
Applied Network ScienceAktas et al. Applied Network Science            (2019) 4:61 
https://doi.org/10.1007/s41109-019-0179-3

REVIEW Open Access

Persistence homology of networks:
methods and applications
Mehmet E. Aktas1* , Esra Akbas2 and Ahmed El Fatmaoui1

*Correspondence: maktas@uco.edu
1Department of Mathematics and
Statistics, University of Central
Oklahoma, Edmond, OK, USA
Full list of author information is
available at the end of the article

Abstract
Information networks are becoming increasingly popular to capture complex
relationships across various disciplines, such as social networks, citation networks, and
biological networks. The primary challenge in this domain is measuring similarity or
distance between networks based on topology. However, classical graph-theoretic
measures are usually local and mainly based on differences between either node or
edge measurements or correlations without considering the topology of networks
such as the connected components or holes. In recent years, mathematical tools and
deep learning based methods have become popular to extract the topological features
of networks. Persistent homology (PH) is a mathematical tool in computational
topology that measures the topological features of data that persist across multiple
scales with applications ranging from biological networks to social networks.
In this paper, we provide a conceptual review of key advancements in this area of using
PH on complex network science. We give a brief mathematical background on PH,
review different methods (i.e. filtrations) to define PH on networks and highlight
different algorithms and applications where PH is used in solving network mining
problems. In doing so, we develop a unified framework to describe these recent
approaches and emphasize major conceptual distinctions. We conclude with
directions for future work. We focus our review on recent approaches that get
significant attention in the mathematics and data mining communities working on
network data. We believe our summary of the analysis of PH on networks will provide
important insights to researchers in applied network science.
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Introduction
Information networks are important tools to model the relationship between complex
data. They exist in multiple disciplines such as social networks, biological networks, the
World Wide Web and so on. Analysis of such networks includes many applications such
as node classification (Bhagat et al. 2011; Akbas and Aktas 2019), community detection
(Akbas and Zhao 2017a,b), and link prediction (Lopes et al. 2010; Sharan et al. 2007).
The primary challenge in applied network science is measuring similarity or distance

between networks without knowing node correspondences. Since comparing the graphs
with the graph isomorphism is computationally expensive (Babai 2016), many statistically
oriented graph similarity measures have been proposed in literature (Baur and Benkert
2005; Zager and Verghese 2008). While some of these methods embed the graphs into a

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0179-3&domain=pdf
http://orcid.org/0000-0002-9527-9600
mailto: maktas@uco.edu
http://creativecommons.org/licenses/by/4.0/


Aktas et al. Applied Network Science            (2019) 4:61 Page 2 of 28

feature space and then define distances on that space, other methods define kernel func-
tions on graphs to build similarity measures (Vishwanathan et al. 2010). Moreover, in
graph-theoretic approaches, similarity measures are defined based on the difference in
graph-theoretic features such as assortativity, betweenness centrality, small-worldness,
and network homogeneity. However, such classical graph-theoretic measures are usually
local and mainly based on differences between either node or edge measurements, or
correlations without considering the network topology. Therefore, they may have infor-
mation loss over topological structures, such as the connected components or holes in
networks. On the other hand, structural holes in networks can give important information
about network topology (Xu et al. 2016). For instance, node importance can be measured
based on structural holes. The unique characteristics of nodes in the location of struc-
tural holes can help to separate the structural holes nodes from other nodes. Moreover,
the existence and distribution of structural holes in networks can be used as important
topological features for network comparison and classification (Xu et al. 2018).
In recent years, mathematical tools and deep learning based methods have become

popular to extract the topological features of networks. Persistent homology (PH) is a
mathematical tool in computational topology that measures the topological features of
data that persist across multiple scales. Its applications range from biological systems (Li
et al. 2017) to computer vision (Adcock et al. 2013). The basic idea in PH is to replace
the data points with a parametrized family of simplicial complexes, which can roughly
be considered as a union of points, edges, triangles, tetrahedron and higher-dimensional
polytopes, and encode the change of the topological features (such as the number of con-
nected components, holes, voids) of the simplicial complexes across different parameters
for data analysis (Ghrist 2008). For an extensive and rigorous introduction to the compu-
tation of persistent homology, we refer readers to the survey papers (Patania et al. 2017;
Otter et al. 2017).
Nowadays PH is largely applied for the study of complex networks as a feature extrac-

tor since persistent homology gives multi-scales summarization of the graph, unlike the
traditional metrics that describe the graph in specific angles. In this paper, we provide
a conceptual review of key advancements in the area of using PH on complex network
science.
The paper is structured as follows: In “Preliminaries” section, we define and give the

background on networks, simplicial complex, simplicial homology, and persistent homol-
ogy. In “Filtrations” section, we list and compare the filtrations defined for networks. In
“Algorithms and applications” section, we highlight different algorithms and applications
where PH is used in solving network mining problems. Lastly, we conclude the paper with
directions for future work in “Conclusion” section.

Preliminaries
While a network can be represented as a graph, it can also be represented as other topolog-
ical objects. Topology is a branch of mathematics that studies the property of the shapes
that are invariant under continuous deformation such as stretching, twisting, bending but
not tearing or gluing. For example, a donut and a coffee mug are topologically equiva-
lent since one can transform one to the other continuously. Topological invariants, which
are properties of the shapes that do not change under continuous transformation, are
useful to detect whether given two shapes are topologically equivalent. The number of
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connected components, the existence of holes or voids are examples of the topologi-
cal invariants. Algebraic topology is the area in topology that extracts these invariants
of an object by simply counting them or associating algebraic structures, such as vector
spaces, to them. For example, for a given topological object X, homology associates vector
spaces Hi(X) for i = {0, 1, 2, ...} where the dimension of H0(X) gives the number of con-
nected components, H1(X) gives the number of holes, H2(X) gives the number of voids
and so on.
For a finite set of points, e.g. a point cloud data, homology does not give interesting

information. The dimension of H0(X) gives the number of points, and the dimensions
of the higher dimensional homology are zero. It is also similar in a network setting. The
dimension of H0(X) gives the number of disconnected subgraphs, H1(X) gives the num-
ber of loops and the dimensions of the higher dimensional homology are zero since a
graph does not have 2 and higher dimensional simplices. Hence, instead of just looking
the homology of the finite set of points itself, using (1) a distance function, e.g. a correla-
tion or a measure of dissimilarity between points, and (2) a parameter value, one can add
simplices and check how homology changes across different scales. Persistent homology
then tracks the change in homology as the parameter value increases and detects which
topological features “persist" across different scales.
In general, it is very difficult to compute homology of an arbitrary topological object.

Hence, instead of doing this, we can approximate a topological object with a simplicial
complex and then compute the homology, that is actually called simplicial homology.
In this section, we define how to define persistent homology on a finite set of points and

networks. We first give a formal definition of graphs and explain their characteristics. We
then define the simplicial complex and how to compute the simplicial homology. Finally,
we briefly explain the persistent homology and two special metrics which are very useful
for using persistent homology in data analysis applications.

Graphs

As a formal definition, a graph G is a pair of sets G = (V ,E) where V is the set of vertices
and E is the set of edges of the graph. Networks can be represented via graphs where
vertices represent the objects and edges represent the relations between objects. There
are different types of graphs to represent different relations between vertices. While in an
undirected graph, edges link two vertices symmetrically, in a directed graph (also called
digraph in literature), edges link two vertices asymmetrically. If there is a score for the
relationship between vertices which could represent the strength of interactions, we can
represent this type of relations or interactions by aweighted network. In a weighted graph,
a weight function W : E → R is defined to assign a weight on each edge. Weights could
come from the Euclidean space or other spaces.
A graph G with n vertices can be represented by an n × n adjacency matrix. Entries of

the matrix will be Gij = 1 for an unweighted graph and Gij = wij for a weighted graph if
there is an edge from vertex i to vertex j. If there is no edge between vertex i and vertex j,
it will be Gij = 0.
Furthermore, there are two different graph types we study in this paper. Firstly, a

graph is called a metric graph if each edge is assigned a positive length and if the
graph is equipped with a natural metric where the distance between any two points
of the graph (not necessarily vertices) is defined to be the minimum length of all
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paths from one to the other. Secondly, a graph is called a dynamic (time-varying)
graph if the graph varies over time, i.e. it can have vertex and edge deletions and
additions.

Simplicial complex

Informally, a simplicial complex is a topological object which is built as a union of points,
edges, triangles, tetrahedron, and higher-dimensional polytopes. The building blocks of
a simplicial complex are called simplices (plural of simplex). Simplices are higher dimen-
sional analogs of points, line segments, and triangles, such as a tetrahedron. We start this
section with a formal definition of a simplex.

Definition 1 An i-simplex σ is the convex hull of i + 1 affinely independent points, i.e.
the set of all convex combinations λ0v0 + λ1v1 + ...+ λivi where λ0 + λ1 + ...+ λi = 1 and
λj ≤ 1 for all j ∈ {0, 1, ..., i}.

A 0-simplex is just a point, a 1-simplex is two points connected with a line segment, a
2-simplex is a filled triangle (see Fig. 1). We call vertex for 0-simplex, edge for 1-simplex,
triangle for 2-simplex, and tetrahedron for 3-simplex.
We can now define a simplicial complex roughly as a union of simplices, but these

simplices need to be glued in a certain way. Here is the formal definition.

Definition 2 A simplicial complex is a finite collection of simplices K such that

1 Every face of a simplex in K also belongs to K.
2 For any two simplices σ1 and σ2 in K, if σ1 ∩ σ2 �= ∅, then σ1 ∩ σ2 is a common face

of both σ1 and σ2.

The first condition says that if a simplex, e.g. a triangle, is in K, then its faces, such as its
edges and vertices, need to be also in K. The second condition says that we can only glue
simplices by their common faces. For example, we can glue two triangles by a common
vertex or a common edge but cannot glue a vertex of a triangle on one of the edges of
the other triangle. Figure 2a is an example of a simplicial complex whereas Fig. 2b and c
are not a simplicial complex since they are violating the first and second condition in
Definition 2 respectively.
Before we start to explain how to compute the homology of a simplicial complex, we

define the clique complex of a graph G which will be a crucial concept to define most of
the filtrations in “Filtrations” section.

Fig. 1 0-,1-,2-, and 3-simplex from left to right
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Fig. 2 Finite collection of simplices where (a) is a simplicial complex and, (b) and (c) are not since there is a
missing edge in (b) and two triangles meet along an edge which is not an edge of either triangle in (c)

Definition 3 The clique complex Cl(G) of an undirected graph G = (V ,E) is a sim-
plicial complex where vertices of G are its vertices and each k-clique, i.e. the complete
subgraphs with k vertices, in G corresponds to a (k − 1)-simplex in Cl(G).

For example, in Fig. 3a, there is a graph with a 4-clique on the left, 2-clique in the
middle and 3-clique on the right. Hence, its clique complex, Fig. 3b, has a 3-simplex
(tetrahedron), a 1-simplex (edge) and a 2-simplex (triangle).

Simplicial homology

In a simplicial complex, we can consider the holes as voids bounded by simplices of differ-
ent dimensions. In dimension 0, they are connected components, in dimension 1, they are
loops bounded by edges (1-simplices), in dimension 2, they are holes bounded by triangles
(2-simplices) and in general, in dimension i, they are the holes bounded by i-simplices.
The simplicial homology is the way to find the holes in a simplicial complex. To under-

stand what simplicial homology is, we need to define the chains, and two special types of
chains, namely cycles and boundaries.

Definition 4 Fix a dimension i and assume we use the field of integers. An i-chain is a
formal sum of i-simplices of a simplicial complex K with integer coefficients and the sum is
taken over possible i-simplices. The set of all i-chains of K is denoted with Ci(K).

For example, c1 = a − 3b + 4d, c2 = 2a + c − 2d + 3e are 0-chains for the simplicial
complex in Fig. 4. One can add two i-chains by simply adding the corresponding integer
coefficients, e.g. c1 + c2 = 3a − 3b + c + 2d + 3e, and multiply by scalars, e.g. 2c1 =

(a) (b)
Fig. 3 An example for constructing the clique complex of a graph. a A graph G, b The clique complex CI(G)

of the graph on the left
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Fig. 4 A simplicial complex with labeled simplices

2a−6b+8d. Hence, Ci(K) is actually a vector space over integers (more generally we can
over any field such as real numbers). For simplicity, we assume the field is the binary field
Z/2Z = {0, 1} from now on.
Tomap an i-simplex to an (i−1)-simplex, we define the boundary of an i-simplex as the

sum of its (i−1)-dimensional faces. Formally speaking, for an i-simplex σ =[ v0, ..., vi], its
boundary is

∂iσ =
i∑

j=0
[ v0, ..., v̂j, ..., vi]

where the hat indicates the vj is omitted. We can expand this definition to i-chains. For an
i-chain c = ciσi, ∂i(c) = ∑

ci∂iσ i. For example, in Fig. 4, ∂1A = e+a and ∂2T = E+D+F.
We should also note here that the boundary of a boundary is empty, i.e. ∂i∂i+1 = 0. For

example, in Fig. 4, ∂1∂2(T) = ∂1(E+D+F) = (d+e)+(e+c)+(c+d) = 2c+2d+2e = 0
since 2 = 0 in the binary field Z/2Z = {0, 1}.
We can now distinguish two special types of chains using the boundary map that will

be useful to define homology. The first one is an i-cycle, which is defined as an i-chain
with empty boundary. In other words, an i-chain c is an i-cycle if and only if ∂i(c) =
0, i.e. c ∈ ker(∂i). For example, the 1-chain A + B + C + F in Fig. 4 is a 1-cycle since
∂1(A+B+C+F) = ∂1(A)+∂1(B)+∂1(C)+∂1(F) = (e+a)+(a+b)+(b+c)+(c+e) = 0.
The set of all such i-cycles forms a subspace in Ci(K), which we denote Zi(K).
Second special type of an i-chain is i-boundary: an i-chain c is an i-boundary if there

exists an (i + 1)-chain d such that c = ∂i+1(d), i.e. c ∈ im(∂i+1). For example. the one
chain E+D+F is a 1-boundary since E+D+F = ∂2(T). The set of all such i-boundaries
forms a subspace in Ci(K), which we denote Bi(K).
After defining these two special subspaces, i-cycles Zi(K) and i-boundaries Bi(K) of

Ci(K), we now take the quotient space of Bi(K) as a subset of Zi(K). In this quotient space,
there are only the i-cycles that do not bound an (i+1)-complex left. These are actually the
i-voids of K. We call this quotient space as the i-th homology of the simplicial complex K

Hi(K) = Zi(K)

Bi(K)
= ker(∂i)

im(∂i+1)
.

The dimension of i-th homology is called the i-th Betti number of K, βi(K), where
βi(K) = dim ker (∂i) − dim im (∂i+1). Basically, the i-th Betti number is the number
of i-dimensional voids in the simplicial complex. For example, β0 gives the number of
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connected components and β1 gives the number of loops. In Fig. 4, β0 = 1,β1 = 1,
β2 = 0.

Persistent homology

For a finite set of points X, e.g. a point cloud data, homology does not give interesting
information. β0 gives the number of connected components, which is just the number of
points, and all other Betti numbers are zero since there are no other dimensional holes in
the set. Hence, instead of working with the set of points, one can induce a family of sim-
plicial complexes Kδ

X for a range of values of δ ∈ R out of the set X so that the complex at
step m is embedded in the complex at n for m ≤ n, i.e. Km

X ⊆ Kn
X . This nested family of

simplicial complexes is called filtration (see Fig. 5 for an example). During this construc-
tion, some holes may appear and then disappear and the persistency of these homological
features can be considered as the features of the dataset. In a filtration, one can record the
birth, the time a hole appears, and death, the time a hole disappears, of holes. The essence
of the persistent homology is to tract the birth and death of these homological features in
Kδ
X for different δ values. The lifespan of each homological feature can be represented as

an interval, where the start and end points of the interval correspond to the birth and the
death of the homological feature respectively. For a given dataset and a filtration, one can
record all these intervals by a persistence barcode (PB) as a multiset of intervals bounded
below (Carlsson et al. 2005). Equivalently, a persistence barcode can be represented via
persistence diagram (PD) that consists of the birth and death times of the features as a
point (birth, death) in the extended real plane R̄2 (Edelsbrunner et al. 2000). The longer
bars in PBs and the points far away to diagonal in PDs are considered as the real feature
of the dataset.

Example 1 Figure 6 has the 0- and 1-dimensional persistence barcodes (Fig. 6a) and the
0- and 1-dimensional persistence diagrams (Fig. 6b) of the filtration in Fig. 5.
We first investigate the 0-dimensional PB and PD. As we see in the filtration, when δ = 0,

there are five disconnected vertices, whichmeans there are five connected components in the
simplicial complex. That is why five bars are born at the beginning of the 0-dimensional PB.
When δ = 1, two edges are added that decreases the total number of connected components
to three, hence two bars die at δ = 1. When δ = 2, three more edges are added and this
makes the simplicial complex only one connected component, thus two more bars die at
δ = 2. After this point, the number of connected component does not change so the top
bar lives forever (arrowhead at the right of that bar implies this fact). Following the same
reasoning, 0-dimensional PD has the point (0, 1) two times, that corresponds to the two
bars spanning from 0 to 1 in the 0-dimensional PB, the point (0, 2) again two times, that
corresponds to the two bars spanning from 0 to 2 in the 0-dimensional PB, and the point
(0,∞), that corresponds to the top bar that lives forever in the 0-dimensional PB.

Fig. 5 A filtration for δ = 0, 1, 2, 3, 4, 5, 6, 7 (from left to right)
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For the 1-dimensional PB and PD, since the first 1-dimensional hole (loop) appears for
δ = 2, there is a bar born at this value in the 1-dimensional barcode. When δ = 3, this
loop splits into two loops, hence the number of the loops increases to two, and as a result,
a new bar is born at δ = 3. When δ = 4, one of the two loops also splits into two loops, so
there is another bar born at δ = 4. When δ = 5, the top triangle is filled in (a 2-simplex
is added), so the number of the loops decreases by one and this results into a death of the
bar born at δ = 4. Similarly, other two bars die at δ = 6 and δ = 7. In the 1-dimensional
PD, there are the points (2,7), (3,6) and (4,5) that correspond to the three bars in the
1-dimensional PB.

Twometrics for persistence diagrams

One may want to employ persistence diagrams to compare the corresponding datasets.
For example, in the network matching problem, we can create a persistence dia-
gram for each network and compare the persistence diagrams to obtain the network
similarity. For such a comparison, we need to measure the distance between per-
sistent diagrams using stable metrics. A metric is stable if a small perturbation of
a dataset creates only a small change in the persistence diagram up to that met-
ric. There are two metrics, which can be stable depending on how simplices are
defined, that have been commonly used to measure the distance between diagrams:
the bottleneck distance and the Wasserstein distance. We first define the bottleneck
distance.

Definition 5 Let P and Q be two persistence diagrams. The bottleneck distance between
P and Q is defined as

dB(P,Q) = inf
γ
sup
x∈P

||x − γ (x)||∞,

where γ ranges over all matchings from P to Q and ||p − q||∞ = max(|p1 − q1|, |p2 − q2|)
for p = (p1, p2), q = (q1, q2) ∈ R̄2 with |∞ − ∞| = 0.

0 1 2 3 4 5 6 7 8

0-dim

0 1 2 3 4 5 6 7 8

1-dim

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0-dim
1-dim

a b

Fig. 6 Results of the filtration in Fig. 5, (a) Persistence barcodes for 0- and 1-dim (b) Persistence diagrams for
0- and 1- dim



Aktas et al. Applied Network Science            (2019) 4:61 Page 9 of 28

In other words, the bottleneck distance measures the distance between two persistence
diagrams P and Q by the maximum distance between two points in a matching from P to
Q. Hence, the bottleneck distance only outputs the distance between the greatest outlier,
rather than the distance between all pair of points.
As an answer to this concern, the Wasserstein distance can be used.

Definition 6 Let P and Q be two persistence diagrams. The p-th Wasserstein distance
between P and Q is defined as

dWp(P,Q) = inf
γ

(
∑

x∈P
||x − γ (x)||p

)1/p

,

where γ ranges over all matchings from P to Q and ||p−q||p = (|p1 −q1|p +|p2 −q2|p)1/p
for p = (p1, p2), q = (q1, q2) ∈ R̄2 with |∞ − ∞| = 0.

In other words, the Wasserstein distance considers the total distance between the
matched pair of points, hence provides an overall quantification for the similarity between
persistence diagrams.

Filtrations
In this section, we review the filtrations defined for networks in the literature. We com-
pare the filtrations according to their properties such as sensitivity to different network
types (e.g. directed/undirected, weighted/unweighted). We also provide a comparison
table, Table 1, at the end of the section.
Throughout this section, we use the notations defined for graphs in “Graphs” section.

Vietoris-Rips filtration (VR)

LetG = (V ,E) be an undirected weighted graphwith the weight functionW : V×V → R

defined on E. For any δ ∈ R, the 1-skeleton Gδ = (Vδ ,Eδ) ⊂ G is defined as the subgraph
of G where Vδ = V and its edge set Eδ ∈ E only includes the edges whose weight is less
than or equal to δ. Then, for any δ ∈ R, we define the Vietoris-Rips complex as the clique
complex of the 1-skeleton Gδ , Cl(Gδ), and the Vietoris-Rips filtration is then defined as

{Cl(Gδ) ↪→ Cl(Gδ′)}0≤δ≤δ′ .

In other words, in this filtration, we first start with the vertex set. We then rank the
edge weights from the minimum weight, wmin, to the maximum weight, wmax, and let the
parameter δ increase from wmin to wmax. At each step, we add the corresponding edges
and take the clique complex of the thresholded subgraph Gδ . This construction yields the
Vietoris-Rips filtration on networks.
For the application purposes, we may prefer to add edges with larger weights before the

ones with smaller weights to stress the importance of the weights. In other words, after
adding the vertex set, we rank the edge weights from wmax to wmin and for any δ ∈ R,
we add edges whose weight is bigger than or equal to δ. This yields a similar yet another
filtration. This filtration is called the weight rank clique filtration by Petri et al. (2013a).
However, to be more concise, we prefer to call this as inverse Vietoris-Rips filtration.
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Dowker sink and source filtration (DSS)

Using the idea of the Vietoris-Rips filtration, the authors in Chowdhury and Mémoli
(2016, 2018) define the Dowker δ-sink and δ-source simplicial complex on directed
weighted networks that is sensitive edge directions. For a directed graph G = (V ,E) with
edge weights W : V × V → R, the Dowker δ-sink simplicial complex associated to G is
defined as

Dsi
δ,G := {σ =[ x0, ..., xn] : there exists x′ ∈ V such thatW (xi, x′) ≤ δ for each xi}.

In other words, there is a sink vertex x′ ∈ V such that there are edges from each xi ∈ σ to
x′ with weights less than or equal to the threshold δ. Using this simplicial complex, they
define the Dowker sink filtration as follows

{
Dsi

δ ↪→ Dsi
δ′
}
0≤δ≤δ′ .

They similarly define a dual construction, namely the Dowker δ-source simplicial
complex associated to a directed weighted network G, as follows

Dso
δ,G := {σ =[ x0, ..., xn] : there existsx′ ∈ V such thatW (x′, xi) ≤ δ for eachxi}.

The only difference here is the edge directions: there is a source vertex x′ ∈ V such that
there are edges from x′ to each xi ∈ σ with weights less than or equal to the threshold δ.
Similarly, they define the Dowker source filtration as

{
Dso

δ ↪→ Dso
δ′

}
0≤δ≤δ′ .

Dowker sink and source (DSS) filtrations are formed with respect to a central authority
x′ ∈ V , hence they could be preferred on networks, such as small-world networks, who
would desire simplices to be formed with respect to particular hub nodes.
The authors also prove that both filtrations generate the same persistent diagram.

Clique complex filtration (CCL)

For a graph G with n ∈ Z vertices and its clique complex Cl(G), the clique complex
filtration is defined as

Cl0(G) ↪→ Cl1(G) ↪→ · · · ↪→ Cln(G)

such that Cl0(G) ⊂ Cl1(G) ⊂ · · · ⊂ Cln(G) = Cl(G) where the i-th complex in the
filtration is given by Cli(G) = ∑i

j=1 Sj where Sj is the jth skeleton of the clique complex,
i.e. the set of simplices of dimension less than or equal to j (Horak et al. 2009). In other
words, in this filtration, we add the vertices at δ = 0, add the edges at δ = 1, add the
triangles at δ = 2 and so on.

Vertex-based clique filtration (VBCL)

This filtration is originally defined in Rieck et al. (2018) for just the 0-dimension, however
it can be extended to higher dimensions as well. Let G = (V ,E) be a graph with a vertex
weight function ω : V → R. For this filtration, we use vertex weights, instead of the edge
weights, as threshold values. For any δ ∈ R, the 1-skeleton Gδ = (Vδ ,Eδ) ⊂ G is defined
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as the subgraph of G where Vδ := {v ∈ V |ω(v) ≤ δ} and the edges Eδ := {e = {u, v} ∈
E|ω(e) := max (ω(u),ω(v)) ≤ δ}. Then, for any δ ∈ R, using the clique complex of the
1-skeleton Gδ ,Cl(Gδ), the filtration is defined as

{Cl(Gδ) ↪→ Cl(Gδ′)}0≤δ≤δ′ .

Furthermore, we can also define the inverse vertex-based clique filtration by just filtering
from ωmax to ωmin as we do in the Vietoris-Rips filtration.

k-clique filtration (kCL)

This filtration is used to detect the evolution of k-clique communities for a fixed k in
Rieck et al. (2018). In this filtration, we assume the graph G = (V ,E) has a vertex weight
function ω : V → R. First, using the vertex weights, we assign a weight function ω(·) on
an arbitrary clique σ inductively as

ω(σ) := {max
v⊆σ

ω(v)|v is a vertex of the clique σ } ,
i.e., the maximum weight of its vertices. Second, for a fixed k, we detect all k-clique com-
munities in G and create the k-clique connectivity graph Gk = (Vk ,Ek) where there is a
vertex for every k-clique of G and its edges are defined by

Ek := {(σ , σ ′) ∈ Vk × Vk|σ and σ ′ are adjacent},
i.e., σ and σ ′ intersect in a (k − 1)-clique, in other words, they share k − 1 vertices in
common. We then extend the weight function ω(·) to the edges of Gk by setting

ω(σ , σ ′) := max(ω(σ ),ω(σ ′)).

Next, in a similar way, for any δ ∈ R, the 1-skeleton Gk
δ =

(
Vk

δ ,E
k
δ

)
⊂ Gk is defined as

the subgraph of Gk where Vk
δ := {

v ∈ Vk|ω(v) ≤ δ
}
and the edges Ekδ := {e = {u, v} ∈

Ek|ω(e) ≤ δ}. Then, for any δ ∈ R, using the clique complex of the 1-skeleton Gk
δ , the

filtration is defined as

{Cl(Gk
δ ) ↪→ Cl(Gk

δ′)}0≤δ≤δ′ .

This filtration is unique in a sense that it just focuses on the evolution of the k-clique
communities only in the original graph.

Weighted simplex filtration (WS)

In the previous filtration, we assign weights to arbitrary cliques, i.e. simplices, using the
vertex weights. Alternatively, one may use another way to assign weights to simplices and
use these weights to create a filtration. For example, Huang et all (Huang and Ribeiro
2017) assign weights to each simplex in a simplicial complex K based on relationship
functions in a given dissimilarity network. For any δ ∈ R, they define Kδ ⊆ K to be
the collection of simplices appearing before or on δ. Then, this construction yields the
filtration

{Kδ) ↪→ Kδ′)}0≤δ≤δ′ .

To be a well-defined filtration, we need to have all faces of each simplex and intersections
of any simplices in Kδ also appear before or on δ. They prove that this filtration from a
given dissimilarity network is a well-defined filtration, i.e. satisfies both conditions.
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Vertex function based filtration (VFB)

Let G = (V ,E) be an undirected graph and f : V → R be a function defined on its
vertices. We construct the sublevel graphs Gδ = (Vδ ,Eδ) for δ ∈ R where Vδ = {v ∈
V : f (v) ≤ δ and Eδ = {(v1, v2) ∈ E : v1, v2 ∈ Vδ}. Hence, increasing δ from −∞ to ∞
provides a nested sequence of increasing subgraphs. The sublevel vertex function based
(VFB) filtration is given by taking the clique complex of each sublevel graph

{Cl(Gδ) ↪→ Cl(Gδ′)}0≤δ≤δ′ .

Similarly, we can construct the superlevel graphs Gδ = (Vδ ,Eδ) for δ ∈ R where Vδ =
{v ∈ V : f (v) ≥ δ and Eδ = {(v1, v2) ∈ E : v1, v2 ∈ Vδ}. This time decreasing δ from ∞
to −∞ provides a nested sequence of increasing subgraphs which yields to the superlevel
vertex function based (VFB) filtration as follows

{Cl(Gδ) ↪→ Cl(Gδ′)}δ≥δ′ .

Intrinsic Čech filtration (IC)

This filtration is defined only for metric graphs in Gasparovic et al. (2017). Let (G, dG) be
a metric graph with geometric realization |G|. For any point x ∈ |G|, we define the set
B(x, δ) := {y ∈ |G| : dG(x, y) < δ}, and we let Uδ := {B(x, δ) : x ∈ |G|} be an open cover.
Since |G| has all the vertices and every point along the edges, it has uncountable points.
Hence,Uδ is also an uncountable cover. We let Cδ denote the nerve ofUδ where the nerve
of a family of sets {Yi}i∈I is the abstract simplicial complex defined on the vertex set I
where a family {i0, i1, ..., ik} with ij ∈ I for all j ∈ {0, ..., k} spans a k-simplex if and only if
Ui0 ∩ Ui1 ∩ · · · ∩ Uik �= ∅. The associated intrinsic Čech filtration is defined as the set of
inclusion maps

{Cδ ↪→ Cδ′ }0≤δ≤δ′ .

Functional metric graph filtration (FMG)

This filtration is also defined for metric graphs only Dey et al. (2015). Let G be a metric
graph and take a fixed point s ∈ G. They consider f : G → R where f (x) = dG(x, s), i.e.
to be the geodesic distance from x to s. Let Gδ := {x ∈ G|f (x) ≥ δ} denote the super-level
set of G with respect to δ ∈ R. Clearly Gδ ⊆ Gδ′ for δ ≥ δ′. Then the filtration is given by

{Gδ ↪→ Gδ′ }δ≥δ′ .

Similarly, instead of using super-level set of G, one can use the sub-level set of G for
each δ, Gδ := {x ∈ G|f (x) ≤ δ}. This yields another filtration

{Gδ ↪→ Gδ′ }0≤δ≤δ′ .

Depending on problems, one may choose either of the filtrations.

Power filtration (POW)

Let G = (V ,E) be a graph. A u − v walk is an alternating sequence of vertices and edges
beginning with u and ending with v such that every edge joins the vertices immediately
preceding and following it. A u − v path is a u − v walk in which no vertex is repeated
and the number of edges it contains is its length. The graph distance d(u, v) between
u, v ∈ V (G) is the minimum length of all u − v paths. One can also consider the edge
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weights while computing the graph distance as well. The rth power Gr , r ≥ 1, of G is the
graph with vertex set V (Gr) = V (G) and for which {u, v} ∈ E(Gr) if, and only if, the
distance between u and v in G is at most r. The power filtration is the clique complex of
the rth power Gr . In other words, for an appropriate distance range 1 ≤ r ≤ p within G,
the power filtration is given by

Cl(G) ↪→ Cl(G2) ↪→ · · · ↪→ Cl(Gp).

where Cl denotes the clique complex.

Temporal filtration (TMP)

This filtration is defined in Pal et al. (2017) for dynamic (time-varying) networks. If the
network is growing in time t0 < · · · < tn, this will yield a sequence of networks {Gt , t =
t0, ..., tn}where the networkGt represents the network occurred until time t. This network
sequence results in the temporal filtration given by the clique complex of each network

Cl(Gt0) ↪→ Cl(Gt1) ↪→ · · · ↪→ Cl(Gtn).

Zigzag simplicial filtration (ZSF)

This filtration is also defined for dynamic networks. While “Temporal filtration (TMP)”
section only considers the vertex and edge insertion into a dynamic graph which yields
adding simplices to the simplicial complexes, this method also allows vertex and edge
deletion from a dynamic graph which yields removing simplices from the simplicial
complexes. In a standard filtration on a graph G, Gδ ⊆ Gδ′ whenever δ ≤ δ′. This
filtration generalizes standard filtrations by allowing the simplicial complexes to some-
times become smaller. A zigzag simplicial filtration on a graph G is a filtration with extra
two conditions: (1) The set of points of discontinuity of the zigzag simplicial filtration
should be locally finite, i.e. each point in the set has a neighborhood that includes only
finitely many of the points in the set and (2) for any scale parameter value δ ∈ R, it
holds that Gδ−ε ⊆ Gδ ⊇ Gδ+ε for all sufficiently small ε > 0. Then we use the zigzag
persistent homology to obtain the persistence barcodes/diagrams (Carlsson and De Silva
2010). The same basic idea applies in the zigzag persistent homology. For example, for
the 0-dimensional zigzag persistence barcodes, we just track the number of connected
components in the filtration.

Digraph filtration using persistent path homology (PPH)

In Chowdhury and Mémoli (2018), the authors define a new way to construct homology
on networks: persistent path homology (PPH) which is sensitive to the edge directions.
We summarize the construction in 4 steps.
Step 1: Let G = (V ,E) be directed weighted graph. Given any integer p ∈ Z+, an

elementary p-path over V is a sequence [ v0, ..., vp] of p+ 1 vertices of V. For each p ∈ Z+,
the free vector space consisting of all formal linear combinations of elementary p-paths
over V with coefficients in K is denoted �p = �p(V ) = �p(V ,K). One also defines
�−1 := K and �−2 := {0}. Next, for any p ∈ Z+, one defines the non-regular boundary
map ∂nrp : �p → �p−1 as

∂nrp ([ v0, ..., vp] ) :=
p∑

i=0
(−1)i[ v0, ..., v̂i, ..., vp]
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for each elementary p-path [ v0, ..., vp]∈ �p. ∂nr−1 : �−1 → �−2 is the zero map. Observe
that ∂nrp+1 ◦ ∂nrp = 0 for all p ≥ −1 so (�p, ∂nrp )p∈Z+ is a chain complex.
Step 2: For each p ∈ Z

+, an elementary p-path [ v0, ..., vp] is called regular if vi �=
vi+1 for each 0 ≤ i ≤ p − 1 and irregular otherwise. Let Rp(V ,K) := K[ {[ v0, ..., vp] :
[ v0, ..., vp] is regular}] and Ip is irregular one. We have ∂nrp (Ip) ⊆ Ip−1 so ∂nrp is well
defined on �p/Ip. Since Rp ∼= �p/Ip via a natural isomorphism, one can define ∂p :
Rp → Rp−1 as the pullback of ∂nrp via this isomorphism. ∂p is called the regular boundary
map and now we have a chain complex (Rp, ∂p)p∈Z+ .
Step 3: For each p ∈ Z

+, one defines an elementary p-path [ v0, ..., vp] onV to be allowed
if (vi, vi+1) ∈ E for each 0 ≤ i ≤ p − 1. For each p ∈ Z

+, the free vector space on the
allowed p-paths on (V ,E) is denoted Ap = Ap(G) = Ap(V ,E,K) and is called the space
of allowed p-paths. Furthermore,A−1 := K,A−2 := {0}.
Step 4: The allowed paths do not form a chain complex since the image of an allowed

path under ∂ need not to be allowed. To handle this problem, they define the space of
∂-invariant p-paths on G as the following subspace ofAp(G):

�p = �p(G) = �p(V ,E,K) := {c ∈ Ap : ∂p(c) ∈ Ap−1}

One further defines �−1 := A−1 = K and �−2 := A−2 = {0}. Now we have a chain
complex and this yields to path homology groups.
Filtration: For any δ ∈ R and a directed weighted graph G = (V ,E) with the edge

weight function W : V × V → R, we define the directed subgraphs Gδ = (V ,Eδ) where
Eδ := {(v, v′) ∈ V × V : v �= v′,W (v, v′) ≤ δ}. We then define the digraph filtration as

{Gδ ↪→ Gδ′ }δ≤δ′ .

After getting the filtration, instead of the persistent homology, they apply the persistent
path homology (PPH). They show that in an undirected graph, PPH and Dowker filtra-
tions agree in dimension 1 if a certain local condition is satisfied (need to be square-free).
The authors also prove the stability result for PPH.

Generalizations of Vietoris-Rips filtration (GVR)

The author in Turner (2016) uses ordered-tuple complexes instead of using simpli-
cial complexes to increase the flexibility regarding order. An ordered-tuple complex
(OT-complex) is a collection K of ordered tuples such that if (v0, v1, v2, ..., vn) ∈ K
then (v0, ..., v̂i, ..., vn) ∈ K for all i (where (v0, ..., v̂i, ..., vn) is the ordered tuple with vi
removed). For example, the tuples (v1, v2, v3) and (v3, v1, v2) are distinct. One can define
a chain complex, homology and k-th dimensional ordered tuple persistence homology of
OT-complexes as defined for simplicial complexes. Then, the author defines the four gen-
eralization of Vietoris-Rips filtrations. She also proves the stability theorem for each case.
Hence, we will not mention the theorem for each case separately. For the following filtra-
tions, let (V , f ) be the vertex set and a function f : V × V → R (f can be considered as
an edge weight function).

Vietoris-Rips filtration under syma

For any a ∈[ 0, 1] we can define a symmetric function syma(f ) : V × V → R

(u, v) → amin{f (u, v), f (v,u)} + (1 − a)max{f (u, v), f (v,u)}.
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Set R(V , syma(f ))t be the simplicial complex containing [ v0, v1, ..., vp] whenever
symaf (vi, vj) ≤ t for all i, j. This filtration is called the Vietoris-Rips filtration under syma
of (V , f ).

Directed Vietoris-Rips filtration

Set {Rdir(V , f )t} to be the filtration of OT-complexes where (v0, v1, ..., vp) ∈ Rdir(V )t
when f (vi, vj) ≤ t for all i ≤ j. This filtration is called

{
Rdir(X)t

}
the directed Vietoris-Rips

filtration of (V , f ).

Associated filtration of directed graphs

There is a natural filtration of directed graphs {D(V )t : t ∈[ 0,∞)} associated to V by
settingD(V , f )t to the the directed graph with vertices {v ∈ V : f (v, v) ≤ t} and including
the directed edges u → v whenever max{f (u,u), f (v, v), f (u, v)} ≤ t. This filtration is
called the associated filtration of directed graphs of (V , f ).

Preorder filtration

Given a preorder (V ,≤t), letO(V ,≤t) be the OT-complex containing (v0, v1, ..., vp) when
v0 ≤ v1 ≤ ... ≤ vp. Let O(V , f )) = {O(V , f )t} be the filtration of OT-complexes
corresponding to the filtration of posets {(Vt ,≤t)}. This filtration is called the preorder
filtration of (V , f ).

Algorithms and applications
In recent years, persistent homology has found applications in data analysis, including
neuroscience (Sizemore et al. 2019), time series data (Seversky et al. 2016), text mining
(Wagner et al. 2012) and shape analysis (Gamble and Heo 2010). In the complex network
setting, while some studies analyze the evaluation of a single graph, some studies analyze
multiple graphs for graph matching and classification with characterizing the temporal
changes in topological features of a network. Besides these, while some studies use Betti
numbers, some studies use persistent diagrams to extract some statistical features of the
network. In this section, we categorize the persistent homology enabled applications as
single graph and multiple graph analysis. We explain the algorithms and applications of
each study in their corresponding sections. We also provide a comparison table, Tables 2
and 3, for algorithms with datasets after each section.

Analysis on single graph

In some applications, persistent homology is used to detect global structural features of a
single network such as complexity and distributions of strongly connected regions. While
some applications analyze the evaluation of a single graph according to edge weights,
others analyze the evaluation of the graph over time.
In many studies, Betti numbers are used as the complexity measure for different net-

works. Benzekry et al. (2015) propose that cancer therapy can be guided by changes in the
complexity of protein-protein interaction (PPI) networks. They analyze 11 cancer interac-
tion networks and find out that there is a correlation between 1-dimensional Betti number
and survival of cancer patients. They compute Betti numbers using the power filtration
(Power filtration (POW) section). To examine the effect of a node on the network com-
plexity, each node in the network is removed and the change in Betti number is recorded.
They consider the drop of the Betti number as the drop of the complexity. Therefore, if
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Table 2 The comparison of algorithms and applications on Single Graph

Paper Filtration Topological summary Data

Benzekry et al.
(2015) Power filtration (POW) section

0-1 dim Betti numbers PPI networks

Sizemore et al.
(2018) Vietoris-Rips filtration (VR) section

1-2 dim PD Brain networks

Chung et al.
(2013) Vietoris-Rips filtration (VR) section

0 dim PD Brain networks

Giusti et al. (2016)
Weighted simplex filtration (WS) section

0-2 dim PD Brain Networks

Khalid et al.
(2014) Vietoris-Rips filtration (VR) section

0-dim PD Brain Networks

Ignacio and
Darcy (2019) Vietoris-Rips filtration (VR) section

0-2 dim PD Migration and
remittance
networks

Rucco et al.
(2016) Vietoris-Rips filtration (VR) section

1 dim PB Simulated
idiotypic
networks

Salnikov et al.
(2018) Temporal filtration (TMP) section

1-2 dim PD Co-occurrence
networks

Suh et al. (2017)
Power filtration (POW) section

0 dim PB Co-occurrence
networks

Rieck et al. (2018)
Vertex-based clique filtration (VBCL) section,
k-clique filtration (kCL) section

0 dim PD Co-occurrence,
brain and
collaboration
network

the removal of a node results in the largest drop in Betti number, it also results in the
largest drop in complexity and is potentially a good drug target.
Similar to this, Rucco et al. (2016) use Betti number as persistent entropy to mea-

sure the graph complexity. They study the behavior of the idiotypic network of the
mammal immune system. Their main goal is to detect the behavior of the immune
system reaction to an external stimulus in terms of phase transitions. In addition to
the persistent entropy, they use 2 other graph complexity measures, which are the
connectivity entropy and the approximate von Neumann entropy (Petz 2001). While
connectivity entropy is used to analyze the structural properties and to identify the set
of key players of the idiotypic network, approximate von Neumann entropy is used to
distinguish graphs corresponding to the same system but in different conditions. For per-
sistent entropy, they use persistent barcodes constructed with the Vietoris-Rips filtration
(Vietoris-Rips filtration (VR) section). In their experiment, they create the simulation of
the idiotypic network and obtain a weighted idiotypic network using the coexistence func-
tion as a weight function between antibodies. After computing the 3 different entropy
measures on this network, they identify that peak on entropy corresponds to the acti-
vation of the immune response. While the connectivity entropy does not distinguish
between the activation and the immune memory states, both the approximated von
Neumann entropy and the persistent entropy are able to recognize the activation of the
immune system. The analysis of the Betti numbers reveals that there is a subset of anti-
bodies arranged in a 1-dimensional hole that is present both in the activation state and in
the memory state.
Cliques and cycles are important structural features of complex networks to describe

their cohesive structures. Rieck et al. (2018) use persistent homology to detect clique com-
munities and their evolution in weighted networks. Persistent diagram is created using the
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vertex-based clique filtration (Vertex-based clique filtration (VBCL) section) and the k-
clique filtration (k-clique filtration (kCL) section). They analyze the connectivity relations
for all clique degrees and all weight thresholds. Various networks are studied including
co-occurrence network, brain network, and collaboration network. An interactive visual-
ization tool is created that is capable of detecting and tracking the evolution of networks’
clique communities for different thresholds and clique degrees.
Persistent homology is also used to analyze the brain networks by computing distribu-

tions of cliques (brain regions) and cycles (strongly connected regions) in them. In Giusti
et al. (2016), the authors review the underlying mathematical background of using sim-
plicial complex in neural data, specifically brain networks. They list different types of
simplicial complexes for encoding neural data such as networks, clique complex, inde-
pendence complex, and concurrence complex. They also elaborate on using persistent
homology tomeasure the global structure of simplicial complexes and the strength of neu-
ral connections using the weighted simplex filtration (Weighted simplex filtration (WS)
section) to generate persistent diagrams.
In Sizemore et al. (2018), the authors test the hypothesis that the spatial distributions

of cliques and cycles will differ in their anatomical locations. They construct 1- and
2-dimensional persistent diagrams of brain networks using the Vietoris-Rips filtration
(Vietoris-Rips filtration (VR) section). The structural brain networks of eight volunteers
is extracted using diffusion spectrum imaging. The undirected and weighted network
consists of 83 nodes representing different brain regions and edges that refer to the den-
sity of white matter between the nodes. Weak and strong connections between cliques
are assessed by observing the difference between birth and death times of k-cliques in
persistent diagrams.
Additionally, in Chung et al. (2013), persistent homology is also used to analyze the

brain networks with the aim of examining the abnormal white matter in maltreated
children. Networks are obtained by thresholding (based on the sample covariance)
sparse correlations for the Jacobian determinant from magnetic resonance imaging
(MRI) and fractional anisotropy from diffusion tensor imaging (DTI) at different thresh-
old values. The collection of the thresholded graphs forms a Vietoris-Rips filtration
(Vietoris-Rips filtration (VR) section).
Moreover, in Khalid et al. (2014), the authors demonstrate that persistent homology

is useful in analyzing functional brain connectivity. The application involves electroen-
cephalography (EEG) data from eight cortical regions of corticosterone (CORT) induced
depression mouse and control models. After the EEG measurement is obtained, the
square root of (1-correlation) distance metric is used to create a binary network. Next,
the Vietoris-Rips filtration (Vietoris-Rips filtration (VR) section) is applied and used to
visualize topological changes by 0-dimensional barcodes which are then used to construct
single-linkage dendrograms (SLD). Finally, single-linkage distance is computed using the
generated SLDs. The results show that CORTmodel is characterized by an increased local
connectivity and by a decreased global connectivity.
Besides its utility on brain networks, persistent homology is also used to analyze word

co-occurrence, remittance, and migration networks. In Salnikov et al. (2018), the authors
study the word co-occurrence networks to explore the conceptual landscape of mathe-
matical research. They first create the network using 54177 articles in arXiv from 01/1994
to 03/2007. Then they parse a concept list from Wikipedia that includes 1612 equations,
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theorems, and lemmas. Next, they combine these two datasets by checking 1612 con-
cepts’ appearance in the articles and find that 1067 of them match in at least one article
and 35018 articles contain at least one of the concepts. They first take 1067 concepts as
nodes and include a (n− 1)-simplex for each article containing n-concepts. Furthermore,
whenever the concept sets of two articles intersect at n concepts, their corresponding
simplices share a face of dimension (n − 1). In total, this construction results in 32707
unweighted edges. They use the temporal filtration (Temporal filtration (TMP) section)
using article dates. They create the 1- and 2-dimensional persistent diagrams, i.e. they just
look at the 2-dimensional holes bounded by edges and 3-dimensional holes bounded by
triangles respectively. They interpret these holes to explain the intrinsic characteristics of
how research evolves in mathematics. They also explore the authors’ conceptual profile
using the holes and their attributes to the holes.
Ignacio and Darcy (2019) analyze the patterns and shapes in remittance and migration

networks as a directed weighted network via persistent homology to identify flow patterns
between multiple countries. They detect both local and global patterns that highlight
simultaneous interactions amongmultiple nodes. They extend the Vietoris-Rips filtration
(Vietoris-Rips filtration (VR)) to detect topological features such as persistent cycles in
directed networks using the weight of the edges and create persistence barcodes. They
use 0-, 1- and 2-dimensional barcodes to analyze the cycles in networks. As a modifica-
tion on 1 and 2-dimensional barcodes, to encode additional information, they color the
bars in barcodes according to the standard deviation of the weights in the cycles they rep-
resent. They create the 2015 Asian net migration and remittance networks which include
50 countries and states to perform their analysis on. They define the weight of a directed
edge (a, b) as the profit country b gains from exchanging remittances with the country a
for remittance networks and define it in a similar manner for net migration networks.
One of the challenges for most graphing methods is the inability of visualizing the

global structure of graphs as a result of the absence of interactive exploration mecha-
nisms. Persistent homology is used to address this challenge (Suh et al. 2017). They use
0-dimensional PH features to control andmodify force-directed layouts of a graph. The 0-
dimensional barcode, obtained by the power filtration (Power filtration (POW) section),
enables the visualization of contraction and repulsion events in the network. More forces
are added to the graph layout based on the selected number of barcodes. They have three
case studies to show the effectiveness of their method on 3 different real-world networks.
One of the networks is “Les Miserables” which contains 77 nodes (characters) and 254
edges, weighted by howmany scenes two characters share during any chapter of the novel.
Some of the key characters featured in the book can be identified on the force-directed
layout modified with PH features. They are also able to extract major important nodes in
the Madrid Train Bombing network and US Senate 2007 and 2008 Co- and Anti-voting
network using their method.

Multiple graphs analysis

Graph comparison is an important task for many graph applications such as classifica-
tion and matching. On the other hand, it is a computationally complex problem where we
need to compute the similarity between 2 networks (Conte et al. 2004). It has been stud-
ied for many years and defined as either exact matches (e.g. graph isomorphism (Cordella
et al. 2004)) or some measures of structural similarity (e.g. graph edit distance (Gao et
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al. 2010)). Graph kernels are also used to capture the graph similarity (Shervashidze et
al. 2011). Recent years, persistent homology is used to extract topological features of
networks to compare them.
While most existing metrics for network structure rely on local features of vertices

such as node degrees, correlation of neighborhood nodes, they do not capture the precise
mesoscopic structure of complex networks. Sizemore et al. (Sizemore et al. 2016) extract
mesoscale homological features as 0-3 dimensional Betti numbers. They use the Vietoris-
Rips (Vietoris-Rips filtration (VR) section) filtration to compute the homology and record
the maximal clique distribution and Betti sequence. Extracted features are used to classify
14 commonly studied weighted network models into four groups or classes with agglom-
erative hierarchical clustering to use for graph classification. Betti values and parameters
from the maximal clique distribution are used to determine the structural similarities
between networks. After classifying networks into groups, they analyze the structural
patterns in each group of networks.
In Petri et al. (2013a, b; Binchi et al. 2013b), persistent homology is used to detect

particular non-local structural features of networks. After creating the barcodes with
the inverse Vietoris-Rips (Vietoris-Rips filtration (VR) section) filtration based on edge
weights, statistical distributions of 1-dimensional barcodes are computed. They classify
real-world networks into 2 classes according to the similarity of their cycle distribution
with randomized version. In Class I, cycle distributions are markedly different from the
randomized versions and in Class II, cycle distributions are very close to their random ver-
sions. The authors study different network datasets, such as US air passenger networks,
C. Elegans’s neuronal network (Watts and Strogatz 1998), the online messages network
(Opsahl and Panzarasa 2009), gene network, network of mentions and re-tweet between
Twitter users, school face-to-face contact network, co-authorship networks. While the
gene network and airport network are in class 1, co-authorship networks and twitter
network are in class 2.
In (Carrière et al. 2019), the authors propose to use persistence diagrams for graph

classification problem for undirected weighted graphs. They first define a graph kernel
function, namely heat kernel signatures (Hu et al. 2014), on networks and use the sublevel
and superlevel Vertex function based filtration (VFB) section filtration on each network
to generate PDs. Then they employ two layers neural network architecture to process the
PDs and classify the graphs. They evaluate their classification model on social networks,
medical and biological networks. They also compare their results with four different
state-of-the-art graph classification methods and show that their method has comparable
results despite being much simpler than other methods.
Moreover, persistent homology is used to analyze the structure of weighted networks.

In Carstens and Horadam (2013), the authors consider the collaboration networks as
weighted network. They use the Vietoris-Rips (Vietoris-Rips filtration (VR) section) fil-
tration to generate the persistence barcodes of networks. They employ the Betti numbers
of 0, 1, and 2 dimensions and use them to distinguish collaboration networks from ran-
dom networks. They conclude that the first and second Betti numbers give us richer
information about weighted networks.
Pal et al. (2017) study the growing collaboration network with a temporal parametriza-

tion and characterize the temporal changes in its topological features. In a collaboration
network, each person in a paper or a movie is represented as a vertex, and each
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collaborative act (and each of its subsets) is represented as a simplex of vertices compris-
ing it. They define a temporal filtration (Temporal filtration (TMP) section) from growing
collaboration networks, with adding new collaborations occurred in each year. In addi-
tion, they introduce a new distance measure between a growing network which captures
the difference in the rate of growth of cycles in the networks being compared. They use
DBLP (Digital bibliography & library project) and IMDB (Internet movie database) data
sets from 1950-2008 considering 10-year windows. They study the topological properties
of networks as the growth in the cyclicity, with respect to the time corresponding to the
10-year windows, and size of the largest connected component.
In Schauf et al. (2016), the authors consider the national input-output networks of

domestic products as a weighted network and use persistent homology to identify dissimi-
larities between them. The nodes are available sectors in an economy and edge weights are
the monetary flow measuring the magnitude of the economic relationship between two
sectors. They generate persistence diagrams for dimensions 0, 1, and 2 with the Vietoris-
Rips (Vietoris-Rips filtration (VR) section) filtration. Using 0-dimensional diagrams, they
distinguish economies with high GDP, large population, and small import/export per-
centages of GDP from those with lower GDP, small population, and larger import/export
percentages. They also discuss the potential for applying higher-dimensional persistent
homology to study these networks.
Similarly, financial networks are considered as weighted networks and persistent

homology is used to detect early signs of critical transitions of financial crisis in Gidea
(2017). The vertices correspond to the stocks, each pair of distinct nodes is connected by
an edge and each edge is assigned a weight using the Pearson correlation coefficient. For
each time frame, they generate 0- and 1-dimensional persistent diagrams of the network
using the Vietoris-Rips (Vietoris-Rips filtration (VR) section) filtration. Then, the distance
between them is measured via Wasserstein distance. They show that the persistent dia-
grams and the distances between them have significant changes prior to the 2007-2008
financial crisis.
Furthermore, in Keil and Aktas (2018), the undirected attributed networks are consid-

ered as weighted networks. They first assign weights on edges using the vertex attributes.
Then, they extract the ego-networks of each vertex and define a graph kernel function,
namely the diffusion Fréchet function (Martínez et al. 2018), on each ego network that
takes both the network topology and edge weights into consideration. Next, they gener-
ate the persistence diagrams of each ego network using the sublevel and the superlevel
“Vertex function based filtration (VFB)” filtration and obtain the distance matrix
between each vertex computing the Wasserstein distance between their persis-
tence diagrams. Finally, they cluster the network using the k-means clustering
algorithm.
Beside previous weighted networks, brain networks are considered as sparse weighted

networks and persistent homology is also used to analyze them (Chung et al. 2015).
They obtain the topological structure of a graph induced by sparse correlation. They
first transform MRI and DTI data to weighted networks where they employ the sparse
Pearson correlation to obtain the edge weights. They generate the 0-dimensional Betti
plots for the brain networks using the Vietoris-Rips filtration (Vietoris-Rips filtration (VR)
section). They also generate Betti plots using sparse covariance. They show that the sparse
correlation method gets a huge group separation between normal and stress-exposed
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children visually. This method is also less computationally expensive than the sparse
covariance method.
In (Knyazeva et al. 2018), the authors study dynamical connectome state analy-

sis on brain networks using three different methods: k-means clustering, modularity
based clustering and topological feature based clustering. They consider brain networks
as weighted networks. In topological feature based clustering, they use the Vietoris-
Rips (Vietoris-Rips filtration (VR) section) filtration. They first split the correlation
matrix to the two matrices with positive and negative correlations. Then, they create
Vietoris-Rips filtration (VR) section filtrations for both matrices. In their clustering, dif-
ferent type of connections describes different processes in the brain, so they compute
persistent homology with annotated intervals collection. After getting the intervals, they
compute different statistics for each homology group and for types of interactions. Then,
finally, they perform hierarchical clustering based on these topological features. They
show that topological feature based clustering is more informative than the other two
clustering methods.
In addition to this, in (Chowdhury and Mémoli 2016; 2018), the authors classify the

brain (hippocampal) networks using persistence diagrams. They consider five different
environments with 4 holes, 3 holes, 2 holes, 1 hole and no hole and for each environment,
20 simulated brain networks are created. Persistence diagrams of these 100 networks are
computed with the Dowker filtration (Dowker sink and source filtration (DSS) section).
They use the bottleneck distance between the 1-dimensional diagrams of networks to
compare them. Finally, they classify the networks using the single linkage dendrogram
algorithm and show that Dowker filtration is successful in capturing the differences
between the five classes of networks. The authors also work on the same problem and
dataset using the zigzag simplicial filtration (Zigzag simplicial filtration (ZSF) section) in
Chowdhury et al. (2018). They create 1-dimensional zigzag persistent diagrams to per-
form persistent homology computations on dynamic simplicial complexes resulted from
these brain networks.
In Yoo et al. (2016), the authors show that persistent homology, or more precisely per-

sistence vineyard, is a robust approach to estimate functional connectivity in the resting
and gaming stages of the brain networks. They conduct an experiment with 26 male col-
lege students aged 19-29 years old from two universities located in Seoul, Republic of
Korea. They undergo all the 26 healthy subjects resting and gaming experiments. Each
stage was recorded for five minutes separately. They segment their data using 30s window
lengths and 2s step size. For each window, they compute the persistence diagram using
Pearson correlation between brain channels employing the weighted simplex filtration
(Weighted simplex filtration (WS) section). Then, they compute the 0-dimensional per-
sistence vineyard to analyze the dynamic brain connectivity. In a brief, a persistent
vineyard is a p dimension persistent diagram with a time dimension added, track-
ing the birth and death of p dimension diagrams in a time-varying topological space
(Edelsbrunner and Harer 2010). Their results show that persistence vineyard is successful
to determine the temporarily dynamic properties of the brain in a robust and threshold-
free way. They also show that persistent vineyard is more effective than the principal
component analysis (PCA) and standard graph theoretical methods.
Petri et al. (2014) compares resting state functional brain activity in 15 healthy vol-

unteers after intravenous infusion of placebo and psilocybin using persistent homology
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and other statistical methods-density function. First, the raw data from fMRI (func-
tional magnetic resonance imaging) dataset is transformed into a functional net-
work. They create the 1-dimensional persistence diagram using the Vietoris-Rips
(Vietoris-Rips filtration (VR) section) filtration. Later, they define two different homo-
logical scaffolds depending on how frequently edges are part of the generators of the
persistent homology groups and how persistent are the generators to which they belong
to. The results show that the homological structure of the brain’s functional patterns
undergoes a dramatic change post-psilocybin, characterized by the appearance of many
transient structures of low stability and of a small number of persistent ones that are not
observed in the case of placebo.
In Horak et al. (2009), the authors first study random graphs using the clique complex

(Clique complex filtration (CCL) section) filtration. Using different probabilities, they
generate random networks and compute their barcodes. They show that the results on
these barcodes are in agreement with the theoretical studies on these complexes. As
another application, they study an email network. They create barcodes and show that
higher dimensional barcodes, which do not exist for random networks, correspond to
more dense communications among certain groups. They also apply their methods on
scale-free networks with a modular structure. They use three different parameters to gen-
erate three types of scale networks: Clustered modular networks, clustered non-modular
networks and non-clustered modular networks. They show that both clustered mod-
ular and clustered non-modular networks have more bars in their 3-dimensional and
4-dimensional barcodes than the non-clustered modular network.
Moreover, persistent homology is used for metric graph comparison. In (Dey

et al. 2015), the authors first introduce the functional metric graph filtration
(Functional metric graph filtration (FMG) section) on metric graphs. Then, they define
the persistence distortion distance between two finite metric graphs using the per-
sistence diagrams from FMG filtration. In their experiment, they show the stability
of the proposed distance measure on the Athen’s road network as a metric graph
and generate its noisy sample using a noise level ε. The results show that the per-
sistence distortion distance between the original graph and its noisy sample grows
roughly proportionally to ε. They also use proposed persistence distortion distance to
compare surface meshes of different geometric models. Models from the same group
have very smaller persistence distortion distances among them than those between
the dissimilar group, which shows the that proposed distance is able to differentiate
surface models.
In (Hajij et al. 2018), persistent homology is employed to quantify structural changes

in time-varying (dynamic) graphs. Their objective is to transform each instance of the
time-varying graph into a metric space, extract topological features using persistent
homology, and compare those features over time by means of bottleneck or Wasserstein
distance between their corresponding persistence diagrams. Finally, several case stud-
ies on real-world networks, such as high school communication network, show how this
method can find cyclic patterns, deviations from those patterns, and one-time events in
time-varying graphs. In particular, 0- and 1-dimensional PH are utilized to detect the
components and tunnels respectively. Each graph constitutes a distinct metric space for
which the Vietoris-Rips (Vietoris-Rips filtration (VR) section) filtration is implemented
to compute the corresponding Betti numbers.



Aktas et al. Applied Network Science            (2019) 4:61 Page 25 of 28

High order networks are weighted complete hypergraphs collecting relationships
between elements of tuples. Computing distance between high order network is dif-
ficult when the number of nodes is large. In Huang and Ribeiro (2017), the authors
use persistent homology to derive distance approximations of networks. They compute
the bottleneck distance between persistence diagrams of networks to evaluate the dif-
ferences between networks. They first define a relationship function between a set of
nodes to represent a measure of similarity or dissimilarity for members of the group.
They use this function to assign weight on each simplex. Using these weights and the
weighted simplex filtration (Weighted simplex filtration (WS) section), they generate 0-,
1- and 2-dimensional persistence diagrams. They show that they can lower bound dis-
tance between two higher order networks, which is in general computationally expensive,
with a computationally less expensive distance between their persistence diagrams. They
apply their method to the coauthorship networks. They first create the networks using
5 journals from the mathematics community and 6 journals from the engineering com-
munity. They use the lower bounds to classify the networks, distinguish the collaboration
patterns of engineering and mathematics community and also discriminate engineering
communities with different research interests.
To answer the question of whether the existing anonymization mechanisms for pre-

serving privacy truly keep the graph utility, Gao et al. (Gao and Li 2018) employ
persistent homology to analyze and evaluate four anonymization mechanisms. They
study online social networks (OSN). They define the distance between two nodes
as the number of hopes on the shortest path between these nodes and create
0-,1- and 2-dimensional persistence barcodes using this distance in the power filtration
(Power filtration (POW) section). They analyze the original and anonymized OSNs
using the barcodes. The results show that original OSN graphs have stable struc-
tures. Furthermore, the 0-dimensional barcodes they obtain show that most anonymized
OSNs are more closely connected than the original graph. All anonymized graphs
are not as stable as the original graph, because they have more 2-dimensional
holes or larger holes. They also compare their results with traditional graph
metrics.
In Kim and Memoli (2018), the authors study flocking/swarming behaviors in ani-

mals. They first create dynamic graphs and simplicial complexes using the Vietoris-Rips
complex for a fixed scale parameter. Then, they construct the zigzag simplicial filtration
(Zigzag simplicial filtration (ZSF) section) and obtain 0-dimensional zigzag persistent dia-
grams to classify the four different type of flocking behavior in animals. Finally, using the
bottleneck distance, the single linkage hierarchical clustering, and MDS, they distinguish
the 4 behaviors very well.
In (Chowdhury andMémoli 2018), the authors characterize the directed cycle networks

by digraph filtration using persistent path homology (Digraph filtration using persis-tent
path homology (PPH) section). They prove that the persistent diagrams of a cycle network
with n nodes for n ≥ 3 solely depends on n.

Conclusion
In this paper, we provide a conceptual review of key advancements in the area of using PH
on applied network science. We look into research studies that use PH on networks and
highlight different algorithms that are used to extract topological features of networks.
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We review the applications where PH is used in solving network mining problems. We
believe our summary of the analysis of PH on networks will provide important insights to
researchers in applied network science.
At the moment, the implicit goal of most studies is to extract the topological features of

the networks that persist across multiple scales. However, there are some limitations to
these studies. Firstly, scalability may be a concern for future progress. The networks used
in these studies are mostly small networks (number of vertices is less than 1000). There
is still significant work needed to be done in scaling PH approaches for larger networks.
Secondly, there are some filtrations whose stability has not proven yet.
Furthermore, although many filtration methods are proposed, they are mainly designed

for static networks. However, many real-world networks are evolving over time. For exam-
ple, in the Facebook network, friendships between users always dynamically change over
time, hence new edges are continuously added to the social network while some edges
may be deleted. Most of the existing methods cannot be directly applied to large scale
evolving networks. New filtration algorithms, which are able to tackle the dynamic nature
of evolving networks, are highly desirable in persistent homology.
As another future research direction, PH can also be used for network and sub-network

embedding problems.
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