-
ing and ending nodes of a walk. This matrix works like its classical counterpart, a random
walk matrix, used in DCNN (Atwood and Towsley 2016).

Physical implementation of discrete quantumwalks

Over the past few years, there have been several proposals for the physical imple-
mentation of quantum walks. Quantum walks are unitary process that are naturally
implementable in a quantum system bymanipulating their internal structure. The internal
structure of the quantum system should be engineered to be able to manifest the position
and coin Hilbert spaces of the quantum walk. These quantum simulation based methods
have been proposed using classical and quantum optics (Zhang et al. 2007), nuclear mag-
netic resonance (Ryan et al. 2005), ion traps (Travaglione and Milburn 2002), cavity QED

Fig. 1 Classical and QuantumWalk Distributions. The probability distribution of a classical random walk (Top)
and a quantum random walk (Bottom) across the nodes of a lattice graph over four steps from left to right
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(Agarwal and Pathak 2005), optical lattices (Joo et al. 2007), and Bose Einstein condensate
(Manouchehri and Wang 2009) as well as quantum dots (Manouchehri and Wang 2008)
to implement the quantum walk.
Circuit implementation of quantum walks has also been proposed. While most of these

implementations focus on graphs that have a very high degree of symmetry (Loke and
Wang 2011) or very sparse graphs (Jordan and Wocjan 2009; Chiang et al. 2010), there
is some recent work on circuit implementations on non-degree regular graphs (Loke and
Wang 2012).
A central question in implementing quantum walks on graphs is how to scale the phys-

ical system to achieve the complexity required for simulating large graphs. Rohde et al.
(2013) showed that exponentially larger graphs can be constructed using quantum entan-
glement as a resource for creating very large Hilbert spaces. They use multiple entangled
walkers to simulate a quantum walk on a virtual graph of chosen dimensions. However,
this approach has its own limitations and arbitrary graphs can not be built with this
method.

Quantumwalk neural networks
Many graph neural networks pass information between two nodes based on the distance
between the nodes in the graph. This is true for both graph convolution networks and
diffusion convolution networks. However, quantum walk neural networks are similar to
graph attention networks in that the amount of information passed between two nodes
also depends on the features of the nodes. In graph attention networks this is achieved
by calculating an attention coefficient for each of a node’s neighors. In quantum walk
neural networks, the coin operator alters the spin states of the quantum walk to prioritize
specific neighbors.
A QWNN, as shown in Fig. 2, learns a quantum walk on a graph by means of back

propagating gradient updates to the coin operators used in the walk. The learned walk is
then used to diffuse a signal over the graph.
In (Dernbach et al. 2018), the quantumwalk neural network evolves a walk using a single

coin matrix, C, to modify the spin state of the walker ��� according to ���(t+1) = ���(t)C(t)

Fig. 2 Quantum walk neural network diagram. The feature matrix X is used by the banks to produce the coin
matrices C used in each step layer as well in the final diffusion process. The superposition��� evolves after
each step of the walk. The diffusion layer diffuses X using each superposition {���(0) ,���(1) , ...���(T)} and
concatenates the results to produce the output Y
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and then swaps states along the edges of the graph. Features are then diffused across the
graph by converting the states of the walker into a probability matrix, P, and using it to
diffuse the feature matrix: Y = PX. The coin matrix is learned through backpropagating
the gradient of a loss function. In this paper we replace the coin matrix by a node and time
dependent function we call a bank. The bank forms the first of the three primary parts
of a QWNN. It is followed by the walk and the diffusion. The bank produces the coin
matrices used to direct the quantum walk, the walk layers determine the evolution of the
quantum walk at each step, and the diffusion layer uses these states to spread information
throughout the graph.

Bank

The Coin operators modify the spin state of the walk and are thus the primary levers by
which a quantum walk is controlled. The coin operator can vary spatially across nodes
in the graph, temporally along steps of the walk, or remain constant in either or both
dimensions. In the QWNN, the bank produces these coins for the quantum walk layers.
When the learning environment is restricted to a single static graph, the bank stores

the coin operators as individual coin matrices distributed across each node in the graph.
However, for dynamic or multi-graph situations, the bank operates by learning a function
that produces coin operators from node features f : X → C

d×d where d is the maximum
degree of the graph. In general, f is any arbitrary function that produces a matrix followed
by a unitary projection to produce a coinC. This projection step is expensive as it requires
a singular value decomposition of a d × d matrix.
In recurrent neural networks (RNN), unitary matrices are employed to deal with

exploding or vanishing gradients because backpropagating through a unitary matrix does
not change the norm of the gradient. To avoid expensive unitary projections, several
recursive neural network architectures use functions f whose ranges are subsets of unitary
matrices. A common practice is to use combinations of low dimensional rotation matri-
ces (Arjovsky et al. 2016; Jing et al. 2017). This was the model used for the coin operators
in previous QWNNs (Dernbach et al. 2018).
In our work, we focus on elementary unitary matrices. These matrices are of the form

U = I − 2wwT/(wTw) where I denotes the identity matrix and w is any vector. These
matrices can be computed efficiently in the forward pass of the neural network and their
gradients can similarly be computed efficiently during backpropagation. While this work
focuses on using a single elementary matrix for each coin operator, any unitary matrix can
be composed as the product of elementary unitary matrices. The QWNN bank produces
the coin matrix for node vi according the following:

Ci = I − 2f (vi)f (vi)T/(f (vi)T f (vi)).

We propose two different functions f (vi).
The first function:

f1(vi) = WTvec
(
XN (vi)

) + b,

where vec
(
XN (vi)

)
denotes the column vector of concatenated features of the neighbors

of vi, is a standard linear function parameterized by a weight matrix W ∈ R
(Fd)×d, with

F the number of features, and a bias vector b ∈ R
d . This method has individual weights

for each node but is not equivariant to the ordering of the nodes in the graph. This means
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that permuting the neighbors of vi changes the result of the function. We mitigate this
effect by using a heuristic node ordering based on node centrality that we outline in
“Node and neighborhood ordering” section.
The second function:

f2(vi) = XN (i)WXT
i ,

with W ∈ R
F×F , computes a similarity measure between the node vi and each of its

neighbors. This method is equivariant with respect to the node ordering of the graph
(i.e. permuting the neighborhood of vi equally permutes the values of fk(vi)). This in turn
allows the entire neural network to be invariant to node ordering.

Walk

For a graph with N vertices, the QWNN processes N separate, non-interacting walks
in parallel – one walk originating from each node in the graph. The walks share
the same bank functions. A T-step walk produces a sequence of superpositions
{���(0),���(1), ...,���(T)}. For a graph with degree d, the initial superposition tensor ���(0) ∈
C
N×N×d is initialized with equal spin along all incident edges to the node it begins at such

that
(
���

(0)
ii·

)H
���

(0)
ii· = 1 and ∀i 	=j : ���

(0)
ijk = 0. The value of ���

(t)
ijk denotes the amplitude of

the i-th walker at node vj with spin k after t steps of the walk.
A complete walk can be broken down into individual step layers. Each quantum step

layer takes as input the current superposition tensor ���(t), the set of coins operators C(t)

produced by the bank, as well as a shift tensor S ∈ Z
N×d×N×d
2 that encodes the graph

structure: Sujvi = 1 iff u is the the ith neighbor of v and v is the jth neighbor of u. The
superposition evolves according to:

���(t+1) = ���(t)C(t)··S

whereA··B denotes the tensor double inner product of A and B. Equivalently, for an edge
(u, v), with u being the ith neighbor of v and v being the jth neighbor of u:

���
(t+1)
wuj =

(
���(t)

v C(t)
v

)

wi

���
(t+1)
wvi =

(
���(t)

u C(t)
u

)

wj

The output ���(t+1) is fed into the next quantum step layer (if there is one) and the
diffusion layer.

Diffusion

The superpositions at each step of the walk are used to diffuse the signal X across the
graph. Given a superposition ���, the diffusion matrix is constructed by summing the
squares of the spin states: PPP = ∑

k ���··k � ���··k . The value PPPij gives the probability of the
walker beginning at vi and ending at vj similar to a classical random walk matrix. Diffused
features can then be computed as a function of P and X by Y = h(PX + b) where h is
an optional nonlinearity (e.g. reLU). The complete calculation for a forward pass for the
QWNN is given in Algorithm 1.
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Algorithm 1:QWNN Forward Pass
given : Initial Superpositions���(0), Shift S
input : Features X
output: Diffused Features Y

1 for t = 1 to T do
2 for All nodes vi do
3 v(t)

i = WTvec
(
XN (vi)

) + b or v(t)
i = XN (i)WXT

i

4 C(t)
i = I − 2v(t)

i

(
v(t)
i

)T
/
(
(v(t)

i )Tv(t)
i

)

5 ���
(t)
·i· ← ���

(t−1)
·i· · C(t)

i··
6 ���(t) ← ���(t)··S (

i.e.,���(t)
wuj = ∑

v
∑

i���
(t)
wviSviuj

)

7 P(t) ← ∑
k���

(t)
··k � ���

(t)
··k

8 Y(t) ← h(P(t)X + b(t))

return :
{
Y(0),Y(1), ...,Y(T)

}

Node and neighborhood ordering

Node ordering and by extension neighborhood ordering of each node can have an effect
on a quantum walk if the coin is not equivariant to the ordering. Given a non-equivariant
set of coins, if the order of nodes in the graph is permuted, the result of the walk may
change.
This is the case for the first of the two bank functions. We address this issue using a

centrality score. The betweenness centrality (Brandes 2001) of node vi is calculated as:

g(vi) =
∑

j 	=i	=k

σjk(vi)
σjk

where σjk is the number of shortest paths from vj to vk and σjk(vi) is the number of shortest
paths from vj to vk that pass through vi. A larger betweenness centrality score implies a
node is more central within the graph. Conversely, a leaf node connected to the rest of
the graph by a single edge has a score of 0. Nodes in the graph are then ranked by their
betweenness centrality and each neighborhood follows this ranking so that when ordering
a node’s neighbors, the most central nodes in the graph come first. In this setting, a walker
moving along a higher ranked edge is moving towards a more central part of the graph
compared to a walker moving along a lower ranked edge.

Experiments
We demonstrate the effectiveness of QWNNs across three different types of tasks:
node level regression, graph classification and graph regression. Our experiments
focus on comparisons with three other graph neural network architectures: diffusion
convolution neural networks (DCNN) (Atwood and Towsley 2016), graph convolu-
tion networks (GCN) (Kipf and Welling 2016), and graph attention networks (GAT)
(Velickovic et al. 2017).
For graph level experiments, we employ a set2vec layer (Vinyals et al. 2016) as an

intermediary between the graph layers and standard neural network feed forward layers.
Set2vec has proved effective in other graph neural networks (Gilmer et al. 2017) as it is
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a permutation invariant function that converts a set of node features into a fixed length
vector.

Node regression

In the node regression task, daily temperatures are recorded across 409 locations in the
United States during the year 2009 (Williams et al. 2006). The goal of the task is to use
a day’s temperature reading to predict the next day’s temperatures. A nearest neighbors
graph (Fig. 3a) is constructed using longitudes and latitudes of the recording locations
by connecting each station to its closest neighbors. Adding edges to each station’s eight
closest neighbors produces a connected graph. The QWNN is formed from a series of
quantum step layers (indicated by walk length) followed by a diffusion layer. Since the
neural network in this experiment only uses quantum walk layers, we relax the unitary
constraint on the coin operators. While this can no longer be considered a quantum walk
in the strictest sense, the relaxation is necessary to allow the temperature vector to grow
or shrink to match increases or decreases in temperatures from day to day. For this exper-
iment, we also compare the results with multiple DCNNwalk lengths. For GCN and GAT

(a)

(b)

(c)
Fig. 3 Comparison of a classical walk and a learned quantum walk. The classical and quantum random walks
evolve from left to right over 4 steps. Both walks originate at the highlighted node. At each step, the brighter
colored nodes correspond to a higher probability of the random walker at that node. A classical walk, as used
in GCN and DCNN, diffuses uniformly to neighboring nodes. The learned quantum walk can direct the
diffusion process to control the direction information travels. The third and fourth steps of the quantum walk
show the information primarily directed southeast. a Graph of Temperature Recording Locations b Diffusion
of a 4-step Classical RandomWalk c Diffusion of a 4-step QuantumWalk After Training
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an effective walk length is constructed by stacking layers. Data is divided into thirds for
training, validation, and testing. Learning is limited to 32 epochs.
Table 1 gives the test results for the trained networks. The root-mean-square error

(RMSE) and standard deviation (STD) are reported from five trials. We observe that
quantum walk techniques yield lower errors compared to other graph neural network
techniques. The two networks which control the amount of information flow between
nodes, QWNN and GAT, appear to be able to take advantage of more distant relation-
ships in the graph for learning while DCNN and GCN perform best with more restrictive
neighborhood sizes.
We use this experiment to provide a visualization for the learned quantum walk.

Figure 3b and c shows the evolution of a classical random walk and the learned quantum
random walk originating from the highlighted node respectively. At each step, warmer
color nodes correspond to nodes with higher superposition amplitudes. Initially, the
quantum walk appears to diffuse outward in a symmetrical manner similar to a classical
random walk, but in the third and fourth steps of the walk, the learned quantum walk
focuses information flow towards the southeast direction. The ability to direct the walk
in this way proves beneficial in the prediction task.

Graph classification

The second type of graph problem we focus on is graph classification. We apply
the graph neural networks to several common graph classification datasets: Enzymes
(Borgwardt et al. 2005), Mutag (Debnath et al. 1991), and NCI1 (Wale et al. 2008).
Enzymes is a set of 600 molecules extracted from the Brenda database (Schomburg et al.
2004). In the dataset, each graph represents a protein and each node represents a sec-
ondary structure element (SSE) within the protein structure, e.g. helices, sheets and turns.
Nodes are connected if certain conditions are satisfied, with each node bearing a type
label, and its physical and chemical information. The task is to classify each enzyme into
one of six classes. Mutag is a dataset of 188 mutagenic aromatic and heteroaromatic nitro
compounds that are classified into one of two categories based on whether they exhibit
a mutagenic effect. NCI1 consists of 4110 graphs representing two balanced subsets of
chemical compounds screened for activity against non-small cell lung cancer. For both
the Mutag and NCI1 datasets, each graph represents a molecule, with nodes representing
atoms and edges representing bonds between atoms. Each node has an associated label
that corresponds to its atomic number. Summary statistics for each dataset are given in
Table 2. The experiments are run using 10-fold cross validation.
For the Enzyme and NCI1 experiment, the quantum walk neural networks are com-

posed of a length 6 walk, followed by a set2vec layer, a hidden layer of size 64,

Table 1 Temperature prediction results

RMSE ± STD

Walk Length 1 2 3 4 5

GCN 8.56 ± 0.02 8.14 ± 0.41 7.82 ± 0.13 8.55 ± 0.52 8.88 ± 0.73

DCNN 8.07 ± 0.21 7.40 ± 0.13 7.46 ± 0.06 7.44 ± 0.10 10.19 ± 0.18

GAT 7.84 ± 0.16 8.43 ± 0.42 8.47 ± 1.02 8.23 ± 0.69 7.93 ± 0.15

QWNN 6.11 ± 0.14 5.54 ± 0.16 5.38 ± 0.07 5.28 ± 0.08 5.65 ± 0.02

The best performing network is in bold



Dernbach et al. Applied Network Science            (2019) 4:76 Page 12 of 16

Table 2 Graph classification datasets summary and results

Enzymes Mutag NCI1

Graphs 600 188 4110

Average Nodes 33 18 30

Max Nodes 126 28 111

Max Degree 9 4 4

Node Classes 3 7 37

Graph Classes 6 2 2

Classification Accuracy ± STD

GCN 0.31 ± 0.06 0.87 ± 0.10 0.69 ± 0.02

DCNN 0.27 ± 0.08 0.89 ± 0.10 0.69 ± 0.01

GAT 0.32 ± 0.04 0.89 ± 0.06 0.66 ± 0.03

QWNN (cen) 0.26 ± 0.03 0.90 ± 0.09 0.76 ± 0.01

QWNN (inv) 0.33 ± 0.04 0.88 ± 0.04 0.73 ± 0.02

WL 0.59 ± 0.01 0.84 ± 0.01 0.85 ± 0.00

SP 0.41 ± 0.02 0.87 ± 0.01 0.73 ± 0.00

The best performing neural networks and the overal best performing methods are bolded for each task

and a final softmax layer. In Mutag, the walk length is reduced to 4 and the hid-
den layer to 16. The reduced size helps alleviate some of the overfitting from such a
small training set. We report the best results using the centrality based node order-
ing version of the network that uses the linear bank function: QWNN (cen) as well
as the invariant QWNN using the equivariant bank function: QWNN (inv). We also
report results from the three other graph networks. GCN, DCNN, and GAT are
all used as an initial layer to a similar neural network followed by a set2vec layer,
a hidden layer of size 64 (16 for Mutag) and a softmax output layer. DCNN uses
a walk length of 2, while GCN and GAT use feature sizes of 32. Additionally we
compare with two graph kernel methods, Weisfeiler-Lehman (WL) kernels (Sher-
vashidze et al. 2011) and shortest path (SP) kernels (Borgwardt and Kriegel 2005),
using the results given in (Shervashidze et al. 2011).
Classification accuracies are reported in Table 2. The best neural network accuracies

and the best overall accuracies are bolded. QuantumWalks are competitive with the other
neural network approaches. QWNN demonstrates the best average accuracy on Mutag
and Enzyme but the other neural network approaches are within the margin of error.
On the NCI1 experiment, QWNN shows a measurable improvement over the other neu-
ral networks. The WL kernels outperform all the neural network approaches on both
Enzymes and NCI1.

Graph regression

Our graph regression task uses the QM7 dataset (Blum and Reymond 2009; Rupp et al.
2012), a collection of 7165 molecules each containing up to 23 atoms. The geometries of
these molecules are stored in Coulomb matrix format defined as

Cij =
{
0.5Z2.4

i i = j
ZiZj

|Ri−Rj| i 	= j

where Zi, Ri are the charge of and position of the i-th atom in the molecule respectively.
The goal of the task is to predict the atomization energy of each molecule. Atomization
energies of the molecules range from -440 to -2200 kcal/mol.
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For this task, we form an approximation of the molecular graph from the Coulomb
matrix by normalizing out the atomic charges and separating all atom-atom pairs into two
sets based on their physical distances. One set contains the atom pairs with larger dis-
tances between them and the other the smaller distances. We create an adjacency matrix
from all pairs of atoms in the smaller distance set. There is generally a significant gap
between the distances of bonded and unbonded atoms in a molecule but this approach
leaves 19 disconnected graphs. For these molecules, edges are added between the least
distant pairs of atoms until the graph becomes connected. We use the element of each
atom, encoded as a one-hot vector, as the input features for each node.
The two variants of QWNN are constructed using a 4-step walk, followed by the set2vec

layer, a hidden layer of size 10, and a final output layer. For the other graph neural net-
works, a single graph layer is used followed by the same setup of a set2vec layer, a hidden
layer of size 10, and the output layer. A DCNN of length 2 walk and GCN and GAT
using 32 features were found to give the best results. Root-mean-square error (RMSE) and
mean absolute prediction error (MAE) are reported for each network in Table 3. QWNNs
demonstrate a marked improvement over other methods in this task.

Limitations
Storing the superposition of a single walker requires O(Nd) space, with N the number of
nodes in the graph, and d the max degree of the graph. To calculate a complete diffusion
matrix requires that a separate walker begin at every node, increasing the space require-
ment toO(N2d) which starts to become intractable for very large graphs, especially when
doing learning on a graphics processing unit (GPU). Some of this cost can be alleviated
using sparse tensors. At time t=0 the superpositions are localized to single nodes so only
O(Nd) space used by nonzero amplitudes. At time t=1 the first step increases this to
O(Nd2) as each neighboring node becomes nonzero. Given a function s(G, t)which deter-
mines the number of nodes in a graph reachable after a t-length random walk, the space
complexity for a t-length walk is O(Nds(G, t)).
The majority of graph neural networks are invariant to the ordering of the nodes in the

graph. This is true for GCN, DCNN, and GAT.We provide one formulation for a QWNN
that is also invariant, however the second formulation is not. Although we have greatly
reduced the effect, node ordering can still affect the walk produced in QWNN and thus
the overall output of the network. This can occur when two otherwise distinguishable
nodes have the same betweenness centrality.

Concluding remarks
Quantum walk neural networks provide a unique neural network approach to graph clas-
sification and regression problems. Unlike prior graph neural networks, QWNNs fully

Table 3 Atomization energy prediction results

RMSE MAE

GCN 16.51 ± 0.38 12.39 ± 0.29

DCNN 11.90 ± 0.59 8.53 ± 0.42

GAT 18.75 ± 0.51 14.52 ± 1.12

QWNN (cen) 9.70 ± 0.77 6.74 ± 0.24

QWNN (inv) 10.91 ± 0.56 8.28 ± 0.47

The best performing network is in bold
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integrate the graph structure and the graph signal into the learning process. This allows
QWNN to learn task dependent walks on complex graphs. The benefit of using the dis-
tributions produced by these walks as diffusion operators is especially clear in regression
problems where QWNN demonstrate considerable improvement over other graph neural
network approaches. This improvement is demonstrated at both the node and the graph
level.
An added benefit of QWNN is that the learned walks provide a human understand-

able glimpse of the neural network determination of where information originating from
each node is most beneficial in the graph. In the current work, each walker on the graph
operates independently. A future research direction is to investigate learningmulti-walker
quantum walks on graphs. Reducing the number of independent walkers and allowing
interactions can reduce the space complexity of the quantum walk layers.
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