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Abstract
In this paper, we investigate the relationship between the coupling strengths and the
extensive behaviour of the sum of the positive Lyapunov exponents of multiplex
networks formed by coupled dynamical units. Considering networks where the
dynamics of the nodes is given by the shift map, we do not only demonstrate which
are the relevant parameters leading to extensivity, but also provide exact formulas how
they are related. A distinct result was to show that it is always possible to construct
infinitely large extensive networks by attaching, with rescaled inter-connections,
infinitely many smaller networks. These smaller networks are effectively the building
blocks of the large network. This is because these building blocks can have arbitrary
topology and the strength of connections among nodes only depends on the block
size, and not on the size of the whole network.

Keywords: Extensivity, Multiplex networks, Lyapunov exponents

Introduction
Complex networks are structures consisting of nodes and edges, which are connected in
a non-trivial way (Boccaletti et al. 2006; E J Newman 2010; Strogatz 2001; Estrada 2015).
The theory of complex networks has been studied across many fields, such as sociology,
biology, mathematics, physics and computer science and a wide variety of phenomena are
described by complex networks, from a microscopic level as in complex brain networks
(Bullmore and Sporns 2009) to macroscopic systems of social interactions (Robins et al.
2007) and technological systems (Nardelli et al. 2014), for instance.
An important concept that can play a significant role in the understanding of complex

dynamical networks is extensivity. A quantity is extensive, if it scales directly with the
size of the system. Extensive quantities are additive for subsystems, which means that,
physical systems that are extensive can be decomposed into independent subsystems that
could also be extensive. The reverse is also true. Extensive systems can be constructed by
putting together independent subsystems, for example, adding more mass to a body.
The concept of extensive quantities can be extended to the scope of complex systems.

Ruelle was the first to infer the extensivity of chaos (Ruelle 1982). The most common
and practical procedure to identify chaos in complex systems is computing the Lyapunov
Exponents (LEs), which measure the rate of separation of infinitesimal close trajectories
in phase space (Eckmann and Ruelle 1985; Ott 2002). Then, according to Ruelle, extensiv-
ity can be understood by studying the curve of LEs, when arranged in descending order,
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as function of the their normalised index and calculated at different system sizes. If these
curves collapse onto a single asymptotic spectrum as the system size grows, then chaos
is considered to be extensive. A direct consequence of this is that, the sum of the positive
LEs is linearly related to the size of the network. Moreover, extensive systems can be typi-
cally decomposed into smaller fundamental units that could imply that a large dynamical
network with complex topology could be broken down into “independent” subnetworks
with similar dynamic properties.
Extensive chaos has been discussed in many complex systems. In globally coupled

dynamical systems, although all the elements of the system are subject to the same influ-
ences, the nontrivial connection between their components can give rise to collective
chaos (Shibata and Kaneko 1998) and nonextensive behaviour (Takeuchi et al. 2011).
Due to the nontrivial collective behaviour in these type of systems, the extensivity of
the Lyapunov exponents has been contested in (Takeuchi et al. 2009). In contrast to
this, extensivity has been commonly observed, for instance, by studying the spatiotem-
poral chaos, in Rayleigh-Bénard convection (Paul et al. 2007) and in reaction-diffusion
networks (Stahlke and Wackerbauer 2009; 2011).
For high-dimension systems, we can mention the results in (Karimi and Paul 2010),

where the authors investigated the extensive chaos behaviour of the Lorenz-96 model
by studying the variation of the fractal dimension for different parameters of the sys-
tem. In (Xi et al. 2000), Xi et al. studied the extensivity of the Lyapunov dimension and
the Kolmogorov-Sinai entropy in the one-dimensional Nikolaevskii model. Extensivity of
chaos was also detected in large sparse neuron networks (Monteforte and Wolf 2010)
and in different classes of sparse random networks (Luccioli et al. 2012). In the latter, the
authors have explored the relationship between the number of incoming connections per
node and the extensive behaviour, when all nodes are subject to the same connectivity.
In this paper, we study analytically how extensivity of the sum of the positive Lyapunov

exponents of networks of coupled shift maps, but where the topology of the couplings fol-
lows a “multiplex” topology, can be maintained by smartly changing the configuration of
the network as it grows in size. So, the topology of the constructed network of interacting
units is a network of many subnetworks. A subnetwork is a set of dynamical units coupled
by an intra topology and an intra coupling strength. Subnetworks are connected by the so
called inter topology with inter coupling strength. A main point of interest in this work is
to understand the role of the intra and inter-couplings in the extensive behaviour of large
multiplex networks. Our extensive quantity, the sum of the positive Lyapunov exponents,
denoted by HKS, is an upper bound for the Kolmogorov-Sinai entropy. In contrast to the
entropy, HKS can be usually well estimated, even in networks with arbitrary sizes.
At variance with Antonopoulos and Baptista (2017), which have explored this rela-

tionship in multiplex networks formed only by two layers of nodes, we analyze in
this work infinitely large multiplex networks. We start with an initial network formed
by two layers, as described in (Antonopoulos and Baptista 2017), and then, in each
step, we duplicate the network that we had before, and connect the two subnet-
works, maintaining the same intra and inter structure. We show that extensivity
only depends on the coupling strengths, and that other quantities which proved to
be important to maintain extensivity in (Antonopoulos and Baptista 2017), such as
the sum of the intra and inter-degrees of the nodes of the layers, do not interfere
in this behaviour.
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Moreover, we also show that, given an initial dynamical network with an arbitrary
intra-connectivity topology, it is always possible to construct an infinitely large extensive
network with an infinite number of these initial networks, the building blocks, connected
with rescaled inter-link strengths. This result reinforces the idea that an extensive com-
plex network can be broken down into building blocks that are also extensive. Since all our
calculations are exact, we provide a reliable and practical method to achieve extensivity.

Methods
Consider, initially, a network�(0) withN0 nodes where the dynamics of the nodes is given
by the shift map F

(
x(i)
n

)
= 2x(i)

n (mod 1), i.e.:

x(i)
n+1 = 2x(i)

n − ε

N0∑
j=1

Aijx
(j)
n (mod 1), (1)

where ε represents the coupling strength of the intra-connections and A = (Aij) denotes
the Laplacian matrix. The main motivation to use this map is the fact that it is a trans-
formation with constant Jacobian, allowing for an analytical calculation of the LEs for
networks constructed with this map. Moreover, this paper extends previous results in
the works (Antonopoulos and Baptista 2017) and (Baptista et al. 2016). The (mod 1) is
a modular function that guarantees that the transformed point (by 2x) remains in the
interval [ 0, 1].
Now, let�(1) be the network constructed by coupling two equal subnetworks�(0), then

its number of nodes is N1 = 2N0 and it can be represented by:

x(i)
n+1 = 2x(i)

n − ε

N1∑
j=1

Gijx
(j)
n − γα

N1∑
j=1

Lijx
(j)
n (mod 1), (2)

where γ is the coupling strength of the inter-connections, α = l12
N0

is the ratio between the
number of inter-connections l12 and N0. The Laplacian matrices of the intra and inter-
connections are represented by G = (Gij) and L = (Lij), respectively. Therefore, they are
given by:

G =
(
A 0
0 A

)
and L =

(
D1 −B
−BT D2

)
, (3)

where 0 denotes the N0 × N0 zero matrix, T stands for the transpose and B represents
the adjacency matrix of the inter-connections. The matrices D1 and D2 are the diagonal
degree matrices of the adjacency matrices B and BT , respectively. Their components are
defined as:

(D1)ii =
N0∑
j=1

Bij and (D2)ii =
N0∑
j=1

BT
ij , for i = 1, . . . ,N0. (4)

We suppose that the intra and inter-connections are undirected, i.e., each connection
between the nodes is bidirectional. Besides, we consider a diagonal interlinking configura-
tion, which means that each node in a subnetwork is only connected to the corresponding
node in the other equal subnetwork, consequently l12 = N0 and α = 1. Figure 1 illus-
trates this configuration in networks where the building blocks have N0 = 6 nodes with
ring topology in (a) and all-to-all topology in (b).



Araujo and Baptista Applied Network Science            (2019) 4:73 Page 4 of 18

Fig. 1 Examples of the diagonal interlink configuration. Each network is formed by two equal subnetworks
with N0 = 6 nodes each and, with (a) ring and (b) all-to-all topology. The solid black and dashed red links
correspond to the intra and inter-connections, respectively

We can rewrite Eq. (2) in a matrix form as:

xn+1 = 2xn − M1xn (mod 1), (5)

where M1 =
[

εA + γαD1 −γαB
−γαBT εA + γαD2

]
. Defining J1 = 2I1 − M1, where I1 represents

the N1 × N1 identity matrix, Eq. (5) becomes:

xn+1 = J1xn (mod 1). (6)

Since all the connections are undirected, the matrix M1 is symmetric as well as the
Jacobian matrix J1. The Lyapunov exponent of Eq. (6) in the direction of a vector v ∈ R

N1

is given by, (Ott 2002):

λ(v) = lim
N−→∞

1
N

ln
∥∥JN1 · v∥∥ , (7)

where ‖ · ‖ represents the Euclidean norm in R
N1 .

Let λ
(1)
i , for i = 0, . . . ,N1 − 1, be the unordered (and possibly not all distinct) Lyapunov

exponents of Eq. (6). As consequence of the Jacobian J1 being constant and symmetric we
have that:

λ
(1)
i = ln

∣∣∣θ(1)
i

∣∣∣ , fori = 0, . . . ,N1 − 1, (8)

where θ
(1)
i represents the eigenvalues of the matrix J1 and | · | denotes the absolute

value. This result is demonstrated in (Araujo and Baptista: A comprehensive review about
Lyapunov Exponents in continuous and discrete dynamical networks, in preparation).
Note that, if we denote by μ

(1)
i the eigenvalues ofM1 for i = 0, . . . ,N1 − 1, then:

θ
(1)
i = 2 − μ

(1)
i . (9)

Thus, Eq. (8) can be written as:

λ
(1)
i = ln

∣∣∣2 − μ
(1)
i

∣∣∣ . (10)

By (Baptista et al. 2016; Martín-Hernández et al. 2014), the unordered eigenvalues of
M1 are given by:
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μ
(1)
2i = εωi (11)

μ
(1)
2i+1 = εωi + 2γα, (12)

for i = 0, . . . ,N0 − 1 and where 0 = ω0 � ω1 � . . . � ωN0−1 represent the ordered
eigenvalues of the Laplacian matrix A. Note that, μ(1)

2i are the eigenvalues coming from
one layer, whereas μ

(1)
2i+1 are the eigenvalues due to the inter-connectivity, generated by

perturbing μ
(1)
2i with the term 2γα.

The main goal of this work is to grow the network �(1) and to study the conditions
to have the sum of the positive LEs of each network linearly proportional to its number
of nodes. This growing is made as following: �(2) is constructed by coupling two equal
subnetworks�(1) with the same parameter α andwith the same diagonal interlinking con-
figuration. The number of nodes of�(2) isN2 = 2N1 = 22N0 and it can be represented by:

xn+1 = 2xn − M2xn ≡ J2xn (mod 1), (13)

where the matricesM2 and J2 are constructed in the same way asM1 and J1, respectively.
The eigenvalues ofM2 are given by:

μ
(2)
4i = εωi (14)

μ
(2)
4i+1 = εωi + 2γα (15)

μ
(2)
4i+2 = εωi + 2γα (16)

μ
(2)
4i+3 = εωi + 4γα, (17)

for i = 0, . . . ,N0 − 1. Similar to how the eigenvalues ofM1 were generated, the set μ(2) ≡{
μ

(2)
4i ,μ

(2)
4i+1

}
are the eigenvalues due to the layer �(1) and

{
μ

(2)
4i+2,μ

(2)
4i+3

}
are generated

by perturbing the set μ(2) with 2γα.
Proceeding this way, the network �(k) with a number of nodes given by Nk = 2kN0

is constructed by coupling two equal subnetworks �(k−1) with the same parameters and
configuration. Thus, as a result of this recursive procedure for generating self-similar net-
works each layer is connected to all the other layers in the network, and Fig. 1 represents
only the first step of this process. The inter-coupling strength, γ , will be rescaled in order
to maintain the extensive property of the network as it grows. The distinct eigenvalues of
the corresponding matrixMk for the network �(k) are:

μ̃
(k)
0,i ≡ εωi (18)

μ̃
(k)
1,i ≡ εωi + 2γα (19)

μ̃
(k)
2,i ≡ εωi + 4γα (20)

...

μ̃
(k)
j,i ≡ εωi + 2jγα

...
(21)

μ̃
(k)
j=(k−1),i ≡ εωi + 2(k − 1)γ α (22)

μ̃
(k)
j=k,i ≡ εωi + 2kγα. (23)
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Note that, the set of eigenvalues μ̃
(k)
j,i repeats

(k
j
) = k!

j!(k−j)! times, for j = 0, . . . , k. Also
note that, for a fixed j, the eigenvalues in the set μ̃

(k)
j,i are all distinct iff all the ωi are, for

i = 0, . . . ,N0 − 1.
In the next section, we explore analytically the conditions for the network �(k) to have

extensive behaviour. Here, extensivity implies that the sum of the positive LEs, HKS =∑
λ

(k)
i >0 λ

(k)
i , is a linear function of the size of the system, Nk .

Results
As we have seen, the LEs of �(k) are computed by:

λ
(k)
i = ln

∣∣∣2 − μ
(k)
i

∣∣∣ , (24)

where μ
(k)
i are the eigenvalues ofMk , for i = 0, . . . ,Nk −1. The LEs of�(k) can be divided

into two sets, 	ε (computed from μ̃
(k)
0,i , for i = 0, . . . ,N0 − 1), that represents the LEs that

only depend on the intra-coupling strength, and 	γ ,ε (computed from the eigenvalues
μ̃

(k)
j,i , for j = 1, . . . , k and i = 0, . . . ,N0 − 1), formed by the ones that depend on both, the

intra and inter-coupling strengths (Baptista et al. 2016; Martín-Hernández et al. 2014).
We have explored analytically the conditions for the network �(k) to have the sum of the
positive LEs extensive in three different situations.

Case 1

In our first analysis we consider networks having only positive LEs, which leads to maxi-
mal values of HKS. Then, assuming that all elements of 	ε and 	γ ,ε are positive we have
that:

ln |2 − εωi| > 0 and, (25)

ln |2 − εωi − 2jγα| > 0, (26)

for every i = 0, . . . ,N0 − 1 andj = 1, . . . k. Therefore:

HKS =
Nk−1∑
i=0

λi =
Nk−1∑
i=0

ln
∣∣∣2 − μ

(k)
i

∣∣∣ =
k∑

j=0

N0−1∑
i=0

(
k
j

)
ln

∣∣∣2 − μ̃
(k)
j,i

∣∣∣ (27)

=
k∑

j=0

N0−1∑
i=0

(
k
j

)
ln

∣∣2 − εωi − 2jγα
∣∣ (28)

=
k∑

j=0

N0−1∑
i=0

(
k
j

)
ln

∣∣∣2
(
1 − εωi

2
− jγα

)∣∣∣ (29)

=
k∑

j=0

N0−1∑
i=0

(
k
j

) {
ln(2) + ln

∣∣∣1 − εωi
2

− jγα

∣∣∣
}

(30)

=
k∑

j=0

(
k
j

)N0−1∑
i=0

ln(2) +
k∑

j=0

N0−1∑
i=0

(
k
j

)
ln

∣∣∣1 − εωi
2

− jγα

∣∣∣ (31)
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= 2kN0 ln(2) +
k∑

j=0

N0−1∑
i=0

(
k
j

)
ln

∣∣∣1 − εωi
2

− jγα

∣∣∣ (32)

= Nk ln(2) +
k∑

j=0

N0−1∑
i=0

(
k
j

)
ln

∣∣∣1 − εωi
2

− jγα

∣∣∣ . (33)

Equation (33) does not allow to determine explicitly the dependence of HKS on Nk . To
this analysis we will expand the logarithm function. In order to consider the Maclaurin
expansion up to first order of ln

∣∣1 − εωi
2 − jγα

∣∣ in Eq. (33), assume that:∣∣∣εωi
2

+ jγα

∣∣∣ � 1, (34)

for every i = 0, . . . ,N0 − 1 and j = 0, . . . , k. Consequently, for each i and j we have that:

0 < 1 − εωi
2

− jγα � 2, (35)

and then, we can omit the absolute value in Eq. (33). Rewriting it we have:

HKS � Nk ln(2) +
k∑

j=0

N0−1∑
i=0

(
k
j

) (
−εωi

2
− jγα

)
(36)

= Nk ln(2) −
k∑

j=0

(
k
j

)N0−1∑
i=0

εωi
2

−
N0−1∑
i=0

k∑
j=0

(
k
j

)
jγα (37)

= Nk ln(2) − 2k−1ε
N0−1∑
i=0

ωi − N0γα

k∑
j=0

(
k
j

)
j (38)

= Nk ln(2) − 2k−1ε
N0−1∑
i=0

ωi − N0γα
(
k2k−1

)
(39)

= Nk ln(2) − 2k−1εS − 2k−1N0αγ k (40)

= Nk ln(2) − Nk
2N0

εS − Nk
2

αγ k (41)

= Nk

(
ln(2) − εS

2N0

)
− Nk

2
αγ k (42)

= aNk + b(k), (43)

where:

S =
N0−1∑
i=0

ωi, a = ln(2) − εS
2N0

and b(k) = −Nk
2

αγ k. (44)

It is now clear the dependence of HKS on Nk . Let us discuss some of the main features
of this. Note that, once we have set the building block with an intra-coupling strength ε,
the number a in Eq. (43) is a constant and does not depend on k. However, the same is
not true for the term b(k), that as we can see, depend strongly on the number k. Our goal
is to have HKS as a linear function of Nk , which implies in having b(k) as a constant or
only proportional to Nk . Therefore, in order to satisfy the latter, i.e., b(k) = dNk , where d
is a constant, we need to require that γ ∝ 1

k . Then, choose γ = γ (k) = c
k , for a positive

constant c. Therefore,
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b(k) = −αcNk
2

and HKS � a
′
Nk , (45)

where a′ = a − αc
2 .

On the other hand, in order to satisfy conditions (25) and (26) without contradicting
inequality (34) we must have:

εωi < 1 and εωi + 2jαγ < 1, (46)

for each i = 0, . . . ,N0−1 and j = 1, . . . , k. Note that, 0 � ωi � N0 for each i = 0, . . . ,N0−
1 and remember we are considering that α = 1. Then, aiming to satisfy conditions (34)
and (46) simultaneously we need to choose the parameters ε and γ such that:

ε � 1
N0

and, (47)

γ � 1 − εN0
2k

. (48)

Combining condition (48) with the fact that γ should be taken inversely proportional
to k, we have that:

γ≡γ (k) = 1 − εN0
2kC

, (49)

for a constant C, such that C 
 1. Therefore, if conditions (47) and (49) are satisfied we
maintain extensivity keeping all LEs positive as the network grows.
For the networks considered and that have a great deal of symmetry, connectivity and

size must be interlinked to create extensivity. In single networks, fully connected, the
rescaling to create extensivity would require ε to be much less than 1

N0
. To networks con-

sidered in here, our results show that, the intra-coupling must be bounded by the inverse
of the number of nodes of the building block, which can be set as a constant, before the
growing process starts. It is the inter-coupling that must be rescaled, and the rescaling
depends on the number of times (given by k) that the network has evolved.

Case 2

In the second case, we assume that �(k) has positive as well as negative LEs and that
the inter-coupling strength γ is responsible for the change in the sign of the LEs, i.e., all
elements of 	ε are positive and we do not have any restrictions for the ones that comes
from 	γ ,ε . Then:

ln |2 − εωi| > 0, (50)

for every i = 0, . . . ,N0 − 1. Let n be the number of negative LEs and define by p the
number of positive ones. For each i ∈ {0, . . . ,N0 − 1} and j ∈ {1, . . . , k} define:

λij = ln
∣∣2 − εωi − 2jγα

∣∣ . (51)

Then, consider the setA defined by:

A = {λil jl | il = i, jl = j and λij > 0}, (52)

i.e., A is formed by the elements λij that are positive. Let q be its cardinality. The set A
may contain repeated elements, for instance, if the LE λij appears “ × " times, then λij
contributes “ × " times in the cardinality ofA.
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Therefore, the sum of the positive LEs is given by:

HKS =
N0−1∑
i=0

ln |2 − εωi| +
q∑

l=1

(
k
jl

)
λil jl (53)

=
N0−1∑
i=0

ln |2 − εωi| +
q∑

l=1

(
k
jl

)
ln

∣∣2 − εωil − 2jlαγ
∣∣ (54)

=
N0−1∑
i=0

ln
∣∣∣2

(
1 − εωi

2

)∣∣∣ +
q∑

l=1

(
k
jl

)
ln

∣∣∣2
(
1 − εωil

2
− jlαγ

)∣∣∣ (55)

= ln(2)
(
N0 +

q∑
l=1

(
k
jl

))
+

N0−1∑
i=0

ln
∣∣∣1 − εωi

2

∣∣∣

+
q∑

l=1

(
k
jl

)
ln

∣∣∣1 − εωil
2

− jlαγ

∣∣∣ .

(56)

As previously, we expand in Maclaurin series up to first order the logarithmic expres-
sions in Eq. (56) to understand the explicit dependence of HKS on Nk . For that, assume
that:

∣∣∣εωi
2

∣∣∣ � 1 and
∣∣∣εωil

2
+ jlαγ

∣∣∣ � 1, (57)

for every i = 0, . . . ,N0 − 1 and l = 1, . . . , q. Note that, p = N0 + ∑q
l=1

(k
jl

)
. Then, if z

denotes the number of LEs that is equal to zero, Eq. (56) can be rewritten as:

HKS � p ln(2) −
N0−1∑
i=0

εωi
2

−
q∑

l=1

(
k
jl

) (εωil
2

+ jlαγ
)

(58)

= (Nk − n − z) ln(2) − ε

2

N0−1∑
i=0

ωi − ε

2

q∑
l=1

(
k
jl

)
ωil − αγ

q∑
l=1

(
k
jl

)
jl

(59)

= Nk ln(2) − n ln(2) − z ln(2) − ε

2
S − ε

2

q∑
l=1

(
k
jl

)
ωil − αγ

q∑
l=1

(
k
jl

)
jl

(60)

= aNk + b(k) + c, (61)

where:

S =
N0−1∑
i=0

ωi, a = ln(2), c = −εS
2

and (62)

b(k) = −
(
n ln(2) + z ln(2) + ε

2

q∑
l=1

(
k
jl

)
ωil + αγ

q∑
l=1

(
k
jl

)
jl

)
. (63)

In this case, the expansion of the logarithm alone was not sufficient to clarify whether
HKS is a linear function of Nk . This is so because of the several terms appearing in
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b(k). But, other terms in this expansion allow us to place some necessary conditions for
extensivity. Once we have chosen the building block, the number c is a constant and
to have a linear function in Eq. (61), the factor b(k) has to be a constant or a linear
function of Nk .
On the other hand, a solution for the simultaneous inequalities (50) and (57) is:

ε � 1
N0

and, (64)

γ � 2 − εN0
2k

. (65)

Then, we conclude that, in order to grow the network extensively, keeping positive all
the LEs that comes from 	ε , the parameters ε and γ must satisfy conditions (64) and
(65) simultaneously and they also should be chosen such that b(k) is a constant or a lin-
ear function of Nk . In the next section, we provide two explicit examples of networks
whose parameters satisfy these conditions. We will calculate the terms of b(k), which
will strongly depend on the topology of the chosen networks and have to be calculated
case by case. This is a contrasts to case 1, where b(k) does not explicitly depend on the
topology.
Another contrast to case 1, in which all LEs are positive, is that the rescaling for

the inter-coupling strength is less restrictive and allows a large variation of it. This
reflects the fact that, if the building block is set to be chaotic and those blocks
are connected in a proper way then this chaotic behaviour propagates throughout
the whole network as the network evolves and it is sufficient to induce extensiv-
ity, despite that negative LEs appear. This becomes mathematically evident when HKS
of the network receives contributions from the positive LEs of the building block
even though there exists negative LEs. The inter-coupling is not destroying the local
chaotic behaviour of the building blocks. In this sense, chaos also has an extensive
behaviour.

Case 3

In the last case, as in the previous one, we assume that �(k) has positive as well as neg-
ative LEs. However, here is only the intra-coupling strength ε that is responsible for
the change in the sign of the LEs, in other words, we are requiring that all elements of
	γ ,ε are positive and we do not have any limitations for the ones that comes from 	ε .
Then:

ln
∣∣2 − εωi − 2jαγ

∣∣ > 0, (66)

for every i = 0, . . . ,N0 − 1 and j = 1, . . . , k. As before, n, p and z represent the number of
negative, positive and null LEs, respectively. Define:

λi = ln |2 − εωi| and B = {λil | i = il and λi > 0}. (67)

Let r be the cardinality of B and, as in the previous case, repeated elements contribute
multiple times with r. Then, HKS is given by:
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HKS =
r∑

l=1
ln

∣∣2 − εωil
∣∣ +

k∑
j=1

N0−1∑
i=0

(
k
j

)
ln

∣∣2 − εωi − 2jαγ
∣∣ (68)

=
r∑

l=1
ln

∣∣∣2
(
1 − εωil

2

)∣∣∣ +
k∑

j=1

N0−1∑
i=0

(
k
j

)
ln

∣∣∣2
(
1 − εωi

2
− jαγ

)∣∣∣ (69)

=
r∑

l=1
ln(2) +

r∑
l=1

ln
∣∣∣1 − εωil

2

∣∣∣ +
k∑

j=1

N0−1∑
i=0

(
k
j

)
ln(2)

+
k∑

j=1

N0−1∑
i=0

(
k
j

)
ln

∣∣∣1 − εωi
2

− jαγ

∣∣∣

(70)

=
(
r + (2k − 1)N0

)
ln(2) +

r∑
l=1

ln
∣∣∣1 − εωil

2

∣∣∣

+
k∑

j=1

N0−1∑
i=0

(
k
j

)
ln

∣∣∣1 − εωi
2

− jαγ

∣∣∣

(71)

= Nk ln(2) − n ln(2) − z ln(2) +
r∑

l=1
ln

∣∣∣1 − εωil
2

∣∣∣

+
k∑

j=1

N0−1∑
i=0

(
k
j

)
ln

∣∣∣1 − εωi
2

− jαγ

∣∣∣ .

(72)

since p = r + (2k − 1)N0 = Nk − n − z.
We now expand the logarithm function to analyse the dependence of HKS on Nk . In

order to consider the expansion in Maclaurin series up to first order of the last two terms
in Eq. (72) assume that:

∣∣∣εωil
2

∣∣∣ � 1 and
∣∣∣εωi
2

+ jαγ

∣∣∣ � 1, (73)

for every l = 1, . . . , r, i = 0, . . . ,N0−1 and j = 1, . . . , k. Therefore, Eq. (72) can be written
as:

HKS � Nk ln(2) − n ln(2) − z ln(2) −
r∑

l=1

εωil
2

−
k∑

j=1

N0−1∑
i=0

(
k
j

)
εωi
2

−
k∑

j=1

N0−1∑
i=0

(
k
j

)
jαγ

(74)

= Nk ln(2) − n ln(2) − z ln(2) − ε

2

r∑
l=1

ωil − ε

2
(2k − 1)

N0−1∑
i=0

ωi

− N0αγ

k∑
j=1

(
k
j

)
j

(75)

= Nk ln(2) − n ln(2) − z ln(2) − ε

2

r∑
l=1

ωil − ε

2
(2k − 1)S

− N0αγ
(
k2k−1

)
(76)
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= Nk ln(2) − n ln(2) − z ln(2) − ε

2

r∑
l=1

ωil − εS
Nk
2N0

+ εS
2

− αγ k
Nk
2

(77)

= Nk

(
ln(2) − εS

2N0

)
+

(
−n ln(2) − z ln(2) − αγ k

Nk
2

)

+
(

εS
2

− ε

2

r∑
l=1

ωil

)
(78)

= aNk + b(k) + c, (79)

where:

S =
N0−1∑
i=0

ωi, a = ln(2) − εS
2N0

, c = εS
2

− ε

2

r∑
l=1

ωil and (80)

b(k) = −
(
n ln(2) + z ln(2) + αγ k

Nk
2

)
. (81)

Suppose we have set the building block, then, the number c is a constant and to have the
sum of the positive LEs as a function of Nk we need to choose the inter-coupling strength
such that γ ∝ 1

k . Thus, taking γ = c̃
k , for a positive constant c̃, we have:

b(k) = −
(
n ln(2) + z ln(2) + αc̃Nk

2

)
. (82)

Now, note that, if inequality (66) and the second inequality (73) are satisfied simultane-
ously for all i = 0, . . . ,N0 − 1 and j = 1, . . . , k, we conclude that:

ln |2 − εωi| > 0, (83)

for all i = 0, . . . ,N0 −1 and then, c = 0 and b(k) = −αc̃Nk
2 . Therefore,HKS is summarized

as:

HKS � a′Nk , (84)

where a′ =
(
a − αc̃

2

)
.

Notice that, expression (84) coincides to the one in (45). It shows that if all the LEs from
	γ ,ε are positive then all the LEs of 	ε will also be and case 3 comes down to case 1.
In summary, we have shown that for the dynamics described in Eq. (1), extensiv-

ity can always be achieved when an infinitely large multiplex network is constructed
by reproducing at all levels the intra and inter structure. To obtain this, we start with
any arbitrary network satisfying Eq. (1), a building block, thus, extensivity is obtained if
the intra-coupling strength ε satisfies condition (47) and then, we only rescale the inter
coupling-strength γ to be inversely proportional to the number of times the network has
evolved. The larger this number is, the smaller the inter-coupling strength needs to be.
It is important to notice that the conditions presented here are sufficient but not nec-

essary to have extensivity, which means that may exist extensive networks that do not
satisfy any of our restrictions, for example, networks that do not satisfy Eq. (34). Although,
our results do not characterize all extensive networks it gives us a recipe to follow when
one intends to reach extensivity: choose a building block and create a larger network
connecting many of these with appropriate inter-connections.
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Numerical results

In this section, we present the result of some simulations in order to illustrate and certify
our analytical results.
Figure 2 shows the values of HKS (in blue stars) and a linear fitting (in orange straight

line) as the initial building blocks with N0 = 5 nodes are evolved, considering two dif-
ferent topologies: (a) ring and (b) star topology. In both situations, k =[ 1, 2, . . . , 10] and
ε = 2·10−4, which satisfies inequality (47). For k = 1, we also chose γ (1) satisfying condi-
tion (49) for C = 10 and, as we grew the network we rescaled the inter-coupling strength
in accordance to condition (49). As can be seen from Fig. 2, choosing the parameters in
this way and rescaling the inter-coupling strength during the evolutionary process accord-
ing to condition (49), the sum of the positive LEs (HKS) is a linear function of the number
of nodes (Nk). This line passes through the origin, which agrees with Eq. (45). In order
to measure the error in considering these linear fittings we also calculated the residual
standard deviation (Younger 1985), that provides an indication of how close our estima-
tion are. This quantity for both topologies is equal to 0.0036, which shows that these lines
fit very well to the actual data. It also illustrates the fact that, the topology of the build-
ing block is not relevant to achieve extensivity. On the other hand, note that, the graphs
(a) and (b) are very similar. This is because HKS in each topology only differ from each
other due to the factor S, as can be seen in Eq. (42) and for these particular topologies this
number is very close. For the ring topology we have that S = 10 and for the star topology
S = 8, what makes the graphs seem almost the same.
Figure 3 shows the values of HKS as a function of Nk for networks in case 2. The stars

in blue represent the exact values of HKS calculated using Eq. (56). The red star points
represent HKS values calculated using the Maclaurin expansion in Eq. (60), whose terms
will be rewritten in the following in terms of the network configuration chosen and their
relevant parameters. The straight lines are linear fittings. We considered a building block
with N0 = 5 nodes and intra-coupling strength ε = 2 · 10−4 in two different topologies:
(a) ring and (b) all-to-all topology. As in the previous examples, k =[ 1, 2, . . . , 10], but here
for each network �(k) we chose the inter-coupling γ (k) satisfying:

Fig. 2 The sum of positive LEs with respect to the number of nodes for networks satisfying case 1 with (a)
ring and (b) star topology. For each network we considered the building block with N0 = 5 and ε = 2 · 10−4.
The inter-coupling of the network �(1) is γ (1) = 0.05 and k =[ 1, 2, . . . , 10]. The fitting in (a) produces
p1 = 0.6676 and p2 = −0.0057 and the one in (b) produces p1 = 0.6677 and p2 = −0.0057, where p1 is the
slope and p2 is the constant coefficient of the fitting
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Fig. 3 The sum of positive LEs with respect to the number of nodes for networks satisfying case 2 with (a) ring
and (b) all-to-all topology. For each network we considered the building block with N0 = 5 and ε = 2 · 10−4.
The inter-coupling of the network �(1) is γ (1) = 0.5045 and k =[ 1, 2, . . . , 10]. In (a), the linear fitting in the
blue line has p1 = 0.3965 and p2 = −0.9896, and the one in the red line has p1 = 0.4407 and p2 = −0.9422.
In (b), the linear fitting in the blue line has p1 = 0.3962 and p2 = −0.9881, and the one in the red line has
p1 = 0.4405 and p2 = −0.9412, where p1 is the slope and p2 is the constant coefficient of the fitting

γ (k) = (1 − εN0)

2k
+ 1

2kC
, (85)

for C = 100. Then, for the network�(1), we have that γ (1) = 0.5045. Note that, the intra-
coupling strength satisfies condition (64) and choosing γ (k) satisfying Eq. (85), we have
that, γ (k) satisfies condition (65) but does not satisfy constraint (48), i.e., we may have
negative LEs.
In order to compute the term b(k) in Eq. (63), for each k ∈ {1, . . . , 10}, we need to

estimate the number of negative and null LEs as well as to identify the pairs (i, j) for which
λij in Eq. (51) are positive. For these two examples, our simulations have shown that, for
each network �(k), there are no null LEs and the pairs that contribute to the negative LEs
are only the pairs (i, k), for i = 0, . . . ,N0 − 1, therefore, the number of negative LEs of
�(k) is N0 and from Eq. (63) we have that:

b(k) = −
(
N0 ln(2) + ε

2
s1(k) + αγ (k)s2(k)

)
, (86)

where:

α = 1, (87)

s1(k) =
N0−1∑
i=0

k−1∑
j=1

(
k
j

)
ωi = S

(
2k − 2

)
and, (88)

s2(k) = N0

k−1∑
j=1

(
k
j

)
j = N0k

(
2k−1 − 1

)
. (89)

Consequently, Eq. (86) becomes:

b(k) = −5 ln(2) − εS2k−1 + εS − γ (k)N0k2k−1 + γ (k)N0k. (90)

Rewriting Eq. (85) as:

γ (k) = C′

k
, where: C′ = (1 − εN0)C + 1

2C
, (91)
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we have that:

b(k) = −5 ln(2) − εS2k−1 + εS − C′N02k−1 + C′N0 (92)

= −5 ln(2) − εS
Nk
2N0

+ εS − C′Nk
2

+ C′N0 (93)

= Nk

(
− εS
2N0

− C′

2

)
+ (−5 ln(2) + εS + C′N0

)
. (94)

Then, from Eq. (61) the approximate sum of the positive LEs for each �(k) is given by:

HKS �
(
ln(2) − εS

2N0
− C′

2

)
Nk +

(
εS
2

− 5 ln(2) + C′N0

)
, (95)

that is a linear function of Nk . Extensivity is achieved as it is confirmed by the blue stars
(calculated by Eq. (56)) and the red stars (calculated by the expansion in Eq. (60)) in Fig. 3.
Note that, again HKS in both topologies only differ from each other by the factor εS

2 and,
although the difference between the values of S in Fig. 3 is bigger in comparison with the
Fig. 2 (S = 10 in (a) and S = 20 in (b)), both plots show similar behaviour. The reason for
this is due to S being multiplied by ε what makes the product εS

2 very small.
The linear approximations provide a good fitting for the data. For the ring topology,

the residual standard deviations are equal to 0.6453 and 9.7 · 10−14 for the blue and red
lines, respectively and, for the all-to-all topology, these quantities are equal to 0.6457 and
1.09 · 10−13, respectively.
The difference between the blue and red linear fitting lines represents the error of the

Maclaurin expansion. To show that this error is an artifact due to the expansion (and
therefore, it tends to zero, as the argument of the logarithm approaches 1) and not due to
any other analytical miscalculation, we have plot the error bar in blue. This error bar rep-
resents the maximal error one could obtain from the approximate values of HKS through
the Maclaurin expansion if all the Lyapunov exponents would contribute equally to the
total error with the same amount of the error produced by the exponent whose argument
inside the logarithm function deviates the most from 1.
Figure 4a and b show the exact values for HKS (in blue stars) calculated using Eqs. (33)

and (56), respectively, when the conditions specified for cases 1 and 2 to maintain exten-
sivity are not satisfied. In both networks we considered the star topology for the building
blocks with N0 = 5 nodes. For each network, we considered k from 1 up to 6 and
ε = 2 · 10−4, that obeys conditions (47) and (64). With regards to the inter-coupling
strength, for the network �(1) we chose γ (1) = 0.05 in (a) and γ (1) = 0.5045 in (b),
that satisfy Eq. (49) and condition (65), respectively. In order to show the importance of
rescaling the inter-coupling strength as we evolve the network, we kept constant these
parameters during the evolutionary process and, as we can see from Fig. 4, HKS does not
dependent linearly on the number of nodes of the network. This fact is pretty clear in (b)
and in (a) we considered a linear fitting (in the orange straight line) to help this visual-
ization. The residual standard deviation in this case is equal to 1.96, that is much bigger
when compared with the one in Fig. 2, showing that the linear regression there is more
consistent than here.
Finally, in Fig. 5, graphs (a) and (b) present two additional scenarios for which the condi-

tions to maintain extensivity put forwarded in cases 1 and 2 are not satisfied, respectively.
In both situations, we considered the star topology for �(0) with N0 = 5 nodes and we
also kept constant all the intra and inter-coupling strengths as in the previous example.
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Fig. 4 The sum of positive LEs with respect to the number of nodes for networks with star topology that do
not satisfy cases 1 and 2, respectively. For each network we considered the building block with N0 = 5 and
ε = 2 · 10−4. In (a) the inter-coupling of the network �(1) is γ (1) = 0.05 and in (b) γ (1) = 0.5045 and
k =[ 1, 2, . . . , 6]. In both graphs, during the evolutionary process the inter-coupling strength was kept
constant. The fitting in the orange line in (a) produces p1 = 0.5223 and p2 = 3.3490, where p1 is the slope
and p2 is the constant coefficient of the fitting

However, here we have chosen ε = 0.19 that does not obey conditions in (47) or (64).
Besides, in scenario (a) we set γ (1) = 0.2, contradicting condition (48) and in scenario (b)
γ (1) = 0.6, which also does not satisfy condition (65). As in Fig. 4, we evolved the network
6 times. Figure 5 shows that HKS is not extensive for these chosen parameters. It is worth
commenting that whereas in (a) extensivity is not achieved becauseHKS is a convex shape,
in (b) it has a concave shape. This concave shape was argumented in (Antonopoulos and
Baptista 2017) to be a finite effect. This kind of behaviour was called super-extensive,
when HKS grows faster than any possible linear approximation. Our numerical results do
not contradict this logic, however, it is interesting to see that even networks with hundred
of nodes can apparently behave as being super-extensive. Finally, these results evidence
that the choice of ε and the inter coupling strength γ (1) of �(1) play a fundamental role
in maintaining the extensive behaviour of HKS in large multiplex networks.

Fig. 5 The sum of positive LEs with respect to the number of nodes for networks with star topology that do
not satisfy cases 1 and 2, respectively. For each network we considered the building block with N0 = 5 and
ε = 0.19. In (a) the inter-coupling of the network�(1) is γ (1) = 0.2 and in (b) γ (1) = 0.6 and k =[ 1, 2, . . . , 6].
In both graphs, during the evolutionary process the inter-coupling strength was kept constant
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In addition to the examples presented in this section we also have checked that our
findings hold in networks used to described real-life phenomena and with less trivial
topologies such as, the circulant network, the random model of network G(N ,M) pro-
posed by Erdös and Rényi, the small-world network using the Watts-Strogatz model and
the scale-free network presented by Barbarasi-Albert.

Conclusions
Multiplex networks are fundamentally different when compared to single layer networks
(Gomez et al. 2013) and their sophisticated nature can provide a more realistic picture to
model large real-world systems, since most of real life phenomena are described by mul-
tiple types of connections. This paper explores the role of the intra and inter-connections
to maintain the extensive behaviour of the sum of the positive LEs in infinitely large
multiplex networks.
Our analytical results have showed that for the type of networks considered here, it

is always possible to construct extensive networks by rescaling only the inter-couplings
and keeping the intra-connections constant during the evolutionary process. Due to this
growth method, the rescale ε = 1

N (where N stands for the system size), which is broadly
adopted by the nonlinear community of academics to study collective behavior of net-
works of different sizes, is an over underestimation to achieve extensivity. The obtained
rescale for the intra-coupling strengths does not depend directly on the size N of the net-
work but on the size N0 of the initial building block considered in the process. So, our
extensive networks can be constructed with much less restrict rescaling than those used
for single layer networks. Consequently, the number of nodes of the initial networks have
a major contribution to the extensive behaviour rather than the way the nodes in the ini-
tial networks are connected by internally (intra-connection). These results are at variance
with the outcomes from the work developed by Antonopoulos and Baptista (2017), where
they showed that extensivity depend on other quantities apart from the type of couplings,
such as the sum of the intra-degrees and any single network whose the sum of the intra-
degrees is proportional to N2 would be extensive by the ε = 1

N rescaling. In here, a very
relevant physical quantity leading to appropriate rescaling is the number of times the
network has evolved.
Introducing the term super entropic for networks that present only positive Lyapunov

exponents, our findings also reveal that networks that are not super entropic, are easier
to be made extensive, since the parameters range to achieve extensivity are larger.
Our main contribution in this work was not only to show which quantities are related to

extensivity, but also provide a reliable set of conditions to be obeyed to achieve networks
that grows in size still maintaining the extensive character. With regards to the generality
of our results, a task left for future work would be to explore whether our main conclu-
sions can be exported to multiplex networks with more complex topologies (by varying
α) or constructed with nodes having more generic dynamical descriptions, such as neural
networks.
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