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Abstract
Many networks including spatial networks, social networks, and web networks, are not
deterministic but probabilistic due to the uncertainty of link existence. From networks
with such uncertainty, to extract densely connected nodes, we propose
connectedness centrality and its extended version, group connectedness centrality,
where the connectedness of each node is defined as the expected size of its
connected component over all possible graphs produced by an uncertain graph. In a
large-scale network, however, since the number of combinations of possible graphs is
enormous, it is difficult to strictly calculate the expected value. Therefore, we also
propose an efficient estimation method based on Monte Carlo sampling. When
applying our method to road networks, the extracted nodes can be regarded as
candidate sites of evacuation facilities that many residents can reach even in the
situation where roads are stochastically blocked by natural disasters. In our
experimental evaluations using actual road networks, we show the following
promising characteristics: our proposed method 1) works stably with respect to the
number of simulations; 2) extracts nodes set reachable from more nodes even in a
situation that many links are deleted; and 3) computes much more efficient, compared
to existing centrality measures and community extraction methods.

Keywords: Spatial network, Uncertain graph, Centrality measure, Facility location
problem, Connected component decomposition, Graph sampling

Introduction
In many real-life graph structures, relationships among nodes are not permanent and
sometimes break. For example, in infrastructure networks such as road networks or
power grids, links can be broken due to reconstruction or disaster and thus, in Social
Networking Service (SNS) communication networks, communication among users is
not maintained and is sometimes broken. These graphs are considered uncertain graphs
with a connection probability for each link. In an uncertain graph, connections among
nodes are stochastically determined so that the number of possible instances is very
large (See Fig. 1). In this study, we aim to estimate the node connectedness and extract
expected connected subgraphs under stochastic link disconnections. Assuming an uncer-
tain graph, where link disconnection occurs stochastically-called edge-uncertainity-we
have proposed a new centrality measure focusing on the degree of connectedness with
neighboring nodes and an efficient sampling algorithm based on a time-evolving graph

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0187-3&domain=pdf
http://orcid.org/0000-0003-3448-8182
mailto: takayasu.fushimi@gmail.com
http://creativecommons.org/licenses/by/4.0/


Fushimi et al. Applied Network Science            (2019) 4:66 Page 2 of 24

Fig. 1 Uncertain graph and possible worlds

(Fushimi et al. 2018). Although our method can be applied to general networks in prin-
ciple, we target mainly spatial networks because urban road structures can be naturally
regarded as uncertain graphs and few existing studies focus on such networks. In our
previous study (Fushimi et al. 2018), our method-connectedness centrality-defines the
connectedness of each node as the expectation of the number of reachable nodes and
attempts to extract nodes with high connectedness even when the graph is separated
into several connected components by a link disconnection. In order to extract multiple
nodes with high connectedness, we enhanced this method to group connectedness cen-
trality, which selects nodes so as to maximize our objective function in a greedy manner.
For a road network, the group connectedness centrality can be used to estimate instal-
lation sites for evacuation facilities, as these must be accessible to neighboring residents
even when the roads are blocked due to floods, landslides, or the collapse of houses and
telegraph pillars.
In this paper, we substantially extended our previous study (Fushimi et al. 2018) by

adding new content as follows:

• We added research on uncertain graphs ((Jin et al. 2011; Ceccarello et al. 2017;
Potamias et al. 2010; Pfeiffer and Neville 2011)) and facility locations ((Alp et al. 2003;
McKendall and Shang 2006; Levanova and Loresh 2004; Tabata et al. 2017; Agra et al.
2017; Kaveh et al. 2018; Puerto et al. 2014)) to the references and discuss these related
studies in “Related work” section. Through that discussion, we further clarify the
originality of our work in the field.

• We added four figures (Figs. 1, 2, 3, and 4) and related discussions to improve the
understandability of our manuscript.
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Fig. 2 Sampling algorithm

• We reformatted our proposed method and provide a pseudo code as Algorithms 1
and 2 to improve its understandability and readability.

• We prove that our proposed measures are unbiased estimators.
• We provide additional experimental results in “Results of connectedness centrality:

cnc3(v)” section and demonstrate how the proposed centrality is quite different from
traditional centrality measures, specifically, closeness, betweenness, and eigenvector
centrality, by comparing the top 1000 nodes identified in each centrality.

Fig. 3 Proposed sampling algorithm
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Fig. 4 Counting of reachable nodes

• We discussed how our proposed algorithm deals with non-uniform connection
probabilities in “Extension: case of non-uniform connection probabilities” section
and other types of networks in “Discussion” section.

• We also revised and extended our Introduction and Conclusion according to the
above-mentioned additions.

The rest of our paper is organized as follows. In “Related work” section, we overview
some related work and, in “Proposed measure” section, we explain in detail the pro-
posed centrality measure and proposed algorithm. In “Experimental settings”, “Results
of connectedness centrality: cnc3(v)” and “Results of group connectedness centrality:
cnc3(R)” sections, we set forth and discuss the experimental settings and results. Fur-
thermore, we discussed how our proposed algorithm deals with non-uniform connection
probabilities and other types of networks in “Extension: case of non-uniform connection
probabilities” section and “Discussion” section, and finally, we summarize our paper and
propose future work in “Conclusion” section.

Related work
In this section, related work is organized from the viewpoint of centrality measure,
community extraction, uncertain graphs, and facility location problems.

Centrality measure

In our method, each node is ranked by its connectedness score with neighbor nodes,
which can be treated as a centrality measure. Some centrality measures for nodes have
been proposed in sociology and web science, including degree, closeness, harmonic,
betweenness, eigenvector, Katz, Bonacich, HITS, and PageRank (Freeman 1979; Katz
1953; Bonacich 1987; Brin and Page 1998; Kleinberg 1999). Since degree distribution does
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not follow power-law distribution and the maximum degree of nodes is relatively small
due to geographical restrictions in road networks, degree centrality does not make sense.
Closeness centrality and betweenness centrality take the shortest path between nodes
into account, so these measures work well even in urban traffic networks, as reported in
some studies (Crucitti et al. 2006; Park and Yilmaz 2010). Furthermore, eigenvector mea-
sures can extract subgraphs where high-degree nodes connect to each other. As a result,
in a road network, it will be possible to extract urban districts where intersections with
relatively high degrees are connected.
Our aim is to extract nodes with high connectedness scores, which can then be applied

to candidate sites for evacuation facilities. When extracting such nodes, accessibility to
these nodes can be an important factor. Closeness centrality quantifies accessibility based
on distance, but does not take into consideration road blockages. Therefore, even if an
extracted node is close to other nodes, if the node is located near a river, it is not a viable
candidate location for an evacuation facility. Taken together, since some of the existing
measures could extract important nodes in each of the notions for road networks, we
experimentally compare the characteristics of related measures and ours.

Community extraction

Our method extracts representative nodes and divides the remaining nodes into clus-
ters based on connectedness with the representative nodes, and thus can be treated as
a community extraction method. In recent years, many methods for community extrac-
tion have been proposed (Seidman 1983; Girvan and Newman 2002; Clauset et al. 2004;
Palla et al. 2005; von Luxburg 2007; Blondel et al. 2008; Chen and Hero 2015). How-
ever, these methods cannot straightforwardly apply to road networks, where the degrees
of nodes roughly obey uniform distributions and there are little differences between
the number of inter-community and intra-communities links. Furthermore, although
spectral clustering (von Luxburg 2007) and deep community detection (Chen and Hero
2015) have a similar flavor to our method in terms of link cuttings, since the eigen-
gaps of the Laplacian matrix and differences between the successive eigenvalues of spatial
networks are quite small, unlike social networks, it is difficult to calculate the Fiedler
vector of the Laplacian matrix with stability. This fact corresponds to the existence of
some non-dominant communities and a few links that, when cut, isolate the spatial
network. The Girvan-Newman (GN) method also cuts some links according to the
edge-betweenness centrality and treats connected components of the remaining graph
as communities (Girvan and Newman 2002). The GN method is based on a similar
framework to our method in treating the connected components as communities by
cutting edges; however, it is difficult to apply to large-scale networks due to its large
computational complexity. Therefore, we compare our method with the CNM (Clauset,
Newman, and Moore) method (Clauset et al. 2004), which directly optimizes the mod-
ularity function to accelerate the calculation and produces similar results to the GN
method.

Uncertain graph

The uncertain graph has been studied within the broader context such as network relia-
bility, querying, and mining. Jin et al. proposed two methods to efficiently and accurately
estimate the probability that the distance between a given node pair of an uncertain graph
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is smaller than the designated value (Jin et al. 2011). In (Jin et al. 2011), the authors
generalized the simple reachability problem to the distance-constraint reachability prob-
lem, which considers both distance and reachability in an uncertain graph. Therefore
these methods can be useful in the context of evacuation activity. However, probability
must be assigned to each link. Our method, on the other hand, integrates out all possi-
bilities so that it does not need to preliminarily know the probability of each link. Our
method adopts the deterministic recursive computational procedure in order tominimize
the variance of the estimator and unequal probabilistic sampling over the enumeration
tree in order to accelerate the sampling process.
Ceccarello et al. developed a node clustering method for an uncertain graph and

reduced the treated problem to the k-center and k-median problems (Ceccarello et al.
2017). In this method, distances between nodes are defined by the inverse of the connec-
tion probability among them, which is efficiently and accurately estimated by the Monte
Carlo sampling method. Potamias et al. introduced distance measures and identified the
k-Nearest Neighbor nodes from an uncertain graph by calculating the probability of the
distances between the arbitrary node pair based on the Monte Carlo sampling method
with efficient pruning techniques in order to reduce the search space (Potamias et al.
2010). Pfeiffer et al. extended some structural indices on discrete graphs to probabilistic
graphs by computing the expected values of sampling graph indices (Pfeiffer and Neville
2011).
Some research on stochastic graphs address another uncertainty. A stochastic graph

is a fixed structure graph with randomly changing edge weights. The distribution of its
change probability is unknown, but stationary. Misra et al. proposed a method that uses
Learning Automata (LA) and Frigioni’s algorithm to find the statistical shortest path
tree in an average graph topology for the dynamic single source shortest path problem
(DSSSP) (Misra and Oommen 2005). Rezvanian et al. proposed generalization of some
network measures for stochastic graphs using six LA-based algorithms to calculate these
measures (Rezvanian and Meybodi 2016). Vahidipour et al. proposed an efficient LA-
based algorithm that speeds up the process of finding the shortest path in a stochastic
graph using parallelism for DSSSP (Vahidipour et al. 2017).
In contrast to these existing studies, which assume the connection strength as a prob-

ability value for each link, our method assumes a probability distribution for each link.
Furthermore, our method also conducts Monte Carlo sampling and, as seen above,
the efficiency and accuracy of these methods depend on the quality of the sampling
techniques. Unlike the above-mentioned samplingmethods, our proposed sampling algo-
rithm is based on a time-evolving graph for which no link exists in a graph at the initial
state and links are added to the graph one by one.

Facility location on graph

The most famous facility location problem is the k-median problem. The objective
of the k-median problem is to minimize the sum of distances between citizens and
their nearest facility, and many approximation algorithms have been reviewed (Alp et
al. 2003; McKendall and Shang 2006; Levanova and Loresh 2004). As a facility loca-
tion problem over graphs, a closeness-centrality-based method has been proposed
(Tabata et al. 2017). Closeness centrality focuses on the graph distance and extracts
the most central node with a minimum distance to the others. Although the method
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can quickly solve the location of a single facility, it cannot handle multiple facil-
ities. Agra et al. (2017) provided a k-median problem algorithm for a graph that
is divided into several connceted components like archipelagos. Since the approach
assumes that it is known beforehand whether it is divided into connected compo-
nents, it cannot deal with graph disruption by the stochastical occurrences of link
breakages.
For locating evacuation facilities, the method proposed in (Kaveh et al. 2018) intro-

duced a weight for each node that represents a risk factor like topographic conditions to
the k-median problem. This method mainly considers the failure of nodes (facilities), but
not the stochastic occurence of link disconnection. The method proposed by Puerto et al.
considered the disruption possibility of an edge (Puerto et al. 2014), which has high com-
putation costs. In fact, the only case of an efficient algorithm in the literature is k = 1, 2.
Unlike these methods, our method attempts to extract multiple nodes as evacuation facil-
ity candidate sites based on connectedness with neighbor nodes calculated by an efficient
and accurate sampling.

Proposedmeasure
In order to estimate node connectedness under a stochastic link disconnection, we pro-
pose a node ranking measure, called connectedness centrality, and its efficient sampling
algorithm. To this end, we explain three versions of connectedness centrality measures.
More specifically, we present the first centrality, called cnc1, as a general theoretical
framework and then derive the second, called cnc2, as a computable measure by dis-
cretizing its prior probability distribution. We then propose a third, called cnc3, as a
practical measure equipped with its efficient estimation algorithm. This can be natu-
rally explained as a special case of cnc2, assuming that each link connection probability
is the same, although this equal probability assumption can be easily relaxed, as shown
in “Extension: case of non-uniform connection probabilities” section. Furthermore, to
select multiple nodes, we propose group connectedness centrality by extending the target
of connectedness centrality from each node to node groups.

Connectedness centrality: cnc1
Let G = (V , E) be the graph structure of a given spatial network. For each link e ∈ E , we
consider a link connection probability p(e; s) that is determined according to somemodel,
such as a road blockage model, based on geographical properties, where s is a parameter,
just like an inverse of magnitude of earthquake, to control the probability p(e; s). We set s
in the range of 0 ≤ s ≤ 1 for our convenience. Figure 1 depicts an uncertain graph intro-
ducing connection probabilities to a given spatial network. For each link e ∈ E , let x(e)
be a random variable expressing the link connectivity, i.e., x(e) = 1 if link e is connected;
otherwise x(e) = 0, where p(x(e) = 1; s) = p(e; s). Then, by suitably arranging these ran-
dom variables and setting� = {0, 1}|E|, we can construct an indicator vector expressed as
x = (· · · , x(e), · · · ) ∈ �, whose total number of possible instantiations (possible worlds)
amounts to |�| = |{0, 1}||E| = 2|E|. For each instance of the indicator vector x, we can
obtain the corresponding graph Gx = (V , Ex), where Ex = {e | e ∈ E , x(e) = 1}. In this
paper, assuming a basic model based on independent Bernoulli trials for all links, with
repect to each graph Gx obtained from x, we can compute its occurrence probability as
follows:
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q(x; s) =
∏

e∈E
p(e; s)x(e)(1 − p(e; s))1−x(e) =

∏

e∈Ex
p(e; s)

∏

e∈E\Ex
(1 − p(e; s)), (1)

where · \ · stands for a set difference operator. Here, we should emphasize that, unlike
most studies on uncertain graphs, where each link connection probability is designated
as a value, our approach specifies each as a stochastic model of link connection p(e; s)
controlled by parameter s.
After decomposing Gx into connected components, we compute the size of each con-

nected component as the number of nodes belonging to the component and let c(v;Gx) be
the set of nodes belonging to the connected component in which node v ∈ V is included,
where c(u;Gx) = c(v;Gx) if the nodes u and v belong to the same connected components.
In this study, under a given stochastic model of link connection, we define our connect-
edness centrality of node v ∈ V by the expected size of the connected component where
v is included. More specifically, for each node v ∈ V , we quantify our first version of
connectedness centrality by the following expectation:

φ1(v) = cnc1(v) =
∫ 1

0

∑

x∈�

|c(v;Gx)|q(x; s)r1(s)ds, (2)

where r1(s) stands for a prior probability distribution with respect to parameter s. For
instance, it can be used to express the fact that small earthquakes occur frequently, but
huge ones are quite rare.

Connectedness centrality: cnc2
Next, we consider computing the integration of s by the summation ofH+1 equal interval
points. Note that, for the h-th point (0 ≤ h ≤ H), the link connection probability is set
to p(e; h/H). Under this quantization, for each node v ∈ V , we can quantify our second
version of connectedness centrality by the following expectation:

φ2(v) =
H∑

h=0

∑

x∈�

|c(v;Gx)|q(x; h)r2(h), (3)

where r2(h) = r1(h/H)/
∑H

h′=0 r1(h′/H).
Below, we propose computing the summation of 2|E| times by J Monte Carlo simula-

tions. Let G(h,j) = (V , E(h,j)) be a graph obtained by the j-th simulation (1 ≤ j ≤ J) at the
h-th point (See Fig. 2); then, we can estimate our connectedness centrality φ2(v) defined
in Eq. (3) by the following:

cnc2(v) = 1
J

H∑

h=0

J∑

j=1
|c(v;G(h,j))|r2(h). (4)

Now, by considering the following expectation value of |c(v;Gx)| denoted by 〈|c(v;Gx)|〉�,
with respect to our simulation based on q(x; h/H),

〈|c(v;Gx)|〉� =
∑

x∈�

|c(v;Gx)|q(x; h/H), (5)

we can see that cnc2(v) is an unbiased estimator of φ2(v), i.e.,

〈cnc2(v)〉 = 1
J

H∑

h=1

J∑

j=1
〈|c(v;Gx)|〉�r2(h) = φ2(v). (6)
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Thus, by setting both H and J to sufficiently large values, we can naturally expect that
cnc2(v) defined in Eq. (4) can be reasonably accurately estimated to cnc1(v) defined in
Eq. (2). However, when straightforwardly computing cnc2(v) for every v ∈ V for a large H
and J, we need a large computational load because its computational complexity becomes
O(HJ(N + L)), where N = |V| and L = |E | respectively stand for the numbers of nodes
and links for a given network. Note that the computational complexity of decomposing
a graph into its connected components is O(N + L) and, during this process, we can
simultaneously compute their sizes.

Connectedness centrality: cnc3
Below, we propose another reasonably accurate estimate, referred to as cnc3(v), instead
of cnc2(v) together with an effective algorithm whose computational complexity becomes
O(J(L+N logN)), rather thanO(HJ(N +L)). We assume that each link connection prob-
ability is the same, i.e., p(e; h/H) = p(h/H) = h/H , and define the set of graphs whose
number of links is h, expressed as �(h) = {x | ∑

e∈E x(e) = h}. This definition corre-
sponds to employing a setting of H = L. Under this uniform probability setting, for each
node v ∈ V , we can quantify our third version of connectedness centrality by the following
expectation:

φ3(v) =
H∑

h=0

1
|�(h)|

∑

x∈�(h)
|c(v;Gx)|r2(h). (7)

Below, we estimate φ3(v) by J Monte Carlo simulations.
In our proposed algorithm, from the initial state that all links are disconnected and

thus all nodes are isolated in the setting p(0) = 0, we repeatedly add a randomly selected
link one by one until the final state where all original links are connected in the setting
p(1) = 1 (See Fig. 3). During this process, we attempt to efficiently compute the expected
size of the connected component for each node v ∈ V by focusing on the difference
between the graphs caused by adding only one link. More specifically, for the j-th simu-
lation, we assign a random order to each link e ∈ E , denoted by e(h,j), where we also use
h ∈ {1, · · · ,H} to express the order that the link becomes connected. By considering a
graph defined by G(h,j) = (V , E (h,j)), where E (h,j) =

{
e(h′,j) ∈ E

∣∣ h′ ≤ h
}
, we can estimate

our connectedness centrality φ3(v) defined in Eq. (7) by the following:

cnc3(v) = 1
J

J∑

j=1

H∑

h=1

∣∣∣c
(
v;G(h,j)

)∣∣∣ r2(h). (8)

By considering the following expectation value of |c(v;Gx)|, denoted by 〈|c(v;Gx)|〉�(h),
with respect to our simulation based on 1/|�(h)|,

〈|c(v;Gx)|〉�(h) = 1
|�(h)|

∑

x∈�(h)
|c(v;Gx)|, (9)

we can see that cnc3(v) is an unbiased estimator of φ3(v), i.e.,

〈cnc3(v)〉 = 1
J

H∑

h=1

J∑

j=1
〈|c(v;Gx)|〉�(h)r2(h) = φ3(v). (10)

Thus, for uniform probability settings, by setting both H and J to sufficiently large val-
ues, we can naturally expect that cnc3(v) defined in Eq. (8) can be a reasonably accurate
estimate of cnc1(v) defined in Eq. (2).
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Solution algorithm of cnc3
Below, we provide details of our proposed algorithm together with its computational
complexity. In the initial state with no link, we set that every node belongs to an individ-
ually different component by assigning a unique component number n(v) ∈ {1, · · · ,N}
to each node v ∈ V . When a new link (represented by a red link in Fig. 3) denoted by
e(h,j) = (x, y)(h,j) is added, we can proceed to the next link if nodes x and y belong to the
same connected component; otherwise, we need to change the component number of
nodes belonging to one component.
More specifically, by assuming |c(x;G(h,j))| ≥ |c(y;G(h,j))| without loss of generality,

we propose that the component number with a smaller size is changed to a larger one
by setting n(z) ← n(x) for each z ∈ c(y;G(h,j)). Evidently, for each link addition, the
number of nodes whose component number is changed never exceeds N/2. Thus, during
all link additions, the computational complexity of these renumbering processes becomes
O(N logN).
Let cnc(h,j)3 (v) be the partial summation of

∣∣∣c
(
v;G(h′,j)

)∣∣∣ until h′ = h for the j-th
simulation defined by

cnc(h,j)3 (v) =
h∑

h′=1

∣∣∣c
(
v;G(h′,j)

)∣∣∣ r2(h′). (11)

Now, suppose that when a new link e(h,j) = (x, y)(h,j) was added at the h-th step, nodes x
and y switch to belong to the same connected component for the first time. For arbitrary
h′ ≥ h, since c

(
x;G(h′,j)

)
= c

(
y;G(h′,j)

)
, we can obtain the following relation:

cnc(h
′,j)

3 (x) − cnc(h
′,j)

3 (y) = cnc(h−1,j)
3 (x) − cnc(h−1,j)

3 (y). (12)

Thus, by maintaining the partial summation cnc(h
′,j)

3 (x) for a head node x of each con-
nected component and keeping the difference values such as cnc(h−1,j)

3 (x) − cnc(h−1,j)
3 (y)

for the other nodes in the component, we can obtain the final summation values, such
as cnc(H ,j)

3 (y), by using Eq. (12). Note that the computational complexity of obtaining
cnc(H ,j)

3 (v) for every v ∈ V is O(N) and that of updating these difference values is
O(N logN) because these updates can be done together with the above node renum-
bering processes. Therefore, since we need to shuffle and examine all of the links at the
j-th simulation, the total computational complexity of our proposed algorithm becomes
O(J(L+N logN)). Algorithm 1 and Fig. 4 show the details of the algorithm of connected-
ness centrality. In Algorithm 1, delta has twomeanings: for the head node s of a connected
component at step h, s.delta indicates the partial sum of reachable nodes cnc(h−1,j)

3 (s); for
the other appearing node x, x.delta indicates the difference value of the partial summation
of the reachable nodes between node x and its head node s, cnc(h,j)3 (x) − cnc(h,j)3 (s).

Group connectedness centrality

Although we can extract high-connectedness nodes using our connectedness centrality,
these nodes gather unevenly in some parts of the network because of focusing on whether
or not they belong to the large connected component. Actually, as shown in “Results of
connectedness centrality: cnc3(v)” section, the top 1000 nodes of the connectedness cen-
trality ranking are located near each other. This tendency is impractical for the purpose of
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Algorithm 1 Connectedness centrality
1: Input: G = (V , E)

2: Output: v ∈ V , cnc3(v)
3: Initialize: ∀v ∈ V , v.score ← 0
4: for j = 1 to J do
5: h = 0
6: Initialize: E (h,j) ← ∅
7: Initialize:Q ← Shuffle(E) � O(L)

8: Initialize: ∀v ∈ V , c(v;G(h,j)) ← {v} � Set of reachable nodes
9: Initialize:H ← ∅ � Set of head nodes

10: Initialize: ∀v ∈ V , v.delta ← 0 � Difference value of #reachable nodes
11: Initialize: ∀v ∈ V , v.last ← 0 � Step when the #reachable nodes changes last
12: for h = 1 to H do � p = h/H
13: dequeue e = (x, y) ← Q
14: if c

(
x;G(h−1,j)) = c

(
y;G(h−1,j)) then

15: E (h,j) ← E (h−1,j) ∪ {e}
16: continue
17: end if
18: if

∣∣c
(
x;G(h−1,j))∣∣ <

∣∣c
(
y;G(h−1,j))∣∣ then Swap(x, y)

19: end if
20: s ← c

(
x;G(h−1,j)) .head

21: t ← c
(
y;G(h−1,j)) .head

22: s.delta += ∣∣c
(
s;G(h−1,j))∣∣ × (h − s.last)

23: s.last ← h
24: � ← t.delta + {∣∣c

(
t;G(h−1,j))∣∣ × (h − t.last)

} − s.delta
25: t.delta ← 0
26: for z ∈ c

(
y;G(h−1,j)) do z.delta += � � Repeating at most N/2 times

27: end for
28: c

(
y;G(h,j)) ← c

(
y;G(h−1,j)) ∪ c

(
x;G(h−1,j)) � Changing at most N/2 nodes

29: H ← H \ {t}
30: E (h,j) ← E (h−1,j) ∪ {e}
31: end for
32: for v ∈ H do
33: v.delta += |c (

v;G(H ,j)) | × (H + 1 − v.last)
34: v.score += v.delta/H
35: for z ∈ c

(
v;G(H ,j)) do z.score += (v.delta + z.delta)/H

36: end for
37: end for
38: end for
39: for v ∈ V do cnc3(v) ← v.score/J
40: end for

estimating evacuation facility locations. To overcome this shortcoming, we enhance the
notion of our connectedness centrality, called group connectedness centrality.
In group connectedness centrality, connectedness of the node setR is defined as:
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cnc1(R) =
∫ 1

0

∑

x∈{0,1}|E|
|c(R;Gx)|q(x; s)r1(s)ds, (13)

where c(R;Gx) = ⋃
r∈R c(r;Gx) stands for the number of reachable nodes from

whichever of r ∈ R.
Similarly to connectedness centrality, we compute the integration of s by the summation

of H + 1 equal interval points and set r(s) to be a uniform distribution.

cnc3(R) = 1
J

J∑

j=1

H∑

h=1

∣∣∣c
(
R;G(h,j)

)∣∣∣ r2(h). (14)

In order to select K nodes,R, which maximizes the objective function defined in Eq. (14),
we utilize a greedy algorithm. Hereafter, we refer to the selected node as the representative
node.When selecting k-th representative node r̂k , the greedy algorithm fixes k−1 already
selected nodesRk−1 and selects the node with the highest marginal gain,MG, defined by

MG(v;Rk−1) = cnc3(Rk−1 ∪ {v}) − cnc3(Rk−1)

= 1
J

J∑

j=1

H∑

h=1
mg(v;Rk−1)

(h,j)r2(h), (15)

where mg(v;Rk−1)
(h,j) = ∣∣c

(
Rk−1 ∪ {v};G(h,j)) \ c (

Rk−1;G(h,j))∣∣ stands for the incre-
ment of the number of reachable nodes when node v, which is a candidate for the k-th
representative node, is added to Rk−1. The total computational complexity of group
connectedness centrality becomes O(KJ(L + N logN)). Let Q be a subset of R, i.e.,
Q ⊂ R. Then we obtainmg(v;Q)(h,j) ≥ mg(v;R)(h,j), which directly derivesMG(v;Q) ≥
MG(v;R) from the definition of MG(v;R) shown in Eq. (15). Therefore, we can see
that cnc3(R)) is a submodular function, and thus its greedy solution guarantees to be
reasonably high quality with the worst case.
After selecting K representative nodes, each of the remaining nodes is assigned to the

community where a representative node with the highest connectedness exists. Suppose
that when a new link is added at the h-th step of the j-th simulation, node v switches
to belong to the same connected component with representative node r. The degree of
connectedness of nodes v and r is then defined as f (v, r)(j) = 1 − h/H . Therefore, the
degree of connectedness in all J simulations is F(v, r) = J−1 ∑J

j=1 f (v, r)(j). For each of
the remaining nodes, we assign one community of a representative node with the highest
connectedness as follows:

V(k) = {v ∈ V ; rk = arg maxr∈RF(v, r)}.

In the final stage of a simulation, when most representative nodes would belong to the
same connected component and the degree of connectedness between a remaining node
v and each representative node is equal, node v is assigned to the community of the closest
representative node in terms of graph distance. Hereafter, we refer to this method as CNC
and show the summary of CNC in Algorithm 2.
In the context of the evacuation facility location problem, the representative node

corresponds to a candidate site for an evacuation facility.
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Algorithm 2 Group connectedness centrality
1: Input: G = (V , E), K
2: Output:R ⊂ V ,

{
V(1), . . . ,V(K)

}

3: Initialize:R0 ← ∅
4: for k = 1 to K do
5: ∀v ∈ V , MG(v;Rk−1) = cnc3(Rk−1 ∪ {v}) − cnc3(Rk−1) � O(J(L + N logN))

6: r̂k ← arg maxv∈V\Rk−1
MG(v;Rk−1)

7: Rk ← Rk−1 ∪ {r̂k}
8: end for
9: R ← RK

10: ∀v ∈ V , ∀r ∈ R, F(v, r) = J−1 ∑J
j=1 f (v, r)(j)

11: V(k) = {
v ∈ V ; rk = arg maxr∈RF(v, r)

}

Experimental settings
To reveal the characteristics of our method, we conducted several experiments using
actual datasets to compare our method with some existing methods.

Dataset

In our experiments, we employed the following four prefectures extracted from Digi-
tal Road Map (DRM) data: Tokyo, Kanagawa, Shizuoka, and Ibaraki. We extracted all
intersections and roads from the DRM data of each prefecture. We then constructed a
spatial network with the intersections as the nodes and the roads between the intersec-
tions as the links by following a standard formulation of road networks such as those
presented by SNAP (Stanford Large Network Dataset Collection)1. Namely, we deleted
nodes used for the curve-segments of roads by directly connecting intersections at both
ends of these curve-segments, where the curve-segment nodes mean points representing
polylines between intersections in DRM, which are used to approximate the road shapes.
As a result, each network has 340919, 295151, 110925, and 172892 nodes, and 485858,
402576, 162322, and 263075 links, respectively.

Existing methods used for comparison

We used the following three centrality measures and two clustering (community extrac-
tion) methods for comparison. We begin by briefly discussing the centrality:

• Closeness centrality
Closeness centrality is calculated based on the average of the shortest path length
d(u, v) between pairs of nodes. In this paper, we employed a harmonic version using
the inverse value of the distance.

clc(v) =
∑

u∈V\{v}
d(v,u)−1

• Betweenness centrality
Betweenness centrality is calculated based on the number of shortest paths between
any pair of nodes.

1http://snap.stanford.edu/data/index.html
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bwc(v) =
∑

s∈V\{v}

∑

t∈V\{s,v}

σs,t(v)
σs,t

,

where σs,t is the number of shortest paths between s and t, and σs,t(v) is the number
of routes going through v of them.

• Eigenvector centrality
Eigenvector centrality is based on the dominant eigenvector of the adjacency matrix
and calculated using the power iteration method.

eigt+1(v) =
∑

u∈�(v)
eigt(u), eigt+1(v) ← eigt+1(v)∑

u∈V eig2t+1(u)
,

where �(v) is the set of adjacent nodes of v. We used the converged value eigt(v) as
centrality score eig(v).

Next, we show the abstract of the community extraction methods:

• Distance-based method
We extend the closeness centrality to group closeness centrality similarly to our
group connectedness centrality.

clc(R) =
∑

v∈V
max
r∈R d(v, r)−1. (16)

To maximize the objective function Eq. (16), we employ a greedy algorithm as well as
our group closeness centrality. Extracting a node setR consisting of K representatives
and assigning each of the remaining nodes to a community based on the shortest
path length to the representative node is equivalent to conducting K-medoids
clustering based on the graph distance. Hereafter, we refer to this method as CLC.

• Density-based method
In this study, we employed a well-known community extraction method, the CNM
method (Clauset et al. 2004), which directly optimizes the modularity function to
accelerate the calculation. The CNMmethod divides all nodes into K communities
without extracting representative nodes. Therefore, just for reference, we utilize the
CNMmethod as a general community extraction method.

Results of connectedness centrality: cnc3(v)

How to determine parameter J?

We first experimentally examine the quality of the connectedness centrality calculations.
The value of cnc3(v) depends on the parameter, which is the number of simulations J.
As mentioned above, when increasing the number of simulations J, the expected value of
cnc3(v) approaches the true value because cnc3(v) is the unbiased estimator. To confirm
the variance of cnc3(v) with respect to J, we conductedM calculations and introduced the
coefficient of variation, CV (v) = σ(v)/cnc3(v), where cnc3(v) = M−1 ∑M

m=1 cnc3(v;m)

stands for the arithmetic mean of the value by the m-th calculation, cnc3(v;m), 1 ≤ m ≤
M, and σ(v) = M−1 ∑M

m=1(cnc3(v;m)−cnc3(v))2 is a sample standard deviation. Figure 5
shows the coefficient of variation for M = 100 calculations, where the horizontal axis is
the connectedness centrality score cnc3(v). In each of the calculations, we set the number
of simulations to J = 10000.
From Fig. 5, we can confirm that, for all networks, the value of CV (v) is significantly

small, especially for the nodes with high scores. Moreover, generally speaking, the value
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Fig. 5 Coefficient of variation

of CV (v) becomes 1/
√
J with respect to the increase of J. Based on the results of this

verification, in the remainder of this paper, the result of J = 10000 will be shown unless
otherwise noted.

Comparison with other centrality measures

We now compare the top nodes in the ranking of existing centrality measures that can be
naturally applied to road networks and proposed connectedness centrality. Let CENT(r)
and PROP(r) be the node set up to the upper r ranking of the existing and the pro-
posed centrality, and quantitatively investigate the ranking similarity using the F-measure
(Rijsbergen 1979) defined as follows:

F(r) = 2 · |PROP(r) ∩ CENT(r)|
|PROP(r)| + |CENT(r)| .

Figure 6 shows the F-measure with respect to the ranking. Figure 6 shows that, in the
four networks, the F-measure is almost 0 up to the top 1000 and thus the rankings do not
almost match; that is, different nodes are extracted as important nodes by each centrality.
Figure 7 plots the top 1000 nodes in the proposed and existing centrality rankings in

the Shizuoka network. The highly ranked nodes of the connectedness centrality are dis-
tributed in wide plain areas, especially residential areas. In the residential area in the plain
part, since there are many routes to other nodes and some routes are blocked, alterna-
tive routes can be used. Thus, the connectedness of these nodes with neighbors is high.
Nodes on important roads such as expressways are selected as highly ranked nodes of the
closeness and betweenness centralities. While high-closeness nodes are chosen from the
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Fig. 6 Similarity of centrality rankings

central region of the network, high-betweenness nodes are chosen from the entire net-
work. Highly eigenvector-centrality-ranked nodes are selected from the downtown area
around a station. Although not shown, in the ranking based on the second eigenvector,
the nodes of the downtown area around the other station were extracted. In this way, var-
ious centrality measures can extract important nodes from the road network, but their
meanings are significantly different.

Results of group connectedness centrality: cnc3(R)

In this section, we evaluate the group connectedness centrality from the viewpoints of
stability with respect to the number of simulations, reachability to the extracted represen-
tative nodes, and computation time. In our experimental scenario, we set the number of
representatives (evacuation facilities)K as a relatively small number, likeK = 5, 10, 15, 20,
because, in practical terms, installation cost should be considered and the number of
facilities that can be installed in each municipality is restricted.

Stability with respect to the number of simulations

In this subsection, we show the stability of group connectedness centrality with respect
to the number of simulations J. In this experiment, we conducted CNC calculation 10
times while changing the number of simulations J = 101, 102, 103, 104. We regard a result
with J = 100, 000 as converged and compare the results in terms of similarities of rep-
resentative nodes and communities. Figure 8a depicts the Minimum Matching Distance
(MMD) between representatives extracted by each CNC computation, which is calculated
as follows:
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a b

c d

Fig. 7 Top 1000 nodes of centrality rankings (Shizuoka network). a Connectedness centrality. b Closeness
centrality. c Betweenness centrality. d Eigenvector centrality

MMD(J) = 1
K

K∑

k=1
min

1≤h≤K
e(r(k), r(h; J)) + 1

K

K∑

k=1
min

1≤h≤K
e(r(k; J), r(h)),

where r(k) and r(k, J) respectively stand for the k-th representative node extracted by a
CNC computation with 100,000 and J simulations, and e(a, b) is the Euclidean distance
between locations of two representatives a and b. In Fig. 8a, the red solid line is the mean
ofMMD(J) at 10 times with respect to the number of simulations J taken as the horizontal
axis and the black lines stand for the average Euclidean distances between node pairs of
�d = {(u, v) ∈ V × V ; d(u, v) = d}, d = 1, 5, 10. As illustrated by Fig. 8a, the average
MMD decreases as the number of simulations J increases and, especially at J = 104,

a b

Fig. 8 Stability w.r.t. the number of simulations (K = 20). a Similarity between representatives. b Similarity
between communities
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indicates about the same or less value than the average distance of �5. This means that
almost the same representatives are extracted.
Figure 8b depicts the Normalized Mutual Information (NMI) between communities

assigned to the nodes by each CNC computation. From Fig. 8b, the average NMI takes
a substantially large value, i.e., NMI(J) � 0.9, which means that almost the same com-
munities are extracted. These results confirm that stable results can be obtained with a
substantially small number of simulations compared with the number of possible worlds
J � 2L. Although we show the results with setting K = 20, which is the largest in our
settings, similar results were obtained with K = 5, 10, and15.

Visualization of representatives and their communities

Next, we qualitatively evaluate our method, CNC, compared with two existing methods,
CLC and CNM, by visualizing the extracted communities shown in Fig. 9b, c, and d. Due
to the limitation of the number of pages, we show only the results of the Shizuoka net-
work with setting K = 20, which is the largest of our experiments, but similar results
were obtained in other networks with settings K = 5, 10, and15. In Fig. 9b and c, the
representative nodes are described as star nodes and the colors of other nodes stand for
their assigned communities. Figure 9a depicts the natural environment in and around
the Shizuoka network, such as mountains and rivers, which can be constraints during
evacuations. Figure 9b shows that our CNC method extracts representatives (star nodes)
avoiding mountainous areas and divides nodes into communities roughly according to
the natural environment. For some representatives (surrounded by circles in Fig. 9b),
although they are located in lakeside, streamside, and peninsula areas and are easily iso-
lated, many nodes exist around them. Therefore, evacuation facilities are needed in these

a b

c d

Fig. 9 Visualization of Shizuoka network (K = 20). a Landmarks. b CNC. c CLC. d CNM
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areas. On the other hand, in the CLC and the CNM methods’ results, several communi-
ties (surrounded by squares in Fig. 9c and d) range across rivers andmountains. In Fig. 9c,
two circled representative nodes are located in the mountainous areas; thus access to the
residents of these communities may be difficult during disasters.

Reachability under link cutting

In this subsection, we quantitatively evaluate the reachability of the extracted represen-
tative nodes under a link disconnection situation, which models road blockage. In this
experiment, we remove a certain ratio of links according to edge-betweenness centrality
or random-selection. We then examine whether the representative node can be reached
from the non-representative nodes along with existence links.
First, we count the number of reachable representative nodes from each non-

representative node where a certain ratio of high edge-betweenness links is removed.
Figure 10 shows the average number of reachable representatives with respect to the cut-
ting rate taken as the horizontal axis. From Fig. 10, for all networks and all communities,
K, the average number of reachable representatives extracted by our CNCmethod is sub-
stantially larger than those by the CLCmethod. In particular, even though 10% of the links
are removed, at least one representative node can be reached from non-representative
nodes for any number of representatives. Although, as the number of representative
nodes increases, the difference between the results of the two methods tends to gradu-
ally decrease, the proposed method is sufficient with a smaller number of representative

a b

c d

Fig. 10 Reachability of the representatives under high-betweenness-link cutting. a tokyo. b kanagawa. c
shizuoka. d ibaraki
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nodes for obtaining the same degree of reachability to the representatives extracted by
CLC. For example, if setting up K = 5 evacuation facilities for the Tokyo network, each
resident can reach two to five proposed evacuation sites on average (red line in the left
top image of Fig. 10a). In order to achieve the same degree of reachability, 15 evacuation
facilities are required (green line in the left bottom image of Fig. 10a).
Next, we show the average number of nodes reachable to representatives within a cer-

tain distance d in Fig. 11, where the dotted and solid lines indicate the distances d = 10
and d = 20, respectively. In almost all the graphs of Fig. 11, we see that 1) when the
cutting probability is 0, that is, when the graph is not disconnected, many more nodes
can reach the representatives extracted by CLC than CNC; 2) as the cutting probability
increases, more nodes reach the representatives extracted by CNC than CLC. Although
the CLCmethod can extract nodes with the smallest sum of distances in situations where
the graph is not disconnected, we confirmed that many nodes cannot be reached if the
graph becomes disconnected.
Similarly to the results shown in Fig. 10, we removed a certain ratio of links selected uni-

formly at random and examined whether the representative node can be reached from the
non-representative nodes along with existence links (Fig. 12a). In the experiment, we exe-
cuted link removal trials 10 times and calculated the average number of reachable nodes.
Unlike the results in Fig. 10, the difference between the twomethods is substantially small
in any network. Similarly to Figs. 11, 12b shows the average number of nodes reachable to
representatives within a certain distance d. Unlike the results in Fig. 11, more nodes can
reach the CLC representatives; however, the number of nodes that can reach the CNC

a b

c d

Fig. 11 Distance to the representatives under high-betweenness-link cutting. a tokyo. b kanagawa. c
shizuoka. d ibaraki
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a b

Fig. 12 Reachability and distance of the representatives under random-link cutting (Tokyo). a Reachability. b
Distance

representatives is almost the same as that of high-betweenness-link cutting. Therefore,
the CNC method can stably extract promising representative nodes robust to both types
of link cuttings. Although not shown, similar results were obtained for the other networks.
From these results, in the context of the evacuation facility problem, residents can be

expected to reach evacuation facilities extracted by our method even when blockages of
high-betweenness roads like a bridge between cities occur.

Computation time

Finally, we evaluate ourmethod from the viewpoint of computation time. Figure 13a and b
show the computation time with respect to the number of simulations J and communities
K, respectively. As might be expected, Fig. 13a shows that, when the number of simula-
tions J increases, computation time increases; however, even at J = 10000, CNC is faster
than CLC. Moreover, Fig. 13b shows that the difference between the computation time of
the CNC and CLCmethods increases as the number of communities K grows. Therefore,
our method can output a number of representative nodes and their communities more
efficiently even for large-scale networks.

a b

Fig. 13 Computation time. a w.r.t. #simulations J (K = 10). b w.r.t. #communities K (J = 10000)



Fushimi et al. Applied Network Science            (2019) 4:66 Page 22 of 24

Extension: case of non-uniform connection probabilities
Although our proposed cnc3 algorithm was derived by assuming the case of the uniform
connection probability for all links, it should be mentioned that, by adequately transform-
ing a given simple graph into a multigraph and/or by adequately introducing some virtual
nodes and links, we can easily deal with the case of non-uniform ones even with our
current algorithm. Our algorithm is straightforwardly applicable to a multigraph. More
specifically, we denote the multiplicity of a link e ∈ E by m(e) and let e and f be links
whosemultiplicities arem(e) = 1 andm(f ) = 2, respectively, whichmeans that a multiset
{e, f , f } is a subset of E , that is, {e, f , f } ⊂ E . Then, for a list of links produced by randomly
arranging each element in E , the probability that at least one f appears prior to e is twice
the probability that e appears prior to both of them, indicating that we can naturally imple-
ment a non-uniform probability, p(f ; s) = 2p(e; s), since the second occurrence of f is
simply ignored in terms of connectedness. This suggests that, by adequately transforming
a given simple graph into a multigraph, we can easily deal with the case of non-uniform
probabilities.
As another way to deal with the case of non-uniform probabilities, we can consider

adding virtual nodes and links. More specifically, let (u, v) and (w, x) be links in a
simple graph G(V , E). After removing (u, v), we add two links (u, y) and (y, v) by intro-
ducing a completely new node y �∈ V , which produces a new graph G′(V ′, E ′) where
V ′ = V ∪ {y} and E ′ = (E \ {(u, v)}) ∪ {(u, y), (y, v)}. From our uniform setting, we
obtain p((u, y); s) = p((y, v); s) = p((w, x); s) for G′. Then, for a list of links produced
by randomly arranging each element in E ′, the probability that both (u, y) and (y, v)
appear prior to (w, x) is half the probability that e appears prior to one of them, indi-
cating that we can also naturally implement a non-uniform probability, p((u, v); s) =
0.5p((w, x); s), over the original graph G. This suggests that, by adequately introduc-
ing some virtual nodes and links, we can easily deal with the case of non-uniform
probabilities. In this paper, although our algorithm deals with the case of non-uniform
probabilities over a multigraph as mentioned above, to evaluate the basic performance of
our proposed algorithm, we focus only on the case of uniform probability over a simple
graph.

Discussion
Our problem setting is very closely related to percolation problems and introducing the
percolation states of individual nodes into our problem formulation is an interesting
research direction, as performed in the percolation centrality proposed by Piraveenan et
al. (2013). In addition, since our proposed algorithm is quite efficient and works linearly
with the problem size for each simulation, as another research direction, we expect that
our method can more efficienctly solve some percolation problems.
On the other hand, our proposed algorithm can contribute to some types of dynamic

networks analyses. In fact, as to some sort of dynamic networks that incrementally evolve
by addition of a link over time, we can directly apply our algorithm for efficiently com-
puting the average number of reachable nodes with respect to every node in a dynamic
network during a given period. Moreover, since it is straightforward to enable to cope
with the deletion of a link, our algorithm is expected to be served as a basic tool for this
type of reachability analyses, although we need to confirm the validity of this claim by
performing further experiments in future.
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In addition to the above future directions, our immediate future work includes eval-
uating both the effectiveness of our connectedness centrality and the efficiency of our
algorithm for the other types of networks such as social networks with non-uniform con-
nection probabilities. For this purpose, in order to clarify the basic characteristics of our
centrality and algorithm, we plan to utilize representative synthetic networks produced
by Erdos-Renyi, Barabasi-Albert, and stochastic block models. Furthermore, our method,
in particular, the objective function and its marginal gain on the CNC method, could
quantitatively evaluate existing facilities from the viewpoints of reachability to each facil-
ity, contribution of each facility and its duplication degree which helps planning not only
of the new construction but also of the abolishment. Therefore, it can be expected that
more effective evacuation facility installation would be realized by objectively quantifying
the degree of contribution of some candidate sites devised by domain experts using our
objective function.

Conclusion
In this paper, to extract high-connectedness nodes from large-scale networks, we pro-
posed connectedness centrality and its extended version, group connectedness cen-
trality, together with an efficient sampling method based on a time-evolving graph.
The proposed method can be regarded as a generalization of connected component
decomposition intended for a connected graph. In experiments using actual road net-
works, we confirmed that 1) connectedness centrality can quantify the degree of
connectedness with neighboring nodes and extract high-connectedness nodes; and
2) group connectedness centrality can extract adequate representative nodes from
the viewpoints of their location, community members, and reachability. We fur-
ther confirmed that our approximation based on sampling technique is efficient and
effective in terms of computation time and stability with respect to the number of
simulations.
As future work, we plan to develop an extended version of connectedness centrality

that takes non-uniform values as link connection probabilities into account and confirm
whether our method can apply to more varied types of networks.
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